Supplementary Fig. 1

Effects of bupivacaine on endogenous currents of HEK 293 cells.

(A) Currents sequentially obtained before, during, and after the application 0.1 and 1 mM bupivacaine. Families of currents were obtained using voltage steps ranging from -120 to +40 mV in $10-\mathrm{mV}$ increments from a holding potential of -40 mV . (B) $I-V$ relationships obtained from currents shown in A. (C) Time courses of changes in outward currents at +40 mV observed upon application (■) and removal (\bigcirc) of 1 mM bupivacaine. Current amplitudes are normalized to the value at the time of application of bupivacaine.

Supplementary Fig. 2

Effects of QX-314, a membrane impermeable derivative of lidocaine added to extracellular (A) and intracellular (B) solutions on Kir2 channels. (A) Kir2.2 currents and their I-V relationships obtained before and after applying 10 mM QX-314 to the extracellular (bath) solution. $I-V$ relationships obtained $\sim 9 \mathrm{~min}$ after application of QX-314, and $\sim 7 \mathrm{~min}$ after washout of QX-314, are also presented to show the stability of currents during the experiment. (B) Kir2.1 currents and their I - V relationships obtained using the intracellular (pipette) solution containing $1 \mathrm{mM} \mathrm{QX}-314$. Times after rupturing the patch membrane are indicated. Note that the currents may be already inhibited at 20 s . Shown in A and B are results representative of five and four different experiments, respectively.

Supplementary Table 1

Inhibition of mouse Kir2.1 channels by lidocaine and bupivacaine extracellularly applied during the whole-cell recordings

	Mouse Kir2.1		Human Kir2.1	
1 mM lidocaine	0.78 ± 0.11	$(n=3)$	0.70 ± 0.08	$(n=7)$
10 mM lidocaine	0.22	$(n=2)$	0.08 ± 0.02	$(n=6)$
1 mM bupivacaine	0.88 ± 0.09	$(n=3)$	0.92 ± 0.07	$(n=7)$

Data are I / I_{0} values obtained at -110 mV . The data for 1 mM bupivacaine were obtained at $\sim 5 \mathrm{~min}$ after its application. For comparison, the data for human Kir2.1 (Fig. 5) are also presented.

