

Figure 1A


Figure $1 B$
Figure 1A. Control group versus After wire removal Normality Assumption plot- The assumption that the errors are distributed normally is evident by normal probability plot where the shows a straight line. For Shapiro-Wilk test, $\mathrm{W}=0.982729$ and $\mathrm{Pr}=0.5541$, we conclude that the data is a good fit with the normal distribution. Figure 2B. Test of homogeneity of variance; Figure 1B Test of homogeneity of variance- Residual plot does not suggest any obvious pattern. Levene's test with $\mathrm{F}=2.64$ and $\operatorname{Pr}=0.0331$, suggest that at alpha $=0.05$, the null hypothesis of constancy of variance is rejected. However, Bartlett's test with D = 10.2450 and $\operatorname{Pr}=0.0686$, at alpha $=0.05$, fails to reject the null hypothesis, concluding that the assumption of constancy of variance is met.


Figure $2 A$


Figure $2 B$
Figure 2A. Control group versus catheters at $37 \pm 1^{\circ} \mathrm{C}$ Normality Assumption plot- The assumption that the errors are distributed normally is evident by normal probability plot where the shows a straight line. For Shapiro-Wilk test, $\mathrm{W}=0.975633$ and $\mathrm{Pr}=0.2723$, we conclude that the data is a good fit with the normal distribution. Figure 2B. Test of homogeneity of variance; Both the residual plot and formal tests suggest that the constancy of variance assumption is not satisfied.


Figure $3 A$


Figure 3B

Figure 3A. Control group versus catheters after normal saline injection Normality Assumption plot- The assumption that the errors are distributed normally is evident by normal probability plot where the shows a straight line. For Shapiro-Wilk test, $\mathrm{W}=0.985923$ and $\operatorname{Pr}=0.7180$, we conclude that the data is a good fit with the normal distribution. Figure 3B. Test of homogeneity of variance- Residual plot does not show any obvious pattern of increasing or decreasing in magnitude with the fitted values. Based on the Levene's $(\mathrm{F}=1.27, \operatorname{Pr}=0.2910)$ and Brown and Forsythe's $(\mathrm{F}=1.00, \mathrm{Pr}=0.4260)$ test we conclude the assumption of constant variance is met.

