
APPENDIX 1 - DETAILED MODELING METHODS AND EQUATIONS OF THE MODELS

(TO BE PUBLISHED ON THE ANESTHESIOLOGY WEBSITE ONLY)

The symbols used in the model equations are common between models where possible.  Each is been

defined only when first introduced.

SIMPLE TIME DOMAIN MODELS

The time domain models were those in which the independent variable was time (t).  In defining these

models, it is important to distinguish between the independent variable, the dependent variables of the

models, and the parameters of the models.  By way of example, the equation of a single compartment

flow-limited model will be examined in detail, as this model requires only a single differential equation.

It is commonly used in physiological pharmacokinetic models, and is the most basic description of the

kinetics of a lipophilic or highly diffusable drug in an organ.

Single flow-limited compartment model

V
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The dependent variables of this model were those that changed with time:  Cart and Csag, which

represent the drug concentrations in arterial and sagittal sinus blood respectively, and Qb the cerebral

blood flow.  The parameter Vb is the apparent distribution volume of the brain and is independent of

time.  For this model, Vb is the product of the real volume of the brain and the brain : blood partition

coefficient.

The direction of blood flow in the model (arterial to venous) dictates that the dependent variables can

be classified as either "inputs" or "outputs" to the model.  While it is possible to experimentally

manipulate and measure Cart and Qb (the "inputs") and observe the resultant Csag (the output), the

converse is clearly impossible.  The former was the experimental paradigm used in this paper.  Given

the time-courses of the input variables, the question asked was whether there was a parameter value

for the model (Vb) that agreed with the observed time-course of output concentrations (Csag).  In

modeling terms, this required finding a solution for Csag in Eqn 2, given values of Cart, Qb and Vb.
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As Eqn 2 is a differential equation, it can only be solved analytically in special circumstances.  For

example, if Cart, is a fixed at a value of 2 the equation becomes.

dC
dt
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sag= −.( )2    ...(3)

Standard calculus methods can be applied to this equation; to give the solution:

Csag

Q
V

tb

b= −
−

2 1( exp )    ...(4)

In this case, the sagittal sinus concentrations will rise in an exponential manner until they are equal to

the value of the arterial concentrations (2).  The rate constant of the rise will be dictated by Qb/Vb  That

is, they will rise quicker to meet the arterial when the blood flow is high, or when the volume of

distribution in the brain is low.

Empirical forcing functions

For the in vivo experiments the same principles apply, but it was clearly impossible for Cart and Qb to be

constrained to constant values.  The former rose and fell in a multi-exponential manner during and

after the drug infusion, while the latter changed from its baseline value presumably due to drugs effects

and other experimental influences.  Although these changes were measured, their incorporation into

Eqn. 2 makes the equation difficult, if not impossible, to solve using the analytical method discussed

above.  However, it can be solved using numerical methods via a differential equation solver computer

program.  For the present paper, "Scientist for Windows" was used which utilises the Episode

numerical integration routine.  At the heart of this method is the integration of the equation by

calculating the "area under curve" of extremely small time-intervals.  Consequently, the model cannot

be solved numerically using the discrete measured data points for Cart and Qb, but must use a

continuous function so that values of Cart and Qb at any time can be determined.  The data were

therefore fitted to empirical mathematical functions to interpolate the values between the measured

data - its form is not important other than it fulfills this requirement.  The resultant empirical "forcing

functions" were then incorporated into the models, and were used to "force" the dependent variable to

follow the time-course of the observed data.  In this example, Cart was fitted to a biexponential equation
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and Qb was fitted to a polynomial.  If they were represented by functions fart and fb, respectively, then

the system of equations to be solved becomes.
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This process of representing some aspects of the model as forcing functions is sometimes known as

hybrid modeling.  In summary, it accounts for the influence of the known dependent variables on the

time-course on the observed output Csag concentrations.

During the curve-fitting process, various values of Vb were tried in order to minimise the difference

between the observed and predicted values of Csag.  Again, Scientist for Windows was used which

incorporates the Powell variant of the Levenberg-Marquardt curve-fitting routine.  Good agreement

between the observed and predicted sagittal sinus concentrations were taken to mean that the

structure of the model and the chosen value of Vb were able to describe the experimental system, but

not that a given model was correct.  However, models that fit the data poorly were able to be excluded

as faithful descriptions of the experimental system.

Simultaneous modeling of two blood flow states

A feature of the present paper was that the kinetics of thiopental and propofol were measured at both

low and high states of cerebral blood flow.  The time-course of the dependent variables arterial

concentration and cerebral blood flow were measured at each flow state and each were each fitted to

empirical forcing functions as described previously.  These will represented as Cart,lo and Qb,lo and Cart,hi

and Qb,hi, respectively. The question asked was whether there was a model with a single set of

parameters that could account for the observed time-courses of the sagittal sinus concentrations at low

and high blood flows for each flow state (Csag,lo and Csag,hi, respectively).  This was achieved by

simultaneously fitting the two models (one for the low flow state, one for the high flow state) that had

common parameter values.  An overview of the process involved is shown in Figure 7.

The system of equations for a single flow-limited compartment model were as follows.
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Note that the parameter Vb is the same parameter for each differential equation.  This was the general

modeling method used in the paper, but various other structural models were substituted for the single

flow-limited compartment model to examine their ability to account for the observed data.  The models

examined are listed below, with a brief rationale for their inclusion.  A schematic representation of each

model is shown in Table 1.

Traditional membrane-limited model

The membrane limited model is used to describe drugs that are not sufficiently lipophilic to be

described using a single flow-limited compartment model.  A diffusion barrier was added, dividing the

organ into two well-stirred compartments.  In addition to the symbols used above, Cdeep was the

concentration in the "deep" or non-vascular compartment of the model, Vdeep was its apparent volume

and PSdeep was the inter-compartmental clearance describing membrane permeability (the product of

permeability and surface area).
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By not fixing the value of the Vb, no assumption was made about the physical location of the diffusion

barrier within the organ.  At a microscopic level, it may represent the endothelium, the cell membrane

or even the membrane surrounding intra-cellular structures.  At a macroscopic level, it may represent

an area of poorly perfused tissue within or surrounding an organ.

TIME DOMAIN MODELS INCORPORATING DISPERSION
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The concept of dispersion is best illustrated by considering the output (venous concentrations) from a

model of an organ if drug enters the organ as a short impulse.  This is often represented

mathematically as a square-wave arterial concentration peak of infinite height and infinitely short

duration (Dirac function).  Conceptually, if can be thought of as a population of drug molecules entering

the organ simultaneously.  In practice, a situation approximating impulse administration can be

achieved using isolated perfused organ preparations in a non-recirculating system if drug is injected as

a rapid bolus into the afferent (arterial) perfusate.  Drug concentration is measured continuously in the

efferent (venous) perfusate over the next few minutes.  Typically, for drugs the efferent concentration

profile (sometimes called the impulse-response function) will start at zero at the time of the injection,

then after a short lag rise to a maximum value before declining back to zero.  An example

concentration time-curve is shown in Figure 8.  Studies of intravascular markers (i.e. confined within

the blood vessels during transit through an organ) show a similar shape to that described above.  This

suggests that one important factor contributing to the shape of this curve for drugs (although modified

by their distribution volume) is the different lengths of the capillary pathways through the organ, and the

dispersion of the input peak by mixing at vascular junctions etc.

Both the single flow-limited compartment model and the traditional membrane limited model do not

account for drug dispersion within an organ.  For both models, following impulse drug administration,

drug molecules are assumed to diffuse instantaneously throughout the vascular compartments and to

begin leaving the organ via venous blood immediately after the injection.  The maximum venous

concentration therefore occurs at the time of the injection, after which the venous concentrations

decline either exponentially (single flow-limited compartment model) or bi-exponentially (traditional

membrane limited model) as shown in Figure 8.  This behaviour is rarely seen experimentally, and it is

generally accepted that these simple models are poor descriptions of impulse-response studies.

However, it is less clear to what extent accounting for dispersion is necessary for studies of organ drug

kinetics in vivo where input drug concentrations change more slowly that those of impulse studies.  The

intention in examining the following models was to examine the contribution of this intra-organ

dispersion in vivo.  There are a variety of organ models that can produce impulse-response functions
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with the required general shape, but with relatively subtle differences between models.  The following

models were examined for this purpose.

2 tanks in series model

Linking two or more single-flow limited compartments ("tanks") in series is a simple way of adding an

element of dispersion to a organ model.  Models with more than two tanks were not used after initial

trials showed adding additional tanks produced imprecise parameter estimates during curve-fitting.  In

addition to the symbols used above, C1 is the concentration in the "upstream" compartment of the

model, V1 is its apparent volume.
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Compilation model

This model adds both "deep" and "upstream" compartments to a single flow-limited compartment

model.  It is therefore a compilation of the "2 tank in series" and "membrane-limited" model, as

reported previously16.
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LAPLACE DOMAIN MODELS INCORPORATING DISPERSION

One method of incorporating an element of dispersion in an model, as used by Roberts and co-

workers17,18, has been the use of a statistical distribution curve to describe the transit times of drug

through the organ.  The properties of the dispersion process are summarized using terms describing
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the properties of the transit-time distribution curve.  These types of dispersion models can only be

solved practically by transforming the model into the Laplace domain rather than the more conventional

use of the time domain.  This a relatively complex manipulation of differential equations that is

standard practice in many fields (engineering in particular).  The advantage of equations transformed

into the Laplace domain is that the process of convolution (e.g. of an arterial input function and a transit

time distribution curve) is reduced to an operation of multiplication, while the converse process of

deconvolution becomes division.  The final equation of the model must be transformed back into the

time-domain, which can be done numerically.  Again, Scientist for Windows was used for this process,

which makes use of Weeks' method for the inversion.

Single compartment dispersion model

The Laplace transform of the venous effluent drug concentration was found from the product of the

Laplace transform of the arterial drug concentration and the Laplace transform of an inverse Gaussian

transfer function17.  The coefficient of variation was taken as twice the quotient of the time constants

of perfusion (MTT) and axial diffusion (τDax)18.  An overbar on a variable indicates a Laplace

transform, and s is the Laplace variable.

MTT V
Q

b

b

=    ...(10)

CV MTT
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   ...(11)
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2    ...(12)

Two compartment dispersion model

In this model, the transit time of a drug molecule were given by the vascular transit time and the tissue

residence time19.  The overall tissue residence time was determined by the number of excursions into

the tissue, described as a Poisson process, and the conditional probability density function of the

residence time given the number of excursions.  This is given by the following replacements in the

single compartment dispersion model.  The Laplace variable s was replaced with:
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where 
K PS

Vb
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and MTT with:
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b
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A new expression for CV2 was used that contained terms describing the contribution of vascular

dispersion, permeation and lateral diffusion in the tissue
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where v=25 and was the quotient of tissue and capillary blood apparent volumes, and τDax and τDlat

were the axial and lateral diffusion time constants, the latter fixed at L2/D.  L was the maximum lateral

diffusion distance set at 0.002 cm; D was the drug diffusivity at 37oC in the deep compartment

approximated as 2.46*10-7 cm2/sec for both drugs; and PS was the same as for the membrane-

limited model, with the diffusion barrier assumed to be at the blood-tissue interface.

Reference model for the Laplace domain - Membrane limited model

This model was used as a common reference model between the time and Laplace domains, as they

differed in the method used to account for time-dependent changes in cerebral blood flow from

baseline values.  This also provide a check that the two methods of solving models were comparable.
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