Supplemental Digital Content 2

table 1. Ventilatory parameters and arterial blood gases at BASELINE

	ΔP , L_{LOW}	<u>۲</u>	ΔP,L _{MEAN}		Ĺ	ΔΡ,Ι	⁴ HIGH
ΔP,L (cmH ₂ O) V _T (ml/kg) PEEP (cmH ₂ O) Pplat,rs (cmH ₂ O)	7.5 6 3 11	8.5 6 5.5 14	10 13 3 14	10 6 9.5 20	9.2 6 7.5 17	12 22 3 17	12 6 11 24
$\Delta P,L (cmH_2O)$	7.4 ± 1.2	8.0 ± 1.3	6.6 ± 0.6	7.6 ± 0.9	8.4 ± 1.0	6.8 ± 0.8	6.9 ± 0.8
Est,rs (cmH ₂ O)	3.9 ± 0.7	4.2 ± 0.6	3.5 ± 0.3	4.1 ± 0.4	4.4 ± 0.5	3.6 ± 0.2	3.6 ± 0.5
V_T (ml/kg)	6.0 ± 0.0	6.0 ± 0.0	6.0 ± 0.0	6.0 ± 0.0	6.0 ± 0.0	6.0 ± 0.0	6.0 ± 0.0
PEEP (cmH ₂ O)	3.1 ± 0.2	3.5 ± 0.2	3.5 ± 0.4	3.6 ± 0.2	3.5 ± 0.2	3.1 ± 0.4	3.1 ± 0.2
Pplat,rs (cmH ₂ O)	11.3 ± 1.2	12.6 ± 1.4	11 ± 0.8	12.1 ± 0.7	13.0 ± 0.1	10.6 ± 0.8	11 ± 0.8
RR (bpm)	75 ± 7.4	78 ± 6.9	77 ± 5.4	77 ± 5.2	75 ± 6.8	77 ± 6.4	74 ± 7.1
рНа	7.3 ± 2.4	7.3 ± 0.1	7.3 ± 0.1	7.3 ± 0.3	7.4 ± 0.1	7.2 ± 0.1	7.3 ± 0.1
$PaO_2\left(mmHg\right)$	164 ± 67	168 ± 66	174 ± 63	161 ± 53	182 ± 98	170 ± 73	183 ± 50
PaCO ₂ (mmHg)	52 ± 9.4	41 ± 12	56 ± 9.4	53 ± 2.9	43 ± 7.9	56 ± 8.2	50 ± 11
MAP (mmHg)	81.8 ± 12.6	89.2 ± 14.3	80.7 ± 10.4	89.2 ± 18.2	83.2 ± 16.6	90.7 ± 12.0	75.0 ± 6.5

Values are expressed as mean \pm SD of 6 animals per group. One-way ANOVA followed by Bonferroni post-hoc test. ΔP ,L: transpulmonary driving pressure; Est,rs: respiratory system static elastance; V_T : tidal volume; PEEP: positive end-expiratory pressure; Pplat,rs: respiratory system plateau pressure; RR: respiratory rate; pHa: arterial pH; PaO₂: arterial oxygen partial pressure; PaCO₂: arterial carbon dioxide partial pressure; MAP: mean arterial pressure. Dashed lines represent Pplat,rs similar to ΔP ,L_{MEAN} and ΔP ,L_{HIGH} at high V_T (13 ml/kg [Pplat,rs = 14 cmH₂O] and 22 ml/kg [Pplat,rs = 17 cmH₂O]). For this purpose, V_T was kept low (6 ml/kg) and PEEP was adjusted for the level of Pplat,rs. Gas exchange was evaluated at PEEP = 3 cmH₂O and FiO₂ = 1.0 in all groups.

table 2. Mechanical and hemodynamic parameters at INITIAL and END

	ΔP , L_{LOW}	. <u>.</u> – – – –	$ \Delta P, L_{MEAN}$		Д АР,L _{нісн}		
$\Delta P,L (cmH_2O)$	7.5	8.5	10	10	9.2	12	12
V_T (ml/kg)	6	6	13	6	6	22	6
PEEP (cmH ₂ O)	3	5.5	3	9.5	7.5	3	11
Pplat,rs (cmH ₂ O)	11	14	14	20	17	17	24
$\Delta P,L (cmH_2O)$							
INITIAL	7.5 ± 1.3	8.4 ± 1.0	10 ± 0.6 *	$9.7 \pm 0.4*$	$9.2 \pm 0.4*$	$12.1 \pm 0.4 $ §	12.3 ± 0.8 *§
END	6.8 ± 1.2	7.6 ± 1.2	$9.6 \pm 0.3*$	9.4 ± 0.7	7.9 ± 0.8	11.7 ± 0.6 *	$12.4 \pm 1.3 $ §
Est,rs (cmH ₂ O)	-						•
INITIAL	3.9 ± 0.7	4.3 ± 0.5	$2.6 \pm 0.3 \dagger$	$5.4 \pm 0.3 $ *‡	4.6 ± 0.2	$2.0 \pm 0.3**$	6.0 ± 0.8 *##
END	3.7 ± 0.7	3.8 ± 0.6	$2.7 \pm 0.3 \dagger$	$5.0 \pm 0.6 $ *‡	4.1 ± 0.1	1.8 ± 0.3**	6.2 ± 0.7 *##
V _T (ml/kg)							
INITIAL	6 ± 0	6 ± 0	13 ± 1	$6 \pm 0 \ddagger$	6 ± 0	22 ± 3**	$6 \pm 0 \# \#$
END	6 ± 0	6 ± 0	12 ± 1	$6 \pm 0 \ddagger$	6 ± 0	24 ± 4**	$6 \pm 0 \# \#$
PEEP (cmH ₂ O)	-						•
INITIAL	3.1 ± 0.2	5.5 ± 1.0	3.3 ± 0.4	9.3 ± 1.1 *‡	7.5 ± 0.6	3.1 ± 0.6	$11.2 \pm 0.9 * ##$
END	3.3 ± 0.5	5.9 ± 1.2	3.1 ± 0.1	9.6 ± 1.1 *‡	8.1 ± 0.5	3.1 ± 0.2	12.5 ± 1.7 *##§
Pplat,rs (cmH ₂ O)							
INITIAL	11.4 ± 1.3	15.0 ± 0.4 *	$14.2 \pm 0.8*$	20.0 ± 1.3*‡	$17.5 \pm 0.5 * \dagger$	$17.1 \pm 1.1*$	24.1 ± 1.0*##§
END	11.4 ± 1.4	14.3 ± 0.6	$13.5 \pm 0.4*$	19.0 ± 1.4*‡	17.0 ± 0.4 *	16.7 ± 0.5 *	25.7 ± 2.6 *##§
RR (bpm)							
INITIAL	76 ± 9	77 ± 7	39 ± 3	82 ± 4‡	75 ± 7	23 ± 3**	$78 \pm 7 \# \#$
END	76 ± 9	77 ± 7	40 ± 5	82 ± 4‡	75 ± 7	21 ± 2**	$78 \pm 7 \# \#$
MAP (mmHg)							
INITIAL	73.8 ± 8.7	82.8 ± 8.8	84.8 ± 13.6†	63.2 ± 3.7	78.8 ± 10.0	66.8 ± 12.3	66.8 ± 12.3

END 85.7 ± 24.9 70.0 ± 25.2 105.7 ± 19.6 81.2 ± 9.1 77.7 ± 13.4 76.7 ± 15.8 76.7 ± 15.8

Values are expressed as mean \pm SD of 6 animals per group. One-way ANOVA followed by Bonferroni post-hoc test. *vs. V_T6-PEEP3; †vs. V_T6-PEEP5.5; **vs. V_T6-PEEP7.5; ‡vs. V_T13-PEEP3; §vs. V_T6-PEEP9.5; ##vs. V_T22-PEEP3. Δ P,L: transpulmonary driving pressure; Est,rs: respiratory system static elastance; V_T: tidal volume; PEEP: positive end-expiratory pressure; Pplat,rs: respiratory system plateau pressure; RR: respiratory rate; MAP: mean arterial pressure. Dashed lines represent Pplat,rs similar to Δ P,L_{MEAN} and Δ P,L_{HIGH} at high V_T (13 ml/kg [Pplat,rs = 14 cmH₂O] and 22 ml/kg [Pplat,rs = 17 cmH₂O]). For this purpose, V_T was kept low (6 ml/kg) and PEEP was adjusted for the level of Pplat,rs. Gas exchange was evaluated at PEEP = 3 cmH₂O and FiO₂ = 1.0 in all groups.

table 3. Semi-quantitative analysis of electron microscopy

	ΔP , L_{LOW}	Ĺ	¬ ΔP,	L _{MEAN}	Ĺ	AP	,L _{HIGH}
ΔP,L (cmH ₂ O) V _T (ml/kg) PEEP (cmH ₂ O) Pplat,rs (cmH ₂ O)	7.5 6 3 11	8.5 6 5.5 14	10 13 3 14	10 6 9.5 20	9.2 6 7.5 17	12 22 3 17	12 6 11 24
ACM	3.0 (2.0-3.0)	3.0 (2.5-3.0)	3.0 (3.0-4.0)	4.0 (3.5-4.0)	3.0 (3.0-3.5)	2.0 (2.0-2.5)	2.0 (1.0-2.0) §
PI	3.0 (2.5-3.0)	2.0 (2.0-3.0)	2.0 (2.0-2.5)	3.0 (3.0-4.0)	3.0 (3.0-3.0)	2.0 (2.0-2.0)	2.0 (1.0-2.0)**\$
PII	3.0 (2.5-3.0)	2.0 (2.0-3.0)	3.0 (2.0-3.0)	3.0 (3.0-3.5)	3.0 (3.0-3.5)	2.0 (1.5-2.0)	2.0 (1.0-2.0) **§
Interstitial edema	3.0 (2.0-3.0)	3.0 (2.0-3.5)	3.0 (2.5-3.5)	4.0 (3.5-4.0)	3.0 (2.0-3.5)	2.0 (1.5-2.0)	1.0 (1.0-1.5) §

Semi-quantitative analysis of lung electron microscopy. Pathologic findings were graded on a five-point, semi-quantitative, severity-based scoring system as follows: 0 = normal lung parenchyma, 1 = changes in 1 to 25%, 2 = 26 to 50%, 3 = 51 to 75%, and 4 = 76 to 100% of the examined tissue. Values expressed as median (interquartile range) of 5 rats per group. One-way ANOVA on ranks followed by Bonferroni post-hoc test. ** vs. V_T6-PEEP7.5; § vs. V_T6-PEEP9.5. V_T: tidal volume. PEEP: positive end-expiratory pressures Pplat,rs: respiratory system plateau pressure. ACM: alveolar-capillary membrane. PI and PII: types I and II epithelial cells. Dashed lines represent additional groups in which $V_T = 6$ ml/kg was applied and PEEP adjusted to similar Pplat,rs achieved when ΔP ,L_{MEAN} and ΔP ,L_{HIGH} were associated with high V_T (13 ml/kg [Pplat,rs = 14 cmH₂O] and 22 ml/kg [Pplat,rs = 17 cmH₂O]).

table 4. Correlation between mechanical, morphometric, and biochemical parameters in all groups

	IL-6	RAGE	Amphiregulin	PCIII	Alveolar hyperinflation (%)	Alveolar collapse (%)	Pear son' s corr
$\Delta P,L (cmH_2O)$	r = 0.256	r = -0.281	r = 0.353	r = -0.211	r = 0.731	r = -0.415	elati ons
$\Delta P_{*}L$ (CIII $H_{2}O$)	p = 0.189	p = 0.148	p = 0.065	p = 0.281	p < 0.001	p = 0.028	of tran
Pplat,rs (cmH ₂ O)	r = 0.511	r = -0.055	r = 0.654	r = 0.097	r = 0.745	r = -0.767	spul mon
	p = 0.005	p = 0.780	p<0.001	p = 0.621	p < 0.001	p < 0.001	ary driv
PEEP (cmH ₂ O)	r = 0.583	r = 0.091	r = 0.619	r = 0.036	r = 0.497	r = -0.806	ing pres
	p = 0.001	p = 0.643	p<0.005	p = 0.018	p = 0.007	p < 0.001	sure (ΔP,
V _T (ml/kg)	r = -0.104	r = -0.155	r = -0.057	r = -0.341	r = 0.178	r = 0.278	L), resp
	p = 0.600	p = 0.432	p = 0.771	p = 0.075	p = 0.363	p = 0.151	irato ry
							syst

em plateau pressure (Pplat,rs), positive-end expiratory pressure (PEEP), and tidal volume (V_T) with IL-6, RAGE, amphiregulin, and PCIII mRNA expressions and alveolar hyperinflation and collapse. The r value represents the correlation coefficient, and p, the respective p-value. Statistical significance was accepted at p < 0.05.