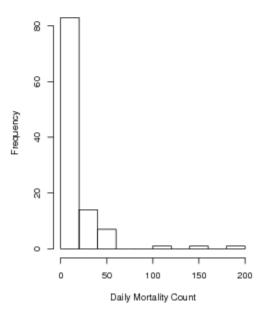
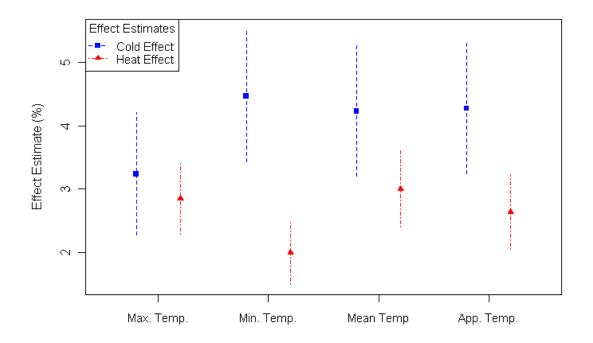

Online Supplement for: Weather-Related Mortality: How Heat, Cold, and Heat Waves Affect Mortality in the United States, GB Anderson and ML Bell, *Epidemiology*

List of Supplemental Figures

- eFigure 1. Distribution of community median values for daily mean temperature, daily mean dew point temperature, and daily mortality count.
- eFigure 2. National relative heat and cold effect estimates using various temperature metrics.
- eFigure 3. The effects of lag structure on relative heat and cold effect estimates for various communities (a. New York City; b. Los Angeles; c. Chicago; and d. Dallas/ Ft. Worth).
- eFigure 4. Relationship between temperature and risk of mortality, comparing various temperature levels to a reference temperature of 60°F for New York City.
- eFigure 5. Examples of temperature-mortality relationships in communities across the United States (a. Chicago; b. Dallas/Ft. Worth; c. Los Angeles; d. Minneapolis/St. Paul; e. Philadelphia; f. Phoenix; g. Seattle).
- eFigure 6. Community-specific increase in daily mortality risk for the relative cold effect (comparison of risk at 1^{st} to 10^{th} percentiles of $T_{lag0-25}$) and heat effect (comparison of risk at the 99th to 90th percentiles of T_{lag0-1}) (n = 107).
- eFigure 7. Community-specific increase in daily mortality risk for the absolute cold effect (comparison of risk at 40 °F to 60 °F for $T_{lag0-25}$) (n = 81) and heat effect (comparison of risk at 80 °F to 60 °F for T_{lag0-1}) (n = 101).
- eFigure 8. Sensitivity analysis of relative heat effect estimates (comparison of risk at the 99^{th} to 90^{th} percentiles of T_{lag0-1}) to adjustment by air pollution.
- eFigure 9. Map of the relative cold effect (percent increase in mortality risk comparing 1st to 10th percentile of T_{lag 0-25}) (eFig. 9a), absolute cold effect (percent increase in mortality risk comparing 40 °F to 60 °F for T_{lag0-25}) (eFig. 9b), and the absolute heat effect (percent increase in mortality risk comparing 80 °F to 60 °F T_{lag 0-1}) (eFig. 9c).
- eFigure 10. Map of community heat-wave effect estimates using the 2-day, ≥99.5th percentile heat-wave definition.
- eFigure 11. Percent increase in mortality risk for the relative cold effect (comparison of the 1st to 10th percentile temperature) and heat effect (comparison of the 99th to the 90th percentile temperature) (eFig. 11a), the absolute cold effect (percent increase in mortality risk comparing 40 °F to 60 °F for $T_{lag0-25}$), heat effect (percent increase in mortality risk comparing 80 °F to 60 °F for T_{lag0-1}) (eFig. 11b) and heat-wave effect (eFig. 11c) by region.

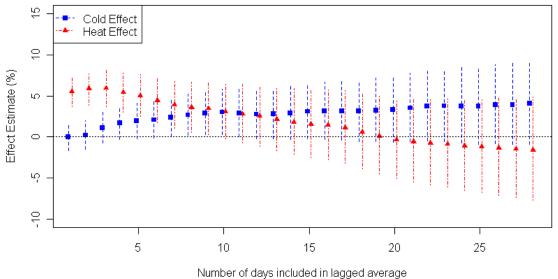

List of Supplemental Tables

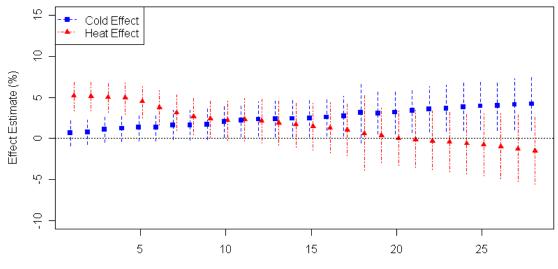
- eTable 1. Summary statistics for weather variables and mortality rates, across 107 U.S. communities.
- eTable 2. Correlation of temperature metrics across 107 U.S. communities.
- eTable 3. Sensitivity of relative heat and cold effects to changes in the degrees of freedom used to model temperature splines.
- eTable 4 Sensitivity of absolute heat and cold effects to inclusion of pollution variables in the temperature-mortality model.
- eTable 5 Number of heat waves/year/community under different heat-wave definitions.
- eTable 6. Increased risk of mortality for later days of a heat-wave event compared to non-heat-wave days, under different heat-wave definitions, using lag 0-2 days to control for temperature.
- eTable 7. Correlations among community variables (eTab. 7a.) and weather variables (eTab. 7b.) used in the second-stage analysis.
- eTable 8. Increase in heat- and cold-related mortality effect estimates for those \geq 65 years per interquartile (IQR) increase in community-specific weather variables.
- eTable 9. Increase in heat- and cold-related mortality effect estimates for those ≥65 years per interquartile (IQR) increase in community-specific socioeconomic, race, urbanicity, and air conditioning variables.


eFigure 1. Distribution of community median values for daily mean temperature, daily mean dew point temperature, and daily mortality count.

Median Daily Mortality

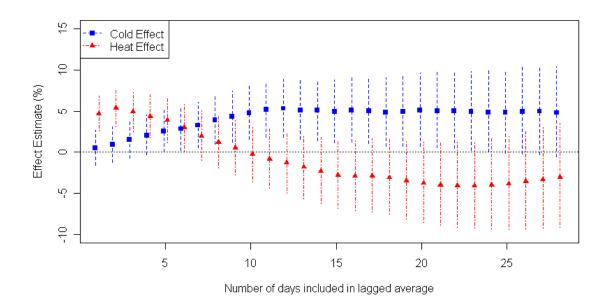
eFigure 2. National relative heat and cold effect estimates using various temperature metrics.

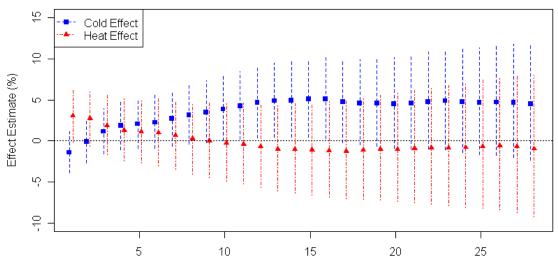

Note: The point reflects the percent increase in mortality risk for the relative heat effects (comparing risk at the 99^{th} and 90^{th} percentile) and cold effects (comparing risk at the 1^{st} and 10^{th} percentile) while the vertical line shows 95% posterior interval.


eFigure 3. The effects of lag structure on relative heat and cold effect estimates for various communities (a. New York City; b. Los Angeles; c. Chicago; and d. Dallas/ Ft. Worth).

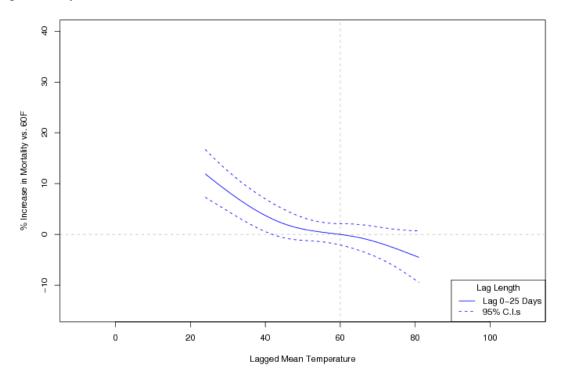
Note: Points show central estimates while vertical lines show 95% confidence intervals.

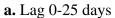
a. New York City

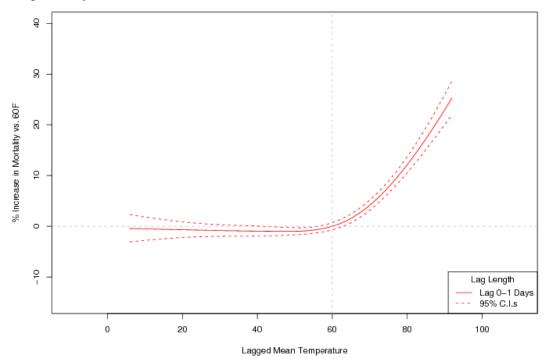



b. Los Angeles

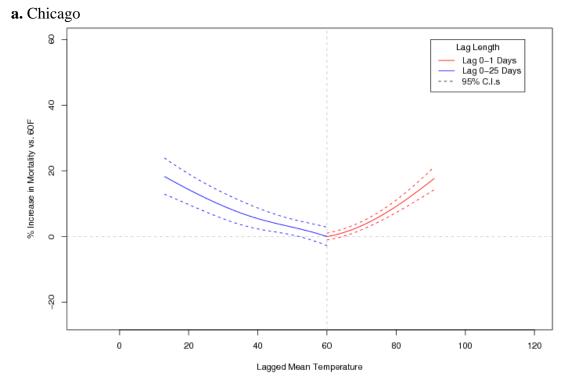
c. Chicago

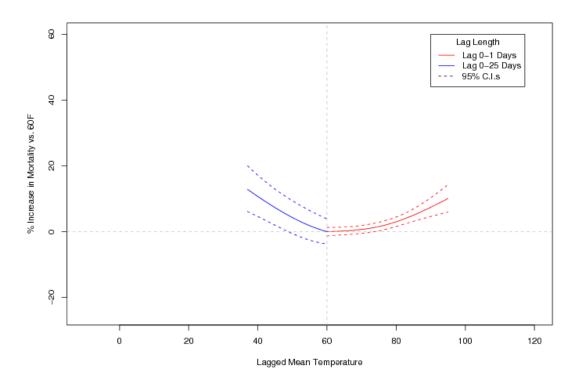


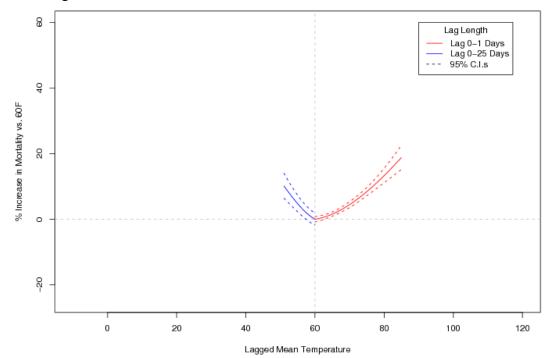


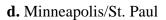

Number of days included in lagged average

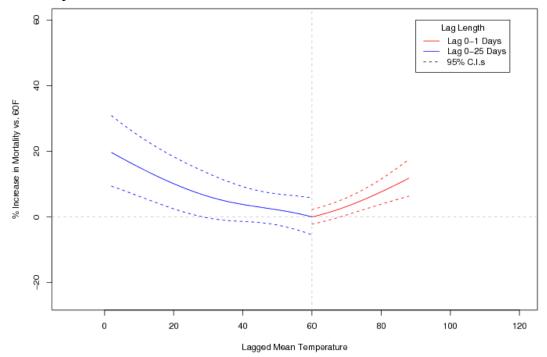
eFigure 4. Relationship between temperature and risk of mortality, comparing various temperature levels to a reference temperature of 60° F for New York City.

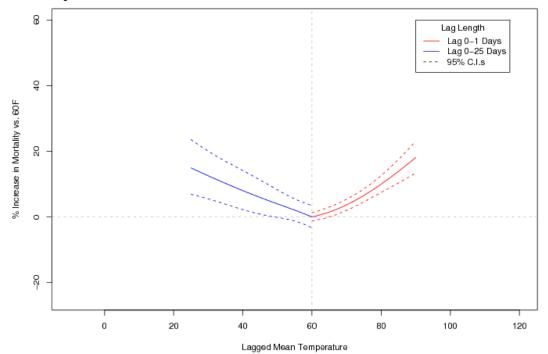


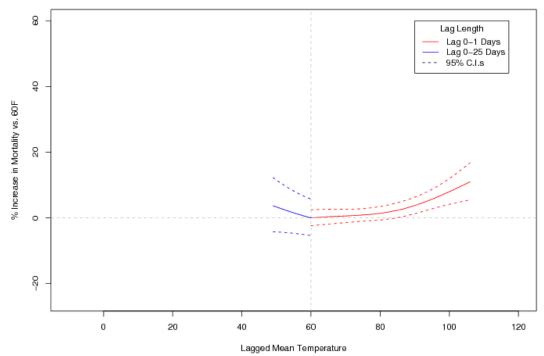

b. Lag 0-1 days

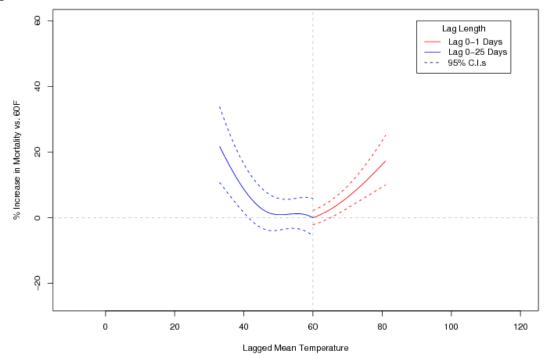

eFigure 5. Examples of temperature-mortality relationships in communities across the United States (a. Chicago; b. Dallas/Ft. Worth; c. Los Angeles; d. Minneapolis/St. Paul; e. Philadelphia; f. Phoenix; g. Seattle).

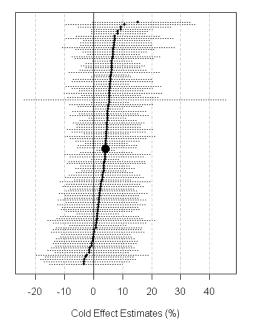


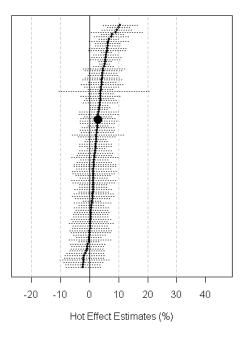

b. Dallas/Ft. Worth


c. Los Angeles

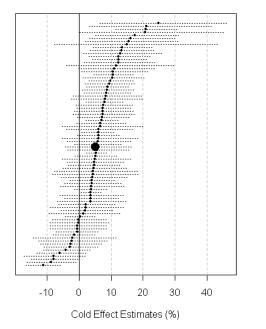


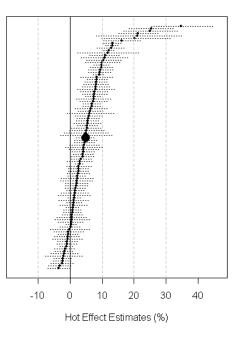

e. Philadelphia



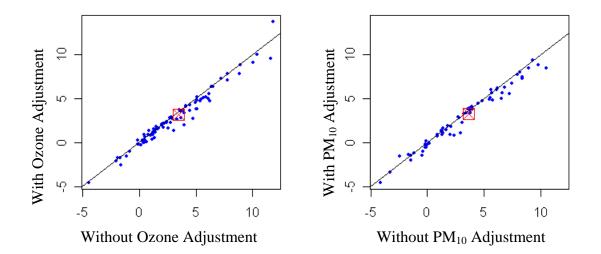


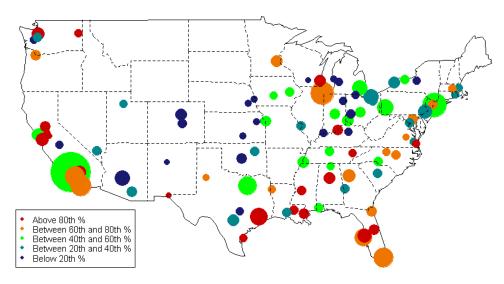
eFigure 6. Community-specific increase in daily mortality risk for the relative cold effect (comparison of risk at 1st to 10th percentiles of $T_{1ag0-25}$) and heat effect (comparison of risk at the 99th to 90th percentiles of T_{1ag0-1}) (n = 107). *Note*: Each point represents a community's central estimate, and the dashed lines represent the 95%


Note: Each point represents a community's central estimate, and the dashed lines represent the 95% interval. The large black dots represent the overall effect across the 107 communities. The scale of the graph is too large to show the 95% posterior interval for the overall estimates.

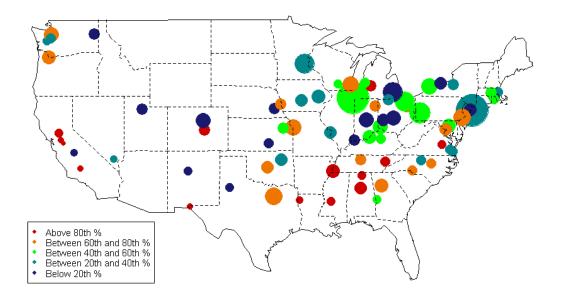


eFigure 7. Community-specific increase in daily mortality risk for the absolute cold effect (comparison of risk at 40 °F to 60 °F for $T_{lag0-25}$) (n = 81) and heat effect (comparison of risk at 80 °F to 60 °F for T_{lag0-1}) (n = 101). *Note:* Each point represents a community's central estimate, and the dashed lines represent the 95%

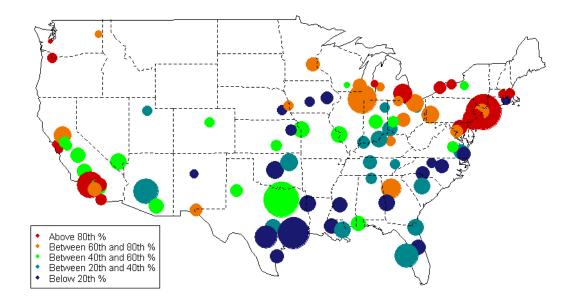

Note: Each point represents a community's central estimate, and the dashed lines represent the 95% interval. The large black dots represent the overall effect across all communities. The scale of the graph is too large to show the 95% posterior interval for the overall estimates.


eFigure 8. Sensitivity analysis of relative heat effect estimates (comparison of risk at the 99th to 90th percentiles of T_{lag0-1}) to adjustment by air pollution.

Note: Each point represents an individual community. The boxed X represents the overall effect across the communities (n = 87 for ozone analysis and 63 for PM₁₀ analysis). If adding pollution to the model had no effect on results, points in this figure would fall on the diagonal reference line. Alternatively, if most of the temperature effect were actually caused by ozone or particulate matter pollution, points in this figure would be well below the reference line.

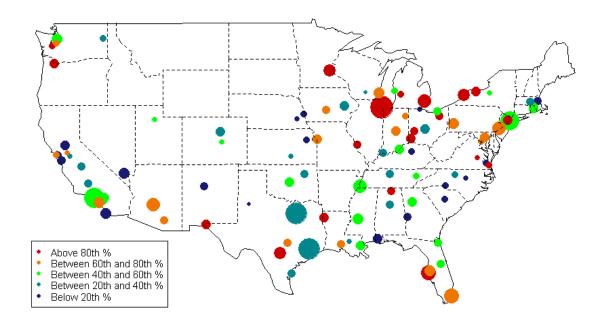

eFigure 9. Map of the relative cold effect (percent increase in mortality risk comparing 1^{st} to 10^{th} percentile of $T_{lag\,0-25}$) (eFig. 9a), absolute cold effect (percent increase in mortality risk comparing 40 °F to 60 °F for $T_{lag0-25}$) (eFig. 9b), and the absolute heat effect (percent increase in mortality risk comparing 80 °F to 60 °F $T_{lag\,0-1}$) (eFig. 9c).

Note: The color of each community corresponds to the level of the estimate; the size of the circle corresponds to the inverse of the variance of the estimate (i.e., larger circles are more certain). The two non-continental cities included in the dataset, Honolulu HI and Anchorage AK, are not included in this regional analysis.

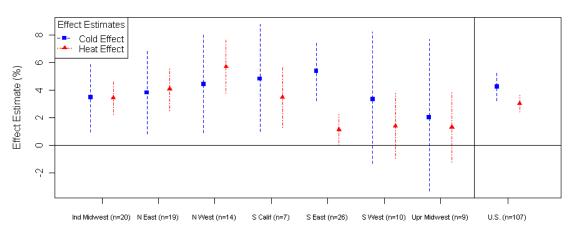


a. Relative cold effect

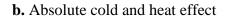
b. Absolute cold effect

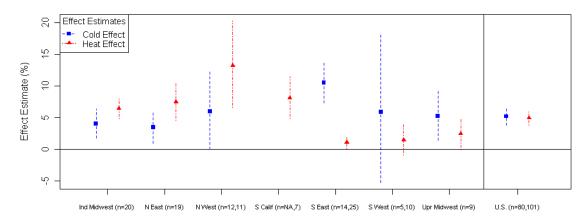


c. Absolute heat effect

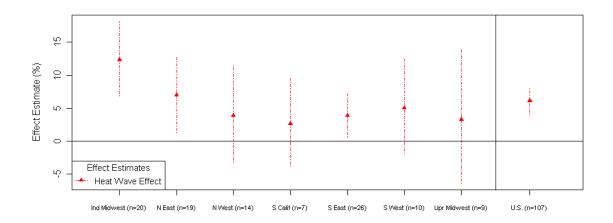

eFigure 10. Map of community heat-wave effect estimates using the 2-day, \geq 99.5th percentile heat-wave definition.

Note: The color of each community corresponds to the level of the estimate; the size of the circle corresponds to the inverse of the variance of the estimate (i.e., larger circles are more certain). The two non-continental cities included in the dataset, Honolulu HI and Anchorage AK, are not included in this regional analysis.




eFigure 11. Percent increase in mortality risk for the relative cold effect (comparison of the 1st to 10th percentile temperature) and heat effect (comparison of the 99th to the 90th percentile temperature) (eFig. 11a), the absolute cold effect (percent increase in mortality risk comparing 40 °F to 60 °F for $T_{lag0-25}$), heat effect (percent increase in mortality risk comparing 80 °F to 60 °F for T_{lag0-1}) (eFig. 11b) and heat-wave effect (eFig. 11c) by region.

Note: The point represents the central estimates; the vertical lines represent 95% posterior intervals. The numbers in parentheses provide the number of communities in each region's estimate. When two numbers are included, the first indicates the number of communities in the cold effect estimate and the second the number of communities in the cold effect estimate and the second the number of communities in the cold effect estimate and the second the number of communities in the cold effect estimate and the second the number of communities in the cold effect estimate and the second the number of communities in the cold effect estimate and the second the number of communities in the heat effect estimate. The two non-continental cities included in the dataset, Honolulu HI and Anchorage AK, are not included in a region. The heat-wave effect was estimated using the two-day, \geq 99.8th percentile definition. For the Southern California region, only one community had a temperature range suitable to calculate the absolute cold effect, so no regional estimate is provided (eFig. 11b).



a. Relative cold and heat effect

c. Heat-wave effect

		Minimum	25th	50th	75th	Maximum
	Yearly	3.8	45.0	58.5	71.8	90.0
Mean Temperature (°F)	Summer	55.3	70.8	74.7	78.5	92.0
	Winter	3.8	30.3	36.5	42.3	64.7
Dew Point Temperature (°F)	Yearly	-11.0	31.5	45.9	58.4	77.4
	Total	2	9	11	14	27
Mortality (deathe/day)	Cardiovascular	0	3	5	6	17
Mortality (deaths/day)	Respiratory	0	0	1	2	7
	Non-cardiorespiratory	0	4	6	7	17

eTable 1. Summary statistics for weather variables and mortality rates, across 107 U.S. communities. *Note:* These values reflect the median of the community-specific distributions for each variable.

eTable 2. Correlation of temperature metrics across 107 U.S. communities. *Note:* Values reflect the mean of community-specific communities (minimum to maximum for any single community).

	Maximum temperature	Mean temperature	Apparent temperature
Minimum temperature	0.89 (0.57 to 0.95)	0.96 (0.80 to 0.99)	0.96 (0.85 to 0.98)
Maximum temperature		0.97 (0.85 to 0.99)	0.95 (0.83 to 0.99)
Mean temperature			0.99 (0.95 to 0.997)

	Relative	Heat Effect	Estimate	Relative Cold Effect Estimate			
Degrees of freedom	Lower P.I.	Estimate	Upper P.I.	Lower P.I.	Estimate	Upper P.I.	
4 d.f./year	2.44%	2.94%	3.45%	3.98%	4.80%	5.63%	
7 d.f./year	2.42%	3.03%	3.64%	3.24%	4.28%	5.33%	
14 d.f./year	2.86%	3.51%	4.16%	1.06%	2.80%	4.58%	

eTable 3. Sensitivity of relative heat and cold effects to changes in the degrees of freedom used to model temperature splines.

eTable 4. Sensitivity of absolute heat and cold effects to inclusion of pollution variables in the temperature-mortality model. *Note:* Results without pollution adjustment include only days and communities with pollution data available. Ozone is at lag 0 days; PM₁₀ is at lag 1 day.

		Heat Effect		Cold Effect Estimate			
Pollutant			Number of			Number of	
Adjustment	Estimate	95% P.I.	communities	Estimate	95% P.I.	communities	
without PM ₁₀	4.55%	(3.06%, 6.07%)	57	6.18%	(3.31%, 9.13%)	4.9	
with PM ₁₀	3.81%	(2.33%, 5.30%)	57	6.25%	(3.36%, 9.22%)	48	
without O ₃	5.38%	(4.09%, 6.68%)	96	5.22%	(3.11%, 7.37%)	5 4	
with O ₃	4.47%	(3.26%, 5.69%)	86	5.42%	(3.29%, 7.60%)	54	

	Duration:							
	2 d	ays	4 days					
	Average	Range of	Average	Range of				
Intensity:	HWs/Community	HWs/Community	HWs/Community	HWs/Community				
-	/Year	/Year	/Year	/Year				
<u>></u> 98th percentile	1.89	(1.29, 2.36)	0.57	(0.21, 1.07)				
\geq 99th percentile	1.01	(0.64, 1.57)	0.25	(0.00, 0.57)				
\geq 99.5th percentile	0.50	(0.29, 1.36)	0.09	(0.00, 0.29)				

eTable 5. Number of heat waves/year/community under different heat-wave definitions. *Note:* Values reflect the average across all 107 communities, and the minimum and maximum for any single community.

eTable 6. Increased risk of mortality for later days of a heat-wave event compared to non-heat-wave days, under different heat-wave definitions, using lag 0-2 days to control for temperature.

	Duration:									
		2 days		4 days						
Intensity:	Estimate	95% P.I.	No. communities	Estimate	95% P.I.	No. communities				
\geq 98th percentile	3.87 %	(2.77%, 4.99%)	107	3.99%	(2.04%, 5.98%)	107				
<u>></u> 99th percentile	4.93 %	(3.31%, 6.59%)	107	6.50%	(2.71%, 10.43%)	105				
<u>></u> 99.5th percentile	6.79 %	(4.72%, 8.90%)	107	10.49%	(5.91%, 15.27%)	81				

	Median		% with H.S.	% Public	% African-	%		
	Income	% Unemployed	degree	Transportation	American	Urban	Population	AC
Median Income	1.00	-0.50	0.54	0.07	-0.42	0.04	0.20	-0.32
% Unemployed		1.00	-0.80	0.28	0.42	0.13	0.17	0.02
% Population with High School	ol degree		1.00	-0.28	-0.44	-0.13	-0.19	-0.07
% Public Transportation				1.00	0.32	0.36	0.38	-0.24
% Black/African-American					1.00	0.24	0.00	0.36
% Urban						1.00	0.29	0.20
Population							1.00	-0.20
% Central AC (metropolitan s	urvey)							1.00

eTable 7. Correlations among community variables (eTab. 7a.) and weather variables (eTab. 7b.) used in the second-stage analysis.

a. Correlations among community-specific variables

b. Correlations among weather variables

	Mean	Summer	Winter	Dew Point	Summer	Winter Dew
	Temperature	Temperature	Temperature	Temperature	Dew Point	Point
Median Income	-0.18	-0.43	-0.04	-0.15	-0.31	-0.03
% Unemployed	0.16	0.17	0.14	0.07	-0.04	0.13
% with H.S. degree	-0.35	-0.35	-0.30	-0.29	-0.22	-0.27
% Public Transportation	-0.12	-0.13	-0.09	-0.07	-0.01	-0.11
% Black/African-American	0.11	0.24	0.04	0.25	0.46	0.06
% Urban	0.14	0.12	0.13	0.05	-0.01	0.08
Population	0.11	-0.04	0.16	0.07	-0.06	0.12
% central AC (metropolitan survey)	0.59	0.79	0.36	0.50	0.61	0.33
Mean Yearly Temperature (°F)	1.00	0.81	0.95	0.80	0.43	0.86
Mean Summer Temperature (°F)		1.00	0.59	0.52	0.49	0.45
Mean Winter Temperature (°F)			1.00	0.81	0.32	0.94
Mean Dew Point (°F)				1.00	0.76	0.90
Mean Summer Dew Point (°F)					1.00	0.42
Mean Winter Dew Point (°F)						1.00

eTable 8. Increase in heat- and cold-related mortality effect estimates for those \geq 65 years per interquartile (IQR) increase in community-specific weather variables.

Note: The values reflect the percent increase in each specific heat or cold effect estimate per an IQR increase in the specified long-term community-specific variable. ^a Significant at p < 0.01; ^b Significant at p < 0.05.

		Change in relative effect		Change in a	Heat-wave	
	$IQR (^{o}F)$	Heat effect	Cold effect	Heat effect	Cold effect	effect
Yearly temperature	12.9	-41.3% ^a	21.4%	-69.5% ^a	98.0% ^a	-37.0%
Summer temperature	9.2	-75.1% ^a		-112.6% ^a		-9.1%
Winter temperature	17.7		22.4%		96.7% ^a	
Dew point temperature	9.4	-23.4% ^b	21.5%	-41.6% ^a	91.6% ^a	-11.5%
Summer dew point temperature	8.4	-44.1% ^a		-37.3% ^a		14.1%
Winter dew point temperature	17.5		27.9%		113.0% ^a	

eTable 9. Increase in heat- and cold-related mortality effect estimates for those \geq 65 years per interquartile (IQR) increase in community-specific socioeconomic, race, urbanicity, and air conditioning variables.

Note: The values reflect the percent increase in each specific heat or cold effect estimate per an IQR increase in the specified long-term community-specific variable. ^a Significant at p < 0.01; ^b Significant at p < 0.05; ^c Significant at p < 0.05;

		Change in relative effect		Change in ab	Heat-wave	
	IQR	Heat effect	Cold effect	Heat effect	Cold effect	effect
Median Income	\$6,538.25	34.7% ^a	5.1%	56.6% ^a	2.5%	-38.6% ^c
% Unemployed	1.7%	26.3% ^b	8.7%	14.0%	8.9%	43.6% ^c
% with High School Degree	7.7%	-18.2%	-12.2%	-10.8%	-12.0%	-47.5% ^b
% Public Transportation	3.3%	10.3% ^a	1.2%	15.6% ^a	-0.8%	13.5% ^b
% Black/African-American	18.0%	-5.7%	12.3%	-15.6%	35.3% ^b	34.2%
% Urban	10.6%	18.4%	17.0%	15.6%	-0.1%	21.2%
Population	580,599	7.6% ^a	0.4%	13.5% ^a	0.3%	5.0%
% Central AC	47.1%	-94.9% ^a	-0.8%	-106.1% ^a	85.9% ^a	5.3%