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MATHEMATICAL APPENDIX 

“ROBUST DIFFERENCING VARIABLE TECHNIQUE” 

This Appendix contains a description of the Robust Differencing Variable Technique (RDV), a 

statistical method used to estimate ACGME mandatory duty-hour limits effects on resident 

satisfaction while simultaneously controlling for covariate- and trend-biases. Extending 

traditional difference-in-differences approaches (DD)1, 2 and accepted methodologies,3-7 RDV 

was necessary to compute effect sizes on these data for two reasons. First, information 

classifying respondents into “effect” and “no-effect” control settings was missing for pre-limits 

periods. That is, the ACGME duty-hour limits effect question was not asked during pre-limits 

periods for the 2001-2003 LPS surveys. Second, the final estimating model needed to adjust for 

covariate-biases may be misspecified.3, 6– 11 Using the results from Golden et al.,11 RDV 

estimators and statistical tests can be shown to be asymptotically unbiased in the presence of 

MNAR missing data and model misspecification. ACGME duty-hour limits effects may be 

properly inferred from model estimates provided the impact of setting on respondent satisfaction 

ratings is a log-linear, time-invariant, function. 

Modeling Assumptions 

Notation. 

The random variable Y is a binary random variable that takes on values such that: 

0 " "

1 " "

if respondent is not satisfied
Y

if respondent is satisfied


 


 

For the binary period covariate d1, respondents were administered the survey in either pre- (d1 = 

0) or post- (d1 = 1) duty-hour limits periods. The ACGME duty-hour limits question was asked 
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only during post-limits periods (d1 = 1). For the binary setting covariate d2, the respondent 

reported on the LPS survey that ACGME duty-hour limits had “no effect” (d2 =0) or “effect” (d2 

=1) on their clinical training environment. The variables 

1

0 pre-mandatory limits period

1 post-mandatory limits period

if
d

if


 


 

and 

2

0 no effect setting

1 effect setting

if
d

if


 


 

are always included in all models. In some cases, k additional covariates  1,..., kx xx , are also 

included to improve predictive performance. 

Data Generating Process Assumptions. 

Let the k+3-dimensional vector  1 2, , ,i i i i
i y d d xo  denote the ith observation, i = 1,…,n. The 

k+3-dimensional binary vector ih  will be used to specify which elements in io  are observable by 

setting the jth element of ih  equal to zero when the jth element of io  is not observable; and 

setting the remaining elements of ih  equal to the value of one, i = 1,…,n. It is assumed that 

   1 1, ,..., ,n no h o h is a realization of a sequence of n independent and identically distributed 

random variables. It is additionally assumed that yi and 1
id  are always observable. 
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Researcher’s Probability Model of the Complete Data. 

(A1) Let    1,0 2,0 1,2 2,1 0

TT

x       β β be a k+4-dimensional column vector where 

xβ  is a k-dimensional column vector. Let  1 21| , , ;p Y d d x β  be defined such that: 

 
 

1 2
1 1 2 2 0

1 2

1| , , ;
log

0 | , , ;
T

x

p Y d d
d d

p Y d d
  

 
      

x β
x β

x β
 

1 1,2 2 1,0

2 2,1 1 2,0

d

d
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 

 
 

 

By using the definitions of 1  and 2  we obtain: 

 
     1 2

1,2 2 1,0 1 2,1 1 2,0 2 0
1 2

1| , , ;
log

0 | , , ;
T

x

p Y d d
d d d d

p Y d d
    

 
        

x β
x β

x β
 

 1,0 1 2,0 2 1,2 2,1 1 2 0

1 2 1 2 1 .

T
x

TT T

d d d d

d d d d

         

   

x β

β x
 

Assumption A1 states that the researcher is modeling the data generating process as a logistic 

regression model12 with dependent binary variable Y and covariates 1 2 1 2, ,d d d d , and k-

dimensional covariate vector x when no data is missing. Also note that, ignoring the 

experimental context and considering the above expression from a purely formal perspective, the 

interaction term 1,2  specifies how the impact of 2D  is influenced by 1D  while the interaction 

term 2,1  specifies how the impact of 1D  is influenced by 2D . 

When no data are missing, it is not necessary for the researcher to specify the joint distribution of 

the covariates. For the more general case, however, when maximum likelihood estimation in the 

presence of general types of data decimation mechanisms is desired, it is necessary that the 



Supplemental digital content for Kashner TM, Henley SS, Golden RM, et al. Studying the effects of ACGME duty 
hours limits on resident satisfaction: Results from VA Learners’ Perceptions Survey. Academic Medicine 
2010;85:1130-1139. 

4 of 9 
 

researcher model the joint distribution of the covariates that are not fully observable. Let ,j missx  

denote the value of the jth covariate that contains missing data. Such a covariate will be referred 

to as a partially observable covariate. Ibrahim et al.13-15 have proposed to model the covariate 

distribution of the partially observable covariates as a product of one-dimensional parametric 

conditional distributions so that: 

       0 2 0 2 0 1 1 1
2

, | ,...,
k

o j j
j

p d p d p x p x x x


 x . 

In addition, make the stronger assumption that the joint distribution,  0 2 ,p d x , of the partially 

observable covariates may be expressed as: 

(A2) Let      0 2 0 2 ,, miss o k miss
k

p d p d p x x . 

Assumption A2 states that the additional partially observable covariates in x will only be 

included in the model if they provide a source of information that is not redundant with the 

information source 2d  (i.e.,    0 2|miss missp d px x ). In addition, A2 states that the jth partially 

observable covariate was added to the model only if it provided a source of information that was 

not redundant with the previous j-1 partially observable covariates included in the model (i.e., 

   0 1 1| ,...,j j jp x x x p x  ). 

It is important to emphasize that while the covariate modeling distribution A2 may not be 

completely satisfied in practice, our empirical investigations have shown that this choice of 

covariate prior resulted in the development of missing data probability models that did not 

evidence any signs of model misspecification. Moreover, if A2 does not hold, Golden et al.11 

provide explicit regularity conditions on the researcher’s complete data model that ensures the 
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asymptotic consistency of all estimators and statistical test results based upon the missing data 

probability model. 

Researcher’s Model of the Decimation Mechanism Assumed to be “Ignorable.” 

(A3) Assume Y, 1D , and some subset (possibly an empty subset) of the covariates X are 

observable. 

 

(A4) Let    1 2 1| , , , | , ,i i i i i i i i i
obsp y d d p y dx xh h  where i

obsx denotes the covariates which are 

observable for the ith data record, i = 1,…,n. 

 

Assumption A4 states that that the researcher’s model of the missing data has the ignorability 

property as defined by Golden et al.11 (see also Little and Rubin16 for a review). Such a property 

is highly desirable since estimators and statistical tests derived from an ignorable missing data 

model will not be biased by different forms of the resulting data decimation mechanism 

model  1| , ,i i i i
obsp y d xh . Thus, because of the ignorability assumption, it is not necessary to 

provide a more specific specification of  1| , ,i i i i
obsp y d xh . 

 

(A5) Assume  1| , ,i i i i
obsp y d xh satisfies the constraint that whenever 1 0id   that the value of 

2
id  is not observable. 

 

Assumption A5 shows how the decimation mechanism  1| , ,i i i i
obsp y d xh  is used to represent 

two fundamentally distinct types of “missingness”. First, we have missingness since the 
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questionnaire in the pre-program phase (i.e., the case where 1d = 0) differed from the post-

program questionnaire by not including the “duty-hour limits” question that is the basis for 

determining the distribution of D2. Second, we have missingness in the post-program phase (i.e., 

the case where 1d  = 1) when the question about “duty-hour limits” does in fact exist because it is 

possible that the distribution of D2 may not be observable due to various factors (e.g., 

participants chose to not answer that question and so on). Both of these two types of missingness 

may be simultaneously modeled using the decimation mechanism  1| , ,i i i i
obsp y d xh  since this 

mechanism is functionally dependent upon the observed value of 1 , 1,..., .id i n  Indeed, if the 

decimation mechanism  1| , ,i i i i
obsp y d xh  were not dependent on 1

id  (i.e., 

   1| , , | ,i i i i i i i
obs obsp y d p yx xh h ) and given A5, it follows that the variable 2

id  must be 

eliminated from the model. 

Note that if the binary variable 1 0id   and the binary variable 2
id  is not observable, then the 

interaction term 1 2 0i id d   and is observable. To see this, note that (without any loss in generality) 

it may be assumed that the data generating process generates a complete data record and then 

subsequently decimates the complete data record. In the situation where the complete data record 

has 1 0id   it is always the case that 1 2 0i id d  . However, in the case where 1 1id   and 2
id  is not 

observable, then the interaction term 1 2
i id d  must be defined as not observable since the value of 

1 2
i id d  cannot be logically inferred without observing the value of 2

id . 
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Semantic Interpretation of Interaction Term for the Complete Data Case. 

Let    
 

1 2
1 2

1 2

1| , , ;
, | ;

0 | , , ;

p y d d
d d

p y d d






x β

x β
x β

. 

Let     1 2 1 2 1 2 1 2, | ; log , | ; 1Tr d d d d d d d d     x β x β x β . 

Following standard methods (see Page 11 of Section V in Mullahy2), in the special case where 

no data is missing it follows that the “ratio of ratios” measures the impact of duty-hour limits on 

the dependent variable while controlling for the effects of time-trends and other covariates. In 

particular, the Ratio of Ratios (ROR) formula is defined as: 

   
   

1 2 1 2

1 2 1 2

1, 1| ; 0, 1| ;

1, 0 | ; 0, 0 | ;

d d d d
ROR

d d d d

 
 

   


   
x β x β

x β x β
. 

The log ROR may be rewritten as: 

         1 2 1 2 1 2 1 2

1,0 1,0

2,0 2,0

1,2 2,1 1,2 2,1

0 0

log 1, 1| ; 0, 1| ; 1, 0| ; 0, 0| ;

1 0

1 1

1 0

1 1

T T

x x

ROR r d d r d d r d d r d d

 
 

   

 

            

       
       
       
               
      
              

x β x β x β x β

β βx x

1,0 1,0

2,0 2,0

1,2 2,1 1,2 2,1 1,2 2,1

0 0

1 0

0 0

.0 0

1 1

T T

x x

 
 

     

 

       
       
       
                    

        
                 

β βx x

 

However, for the experimental context considered here, the presence or absence of the duty limit 

effect 2D  does not influence how the program implementation indicator factor 1D  impacts 

respondent satisfaction rating implying that: 2,1 0  . Given the identifiability assumption that 

2,1 0  , it follows from the above analysis of the ROR that: 

     1,2 2,1 1,2 1,2exp exp 0 expROR          

and we may write: 
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   1,0 2,0 1,2 2,1 0 1,0 2,0 1,2 0

1,0 2,0 1,2 0

0
T T

x x

T

x

        

   

         

   

β β β

β
. 

Thus, the interaction term coefficient has the semantic interpretation of measuring how the 

program implementation factor 1D  influences the impact of the duty limit effect 2D  on 

respondent satisfaction rating. 

Missing Data Theory Results. 

As described by Golden et al.,11 the maximum likelihood estimate ˆ
nβ  of a possibly misspecified 

missing data model with an ignorable decimation mechanism consistent with assumptions A1-

A5 may be computed using the negative log-likelihood: 

     
2

1
1 2 0 2

1 ,

log | , , , ; ,
i i

miss

n
i i i i i i i

n obs miss miss
i d

l n p y d d p d



 
    

 
 

x

β x x β x  

by setting:  ˆ ˆarg minn n nlβ β . We refer to ˆ
nβ  as the RDV maximum likelihood estimate and 

 ˆ ˆ
n n nl l β  as the RDV negative log-likelihood. 

Moreover, the missing data theory of Golden et al.11 formally establishes that the RDV maximum 

likelihood estimate ˆ
nβ  is an asymptotically consistent estimator with an asymptotic Gaussian 

distribution even if a model satisfying A1-A5 is misspecified and even if the missing data 

generating process is of the most general type (i.e., the data generating process is type MNAR). 

Furthermore, the methods of Golden et al.11 were used to derive new asymptotically consistent 

RDV odds ratio estimators and new asymptotically consistent RDV statistical tests which are 

valid in the presence of both model misspecification and MNAR statistical environments. 
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