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Supplemental Digital Content 1:  Independent Component Analysis Results

Front-parietal Networks – Default Network and Executive Control Networks
During wakefulness, independent component analysis (ICA) could identify reproducible connectivity patterns in the default network and the executive control networks (see Supplementary Digital Content 6 and 7) with similar spatial distribution to that found with the region of interest (ROI)-driven approach. Thalamic involvement was identified in all three networks. Areas found to be anticorrelated to default network using the ROI-driven approach were also anticorrelated in results obtained with ICA (see Supplementary Digital Content 6 and 7), though the spatial extent of areas surviving statistical threshold was smaller. The fact that ICA was less able to identify anticorrelations with default network as a whole during wakefulness might reflect a certain heterogeneity in negative connectivity between the different default network nodes.1
During deep sedation, as with the ROI-driven approach, ICA could identify partially preserved residual functional connectivity both in the executive control networks and the default network. For the right executive control network, ICA identified residual connectivity in posterior parietal cortices, and a trend towards significance was also observed in frontal cortices. For the left executive control network, residual connectivity was also identified in posterior parietal cortices, in presupplementary motor area/anterior cingulate cortex, and temporooccipital junction (see Supplementary Digital Content 6 and 7). Though a trend towards significance was observed in frontal areas, their involvement in left executive control network was again under statistical threshold. For the default network, ICA approach identified residual connectivity in posterior cingulated cortex/precuneus, medial prefrontal cortex, bilateral superior frontal sulci, parahippocampal gyrus, and bilateral temporoparietal junctions. No significant anticorrelations with the default network could be identified during deep sedation, though some persisted at a lower threshold (see Supplementary Digital Content 7).

Finally, as with ROI-driven approach, ICA could identify a linear relationship between functional connectivity in key nodes of the three frontoparietal resting state networks and the level of consciousness during propofol-induced sedation (see Supplementary Digital Content 9 and 10). In particular, there was a linear relationship between thalamocortical connectivity in the default network and executive control networks and the subjects’ level of consciousness across sedation states. For the default network and right executive control network, ICA also identified thalamus as the maximum peak of significance for a relationship between connectivity and consciousness in these networks. Supplementary Digital Content 10 also shows a trend towards significance for a linear relationship between the level of consciousness and the strength of anticorrelations between default network and inferior frontoinsular cortices, posterior parietal cortex, and temporooccipital junction and premotor cortex. These ICA results did however not survive correction for multiple comparisons. 

In line with results cited above, the goodness-of-fit scores of best-fit independent components for the bilateral executive control networks and the default network were found to be correlated to the level of consciousness across the four sedation states (see Supplementary Digital Content 13). The goodness of-fit scores can be seen as reflecting the degree to which each network independent component map matched the template.2 This finding is thus in line with a diffuse alteration of connectivity patterns in the executive control networks and default network during propofol-induced anesthesia, in proportion to the extent of subjects’ loss of consciousness across sedation states. 

Visual and Auditory Networks 



ICA analyses could identify reproducible visual and auditory networks during normal wakefulness (see Supplementary Digital Content 11 and 12). As with ROI-driven approach, ICA identified a visual network of cortical areas encompassing primary visual, lingual, fusiform, cuneal, middle, and inferior occipital cortices as well as additional areas including the posterior parietal, superior temporal and precuneal cortices, and the inferior parietal lobule. For the auditory network, ICA identified a set of areas encompassing Heschl’s gyrus, inferior parietal lobule, and superior temporal cortices. As previously described,3 ICA was less efficient in the identification of the auditory network than of the other networks, in particular for subcortical areas like the thalamus. 

During deep sedation, ICA identified a global preservation of functional connectivity within early visual and auditory cortices (see Supplementary Digital Content 11 and 12). In the visual network, the ICA approach identified preserved connectivity in a set of areas encompassing the thalamus, primary visual, lingual, fusiform, cuneal, middle, and inferior occipital cortices. In the auditory network, ICA identified residual connectivity in primary auditory cortices, though these connectivity values were just under statistical threshold after correction for multiple comparisons. 

No significant relationship could be identified between the goodness-of-fit scores of visual and auditory components and the level of consciousness across sedation states see Supplementary Digital Content 13), suggesting a global preservation of connectivity patterns in these networks, despite the subjects’ loss of consciousness during anesthesia. No significant relationship could be identified between the level of consciousness and connectivity in early visual and auditory cortices. In the same line, no relationship could be identified between thalamocortical connectivity in visual and auditory networks and consciousness across sedation states (see Supplementary Digital Content 12). 

Finally, as with the ROI-driven approach, ICA identified during wakefulness a significant temporal correlation between the activity of primary visual and primary auditory cortices. Indeed, during wakefulness, we could identify with both approaches a contribution of primary auditory cortex to the visual network maps. This cross-modal interaction between auditory and visual networks was lost during deep sedation. As with the ROI-driven approach, the strength of cross-modal functional connectivity between primary and auditory cortices as assessed by ICA showed a linear relationship with level of consciousness of our subjects during sedation (see Supplementary Digital Content 14 and 15). However, ICA results did not survive correction for multiple comparisons.

Materials and Methods

Propofol Administration and Blood Sample Data Acquisition

Arterial blood samples were taken immediately before and after scan in each clinical state for subsequent determination of the concentration of propofol and for blood gas analysis. Each blood sample for determination of the propofol plasma concentration was collected in a heparinized tube and centrifuged at 5,800 rpm for 5 min. The plasma was separated and stored at -80°C. The arterial plasma propofol concentration was measured using high-pressure liquid chromatography. Each blood sample for blood gas analysis was collected in a heparinized syringe and stored in ice for 3 h before being analyzed.

Data Analysis

Preprocessing


Before functional data analysis, the first two scans were discarded from each scanning session in all subjects, allowing for T2* signal equilibration. Functional and structural images were preprocessed using Statistical Parametric Mapping software, version 5.* Functional and structural images were manually reoriented, realigned then spatially normalized. To avoid computational burden, normalized functional scans were resampled using a 4 x 4 x 4 mm voxel size. 

ICA approach – extraction of individual resting state networks

The second part of our study used Probabilistic ICA as implemented in MELODIC 3.0, part of Oxford Centre for Functional Magnetic Resonance Imaging of the Brain Laboratory Software Library.† ICA is a statistical technique that separates a set of signals into independent (uncorrelated and non-Gaussian) spatiotemporal components.4 When applied to the T2* signal of functional magnetic resonance imaging, ICA allows not only for the removal of artifacts,


5-6 ADDIN EN.CITE  but also for the isolation of task-activated neural networks,


5 7 ADDIN EN.CITE  or of low-frequency neural networks during task-free or cognitively undemanding functional magnetic resonance imaging scans.


2 8-9 ADDIN EN.CITE  Before ICA, scans with excessive movement (> 1 voxel size, i.e., 3.45 mm) were removed from each session. The number of scans per session was then matched in each subject, in order to have a similar number of scans in all four clinical states (mean 250 ± SD 78 scans/session). Functional images were here smoothed using a 4 mm full width at half maximum Gaussian kernel, in order to allow optimal ICA decomposition without excessive smoothing. Bandpass filtering, helpful in removing high- and low-frequency noise before running ROI analyses, is probably less critical in ICA, which isolates these noise sources as independent components.


9-10 ADDIN EN.CITE  Given the potential risk of removing signal in addition to noise, low-pass filtering was not applied to the data used in the ICA experiments. ICA analysis was performed separately for each individual scanning session, after removal of low frequency drifts (150 s high pass filter). We allowed the software to automatically calculate the number of non-Gaussian sources (independent components) present in each session. The best-fit components for each network were selected in an automated three-step process described as the ‘goodness-of-fit’ approach in.


2 9 11 ADDIN EN.CITE  This method allowed us to pinpoint the component for each subject that best corresponded to the default network, a left and a right executive control networks, and two purely sensory networks encompassing respectively the primary visual and primary auditory cortices. Templates used for this goodness-of-fit based component selection consisted of resting state networks identified from an independent functional magnetic resonance imaging resting state study using ICA group analysis and are displayed in Supplementary Digital Content 3. First, because intrinsic connectivity is detected in the very low frequency range,12 a frequency filter was applied to remove any components in which high-frequency signal (>0.1 Hertz) constituted 50% or more of the power in the Fourier spectrum. In one subject, the template-matching procedure was unable to detect any low-frequency component. The deep sedation scan of this subject was therefore not included in further analyses. Next, we obtained goodness-of-fit scores for each template in the remaining low-frequency components of each subject. To do this, we used a template-matching procedure that calculates the average z-score of voxels falling within the chosen template minus the average z-score of voxels outside the template and selects the component in which this difference (the goodness-of-fit) is the greatest. Z-scores here reflect the degree to which the time series of a given voxel correlates with the time series corresponding to the specific ICA component, scaled by the standard deviation of the error term. The z-score is therefore a measure of how many standard deviations the signal is from the background noise. Finally, the component with the highest goodness-of-fit score is selected as the “best-fit” component and used in the subsequent group analysis. This template-matching procedure was performed separately for each network and each scanning session. It is important to note that this approach does not alter the components to fit the template in any way, but merely scores the predetermined components on how well they match the template.9 

ICA approach – Statistical analysis
All group analyses were performed on the subjects’ best-fit component z-score images. We used a random-effects model that estimates the error variance across subjects, rather than across scans13 and therefore provides generalization to the population from which data are acquired. It should be noted that although the best-fit components were selected with a standard template, the images have z-scores assigned to every voxel in the brain so that the group analyses were not constrained by the standard template used to select the components.9 The Statistical Parametric Mapping random effects group analysis consisted in a repeated measures ANOVA with the four states of consciousness as the factor. The error covariance was not assumed to be independent between regressors and a correction for nonsphericity was applied. After model estimation, contrasts images were computed in a similar manner to the ROI-driven approach, and similar thresholds were used on the outputs of the analyses.
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