
Errors in assessment of
resident performance:
R code

Supplemental Digital Content 1 for
"Errors in assessment of resident performance"
(RE: Baker K. et al. 2011; 115:862–875).

Johan van Schalkwyk

February 2012

Version 1.03

Contents

Contents 1

1 Overview 1

2 R code 2
2.1 Initialization & necessary subroutines 2

2.1.1 Draw an error bar . 3
2.1.2 Has a resident been falsely labelled? 4
2.1.3 Calculate standard error of mean 5

2.2 Main program . 5
2.3 Repeated testing . 7

2.3.1 Simulate an entire data set 7
2.3.2 Repeat simulation 10,000 times 8

3 References 8

4 Availability & Testing 9
4.1 Testing . 9
4.2 Change log. 9

1 Overview

In a recent article,1 anesthesiology residents in a large center
were repeatedly assessed by multiple assessors, and the resulting
Likert scores were then adjusted to compensate for assessor bias.
The Z scores thus obtained were evaluated by comparing the mean
score with zero, under the assumption that the individual concerned
is ‘reliably above average’ if the mean score is more than 1.96 times
the standard error of the mean above zero; a similar assessment was
made on mean scores below zero.

This problematic approach is analyzed in the letter that accom-
panies this simulation. The following R program∗ simulates Baker’s
analysis, and demonstrates that his approach frequently misclassi-
fies residents as above or below average, despite their underlying
competence being unexceptional.

∗See the R project for statistical computing, http://www.r-project.org/ Date last
accessed, 4 February 2012.

1

http://www.r-project.org/

2 R code

Under Baker’s apparent assumption that anesthesiologists’ over-
all competence is a continuous variable that can be normalized, I
randomly select assessment scores for each resident from a normal
distribution, and offset the mean for each resident by a second, ran-
domly generated value that represents inter-individual variation in
competence. Based on known individual competence and a chosen
‘competence threshold’, I then test Baker’s analysis to determine
how many residents are misclassified.

The following code initializes several variables that can be used
to modify the shape of the plot that simulates Baker’s Fig. 5; defines
three ancillary routines; creates and plots an actual simulation of
Baker’s Fig. 5; and finally repeats this simulation to achieve reliable
assessment of the number of residents who are falsely labelled.

2.1 Initialization & necessary subroutines

The following variables are important:

SQUEEZE The standard deviation used to determine the degree to
which scores vary for each individual (intra-individual varia-
tion). Empirically, this is set at 0.5 but small variations (e.g.
0.6, 0.4) don’t affect the outcomes substantially. Small values
result in tiny values for the SEM ‘error bars’ that are quite un-
like Baker’s results; large values conversely result in huge er-
ror bars;

ADJUSTMENT This value is used as the standard deviation of the
the inter-individual variation (SDadj). Again, an empiric value of
0.5 gives realistic results, and small variations are acceptable.
With larger values, the range of Z scores becomes far greater
than those reported by Baker.

CONFIDENCE 1.96 standard deviations provide 95% confidence
intervals. See usage.

THRESHOLD This value is used to determine how much an indi-
vidual’s mean score must vary before they are considered ‘ab-
normal’. Convention would suggest that this should be 1.96
times the value in ADJUSTMENT, but we find that at this level,
Baker’s approach performs dismally, with most of the residents
labelled as being ‘under’ or ‘over’ performing being falsely la-
belled, as they are inside the 95% confidence limits. I therefore
set this value at just 1.0 SDadj, but you can vary the value and
assess the performance of Baker’s approach.

2

I also define the convenience constant ‘ROW’ (see usage below).

SQUEEZE <- 0.5 # intra-individual variation. start with 0.5
ADJUSTMENT <- 0.5 # intER-individual variation (offset mean)
CONFIDENCE <- 1.96 # 1.96 gives 95% CIs
THRESHOLD <- 1.0 * ADJUSTMENT # anyone outside 1 SD is "good or bad" !
ROW <- 1 # convenient constant (mnemonic)

2.1.1 Draw an error bar

This routine is straightforward.† It simply draws an error bar. Argu-
ments accepted are:

x,y coordinates of mean

upper length of upper error bar

lower lower bar, defaults to be identical to upper length

flag a zero value results in a black graphic; under zero (-1) green,
and over zero (1) red.

len length of the top/bottom horizontal line.

Note that a flag value of under zero signals that the individual whose
data are summarized by the bar has a mean that lies outside the
THRESHOLD value specified above in Section 2.1, but has been mis-
classified as ‘not an outlier’. Conversely, a value over zero says that
the resident involved has been falsely labelled as being above or
below the THRESHOLD.

Ebar <- function(x, y, upper, lower=upper, flag, len=0.1,...)
{ if(length(x) != length(y)

| length(y) !=length(lower)
| length(lower) != length(upper))
stop("vectors must be same length")

clr = ’black’;
if (flag < 0) { clr = ’green’ } # missed
if (flag > 0) { clr = ’red’ } # false call as above/below normal
arrows(x,y+upper, x, y-lower, angle=90,

code=3, col=clr, length=len, ...)
points(x,y, col=clr, pch=16) # draw

}

All the routine does is draw the error bar using the R function
arrows {graphics} ; points {graphics} draws the midpoint as a
circle, using plotting character code = 16. There is no return value.

†Based on http://monkeysuncle.stanford.edu/?p=485 — code by James Holland
Jones. Last accessed 4 February, 2012.

3

http://monkeysuncle.stanford.edu/?p=485

2.1.2 Has a resident been falsely labelled?

The following routine determines the ‘false labelling’ described in
the preceding section. It accepts a cutoff value (defaulting to the
previously described value in THRESHOLD), the CONFIDENCE (sim-
ilarly defined above) and a vector r with the following components
that describe properties of a particular resident:

r[1] the mean of the resident’s scores;

r[2] the standard error of that mean;

r[3] the deviation of the mean from zero. A positive deviation in-
dicates some measure of ‘superior performance’ and I have la-
belled this ‘goodness’; conversely a negative value might be
considered ‘badness’. This value was generated using the
ADJUSTMENT value described in Section 2.1.

After obtaining these values from the vector (the names used are
self-explanatory), I determine the following:

1. If the resident’s mean Z score is distant from zero by 1.96*SEM
for that individual, Baker will classify this resident as either
‘above average’ or ‘below average’. (Rather than hard-coding
the value of 1.96, I’ve used CONFIDENCE, as defined above). If
Baker’s approach classifies the resident as ‘above average’ but
the actual ‘goodness’ that we have allocated is sub-threshold
(e.g. below 1 SD) then we have a false positive, and return
1; similarly, if Baker’s approach says ‘below average’ but the
allocated ‘goodness’ (here the term ‘badness’ might be more
appropriate) is above the lower threshold, I similarly return 1.

2. Conversely, if Baker’s criteria are not met but the individual is
actually outside the cutoff limit, I return -1;

3. The default is zero (No discrepancy).

Isduff <- function (r, cut=THRESHOLD, conf=CONFIDENCE)
{ m <- r[1]
sem <- r[2]
goodness <- r[3]
if (((m-conf*sem > 0) && (goodness < cut))

||((m+conf*sem < 0) && (goodness > -(cut)))
) { return (1) } # false positive

if (((m > 0) && (m-conf*sem <= 0) && (goodness >= cut))
||((m < 0) && (m+conf*sem >= 0) && (goodness <= -(cut)))

) { return (-1) } # false negative
return (0)

}

4

2.1.3 Calculate standard error of mean

The following trivial routine determines the standard error of the
mean of data d, calculated as the standard deviation divided by
the square root of the number of items in d. The standard error is
returned.

Sem <- function (d) { sd(d)/sqrt(length(d)) }

2.2 Main program

Here I simulate the analytic process apparently followed by Baker. I
provide twenty samples for each of 100 residents, sampling from a
normal distribution using the R function rnorm{stats}. The standard
deviation is SQUEEZE as described previously.

Note that in Baker’s actual study, he analyses data for just over
100 residents, and likely used more data for most residents assessed.
This fact is not material to the simulation, as the value in SAMPLES
can simply be adjusted upwards; note however that a small compen-
satory adjustment to SQUEEZE will then be required.‡ I create the
vectors means and sems to store the means and SEMs of each of
the 100 residents.

RESIDENTS <- 100
SAMPLES <- 20 # 20 samples per resident. Can vary.
scores <- array(rnorm(n=SAMPLES*RESIDENTS, mean=0, sd=SQUEEZE),

dim=c(RESIDENTS,SAMPLES))
means <- apply (scores, MARGIN=ROW, mean) # or use rowMeans
sems <- apply (scores, MARGIN=ROW, Sem) # find standard errors

I then create the goodness vector (See also Section 2.1.2) that
simulates inter-individual variation. This value determines for each
resident whether they are ‘above average’ (positive value for good-
ness) or ‘below average’, the ADJUSTMENT being used as the stan-
dard deviation when these values are sampled from a normal distri-
bution. The value in THRESHOLD will be used to determine whether
an individual is ‘actually’ above or below an arbitrary threshold, ini-
tially conservatively set at just 1 SD.

In the following code, the array all is used to conveniently store:

1. The individual’s mean, (which is now offset by the ‘goodness’);

2. The individual’s standard error of the the mean;

‡It should also be noted that the variation in number of assessments from resident
to resident introduces a further error in Baker’s assessment, but I will not here ex-
plore this error, other than noting that appropriate use of Analysis of Means would
correct for some of his erroneous assumptions.

5

3. The actual value of the ‘goodness’ for later comparison, see
Section 2.1.2;

4. A flag derived using the Isduff function that is one of {-1,0,1},
respectively indicating a false negative label, a correct label, or
a false positive label.

goodness <- rnorm(100, sd=ADJUSTMENT)
all <- array(NA, dim=c(100,4)) # array of all data
all[,1] <- means+goodness # adjust mean for ’goodness’
all[,2] <- sems # store SEM
all[,3] <- goodness # retain ’goodness’ (-ve is ’badness’)
colnames(all) <- c("mean","sem","goodness", "duff") # name columns
all[,4] <- apply(all, MARGIN=ROW, Isduff)

As Baker did, I next sort all individuals based on their mean Z
score and count the number of individuals who are ‘reliably above /
below average’, based on whether their mean is distant from zero by
over 1.96 times the standard error of the mean (the value in CONFI-
DENCE); and finally, false positives and negatives.

sorted <- all[order(all[,1], decreasing=TRUE),]
count the number where lower limit (95% CI) above zero:
goodnesscount <- length(sorted[sorted[,1]-CONFIDENCE*sorted[,2] > 0, 1])
similarly for upper CI below zero:
badcount <- length (sorted[sorted[,1]+CONFIDENCE*sorted[,2] < 0, 1])
Fpos = length (all[all[,4] == 1,1]) # false positives
Fneg = length (all[all[,4] == -1,1])

These results can then be displayed, using a rather inefficient
for loop to draw the error bars for each student, relative to a base-
line of zero. The legend details those whom Baker would classify as
‘above’ or ‘below’, and the number of false positives and false nega-
tives encountered with this approach, for a single simulation of 100
residents.

plot(x=0,y=0, xlim=c(0,100), ylim=c(-1.5,1.5),
main = paste("Cutoff threshold",
round(THRESHOLD/ADJUSTMENT, digits=2), "SD"),
xlab="Rank Order", ylab="Mean Z score +- SEM") # plot new figure

for (stud in 1:100)
{ Ebar(x=stud, y=sorted[stud,1],
upper=CONFIDENCE*sorted[stud,2],
flag=sorted[stud,4])

}
segments (0,0,100,0) # draw line through y=0
legend (0, -1, paste ("Above = ", goodnesscount,

"Below = ", badcount, "F+ve = ", Fpos, "F-ve = ", Fneg))

6

2.3 Repeated testing

It should be clear that the numbers obtained for a particular simula-
tion will vary somewhat. Results of repeated testing can be used to
average out these values and determine the overall error rate (etc).
The following simple code does just this.

2.3.1 Simulate an entire data set

The above process is repeated in a simplified manner within the
function Once. This function accepts the following arguments:

sqz a SQUEEZE value, as above;

adj similarly, an ADJUSTMENT value;

samples the number of samples per resident;

residents the number of residents;

confidence the CONFIDENCE value, conventionally 1.96.§

In the following, in an analogous manner to the main program of
Section 2.2, I:

1. create an array of residents’ scores, selecting from a normal
distribution with SD ‘sqz’;

2. determine the means of these scores;

3. determine the standard error;

4. generate the ‘goodness’ g, which reflects how the mean of each
individual varies from zero, with a positive value considered
‘above average’, and a negative value ‘below’;

5. store the vectors in the ‘all’ array here termed ‘A’, as described
previously;

6. determine the numbers ‘above average’ (goodc), ‘below aver-
age’ (badc), and false positives (fp) and negatives (fn). These
last four values are returned as a vector.

Once <- function (sqz, adj, samples, residents, confidence)
{ # [an enhancement might be to validate the arguments here]
s <- array(rnorm(n=samples*residents, mean=0, sd=sqz),

dim=c(residents,samples))
m <- rowMeans (s)

§Note however that the function Isduff defaults to the global value of
CONFIDENCE, which is a bit ugly.

7

se <- apply (s, MARGIN=ROW, Sem)
g <- rnorm(100, sd=adj)

A <- array(NA, dim=c(100,4))
A[,1] <- m+g
A[,2] <- se
A[,3] <- g
A[,4] <- apply(A, MARGIN=ROW, Isduff)

goodc <- length(A[A[,1] - confidence*A[,2] > 0, 1])
badc <- length(A[A[,1] + confidence*A[,2] < 0, 1])
fp <- length(A[A[,4] == 1,1])
fn <- length(A[A[,4] == -1,1])

return (c(goodc, badc, fp, fn))
}

2.3.2 Repeat simulation 10,000 times

I then simply invoke the function Once ten thousand times, storing
the results in the array ‘goes’. The first column of goes is thus the
number classified as ‘above average’, the second those ‘below’, and
the third and fourth the false positives and negatives.

repeats <- 10000
goes <- array (NA, dim=c(repeats,4))
for (n in 1:repeats) { goes[n,] <- Once(SQUEEZE,

ADJUSTMENT,
SAMPLES,
RESIDENTS,
CONFIDENCE)

}
print (c (mean (goes[,1]),

mean (goes[,2]),
mean (goes[,3]),
mean (goes[,4])

))

The last line simply prints the mean values obtained.

3 References

1. Baker K. Determining Resident Clinical Performance: Getting
Beyond the Noise. Anesthesiology 2011; 115:862–875.

8

4 Availability & Testing

This code is made available at the following URL:

http://www.anaesthetist.com/R/Baker2011/

It is released under the GNU General Public Licence. This code
is Copyright © 2011–2012, Johan Michael van Schalkwyk. This pro-
gram is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. A copy of the
GNU General Public License is made available for download at:

http://www.gnu.org/licenses/.

This document is also available as R code, as a LYX document,
and as a PDF LATEX document.

4.1 Testing

This code has been tested under R version 2.10.1 running under
Ubuntu Linux version 10.04. Thanks to Associate Professor Ross
Ihaka (Ph.D, Department of Statistics, The University of Auckland,
Auckland, New Zealand) for evaluation of and comments on the
code. Note that there are several ways that the above crude code
can be made more efficient.

4.2 Change log.

1. Initial version was 1.0;

2. In version 1.01, minor alterations were made to the documenta-
tion, and ‘CUTOFF’ was renamed ‘THRESHOLD’ as this may be
slightly more mnemonic. The code was otherwise not altered
apart from minor re-formatting.

3. In version 1.02, I made more explicit reference to SDadj.

4. In version 1.03, I made amendments to the text in keeping with
the requirements of the journal Anesthesiology, including the
use of US spelling throughout, non-numeric footnotes, and a
reference list. No alterations have been made to the R code.

9

http://www.anaesthetist.com/R/Baker2011/
http://www.gnu.org/licenses/

