Supplementary digital content

Table A. More empirical data on case arrival and cancellation within 2 workdays before the surgery

Among performed cases, what \% minutes were scheduled on day of surgery?	
479628	Numerator
7133182	Denominator
6.7\%	Ratio
\% minutes cases cancelled on day of surgery?	
$169053=648681-479628$	Numerator
7133182	Denominator
2.4\%	Ratio
Among performed cases, what \% minutes were scheduled at/after 7 AM working day before surgery?	
1455265	Numerator
20.4\%	Ratio
\% minutes cases cancelled one work day before surgery	
378964 = 548017-169053	Numerator
7133182	Denominator
5.3\%	Ratio
Among performed cases, what \% minutes were scheduled at/after 7 AM 2 working days before surgery?	
1811524	Numerator
25.4\%	Ratio
\% minutes cases cancelled 2 work days before surgery	
$67686=615703-548017$	Numerator
7133182	Denominator
0.95\%	Ratio

Base on this table, we calculate the empirical data in Table 2 as follow:
\% (net addition) minutes were scheduled on day of surgery $4.3 \%=6.7 \%-2.4 \%$
\% (net addition) minutes were scheduled at/after 7 AM one working day before surgery $\mathbf{8 . 4 \%}=$ 20.4\%-6.7\% - 5.3%

Table B. First alternative form for the probability of case arrivals:
Scheduled Probability of new A_{k} cases arriving during one period

\# of cases	$A_{k}=0$	$A_{k}=1$	$A_{k}=2$	$A_{k}=3$
0	0	0	0	100%
1	0	0	50%	50%
2	0	33.3%	33.3%	33.3%
3	25%	25%	25%	25%
4	33.3%	33.3%	33.3%	0
5	50%	50%	0	0
6 or more	100%	0	0	0

Table C. Second alternative form for the probability of case arrivals:

Scheduled				
\# of cases	Probability of new $\boldsymbol{A}_{\boldsymbol{k}}$ cases arriving during one period			
	$A_{k}=0$	$A_{k}=1$	$A_{k}=2$	$A_{k}=3$
0	0	10%	10%	80%
1	0	20%	20%	60%
2	0	33.3%	33.3%	33.3%
3	33.3%	33.3%	33.3%	0
4	60%	20%	20%	0
5	80%	10%	10%	0
6 or more	100.0%	0	0	0

Table D. Distributions used to obtain the initial distribution used in the Markov chain model (prior to the burn-in process).

Symmetric initial distribution
Sym 2
Sym 1 (Baseline)

frequency	OR 1 workload	OR 2 workload	frequency	OR 1 workload	OR 2 workload
6.25%	0	0	10.01%	13.5	13.5
6.25%	0	4.5	6.67%	11.5	13.5
6.25%	0	1.5	6.67%	8.5	13.5
6.25%	0	6.5	6.67%	13.5	11.5
6.25%	4.5	0	6.67%	13.5	8.5
6.25%	4.5	4.5	4.45%	6.5	13.5
6.25%	4.5	1.5	4.45%	11.5	11.5
6.25%	4.5	6.5	4.45%	11.5	8.5
6.25%	1.5	0	4.45%	8.5	11.5
6.25%	1.5	4.5	4.45%	8.5	8.5
6.25%	1.5	1.5	4.45%	13.5	6.5
6.25%	1.5	0	2.97%	6.5	11.5
6.25%	6.5	4.5	2.97%	6.5	8.5
6.25%	6.5	1.5	2.97%	11.5	6.5
6.25%	6.5	3.5	2.97%	8.5	6.5
6.25%			1.98%	6.5	6.5
mean	3.5			8.27	8.27

\left.| UnSym 1 | Unsymmetric initial distribution | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| UnSym 2 | | | | | |$\right]$

