Supplemental Digital Content 2 table 1. Ventilatory parameters and arterial blood gases at BASELINE | | ΔP , L_{LOW} | <u>۲</u> | ΔP,L _{MEAN} | | Ĺ | ΔΡ,Ι | ⁴ HIGH | |---|------------------------|-----------------------|----------------------|----------------------|-----------------------|---------------------|---------------------| | ΔP,L (cmH ₂ O)
V _T (ml/kg)
PEEP (cmH ₂ O)
Pplat,rs (cmH ₂ O) | 7.5
6
3
11 | 8.5
6
5.5
14 | 10
13
3
14 | 10
6
9.5
20 | 9.2
6
7.5
17 | 12
22
3
17 | 12
6
11
24 | | $\Delta P,L (cmH_2O)$ | 7.4 ± 1.2 | 8.0 ± 1.3 | 6.6 ± 0.6 | 7.6 ± 0.9 | 8.4 ± 1.0 | 6.8 ± 0.8 | 6.9 ± 0.8 | | Est,rs (cmH ₂ O) | 3.9 ± 0.7 | 4.2 ± 0.6 | 3.5 ± 0.3 | 4.1 ± 0.4 | 4.4 ± 0.5 | 3.6 ± 0.2 | 3.6 ± 0.5 | | V_T (ml/kg) | 6.0 ± 0.0 | PEEP (cmH ₂ O) | 3.1 ± 0.2 | 3.5 ± 0.2 | 3.5 ± 0.4 | 3.6 ± 0.2 | 3.5 ± 0.2 | 3.1 ± 0.4 | 3.1 ± 0.2 | | Pplat,rs (cmH ₂ O) | 11.3 ± 1.2 | 12.6 ± 1.4 | 11 ± 0.8 | 12.1 ± 0.7 | 13.0 ± 0.1 | 10.6 ± 0.8 | 11 ± 0.8 | | RR (bpm) | 75 ± 7.4 | 78 ± 6.9 | 77 ± 5.4 | 77 ± 5.2 | 75 ± 6.8 | 77 ± 6.4 | 74 ± 7.1 | | рНа | 7.3 ± 2.4 | 7.3 ± 0.1 | 7.3 ± 0.1 | 7.3 ± 0.3 | 7.4 ± 0.1 | 7.2 ± 0.1 | 7.3 ± 0.1 | | $PaO_2\left(mmHg\right)$ | 164 ± 67 | 168 ± 66 | 174 ± 63 | 161 ± 53 | 182 ± 98 | 170 ± 73 | 183 ± 50 | | PaCO ₂ (mmHg) | 52 ± 9.4 | 41 ± 12 | 56 ± 9.4 | 53 ± 2.9 | 43 ± 7.9 | 56 ± 8.2 | 50 ± 11 | | MAP (mmHg) | 81.8 ± 12.6 | 89.2 ± 14.3 | 80.7 ± 10.4 | 89.2 ± 18.2 | 83.2 ± 16.6 | 90.7 ± 12.0 | 75.0 ± 6.5 | Values are expressed as mean \pm SD of 6 animals per group. One-way ANOVA followed by Bonferroni post-hoc test. ΔP ,L: transpulmonary driving pressure; Est,rs: respiratory system static elastance; V_T : tidal volume; PEEP: positive end-expiratory pressure; Pplat,rs: respiratory system plateau pressure; RR: respiratory rate; pHa: arterial pH; PaO₂: arterial oxygen partial pressure; PaCO₂: arterial carbon dioxide partial pressure; MAP: mean arterial pressure. Dashed lines represent Pplat,rs similar to ΔP ,L_{MEAN} and ΔP ,L_{HIGH} at high V_T (13 ml/kg [Pplat,rs = 14 cmH₂O] and 22 ml/kg [Pplat,rs = 17 cmH₂O]). For this purpose, V_T was kept low (6 ml/kg) and PEEP was adjusted for the level of Pplat,rs. Gas exchange was evaluated at PEEP = 3 cmH₂O and FiO₂ = 1.0 in all groups. table 2. Mechanical and hemodynamic parameters at INITIAL and END | | ΔP , L_{LOW} | . <u>.</u> – – – – | $ \Delta P, L_{MEAN}$ | | Д АР,L _{нісн} | | | |-------------------------------|------------------------|--------------------|-----------------------|--------------------|--------------------------|-------------------|---------------------| | $\Delta P,L (cmH_2O)$ | 7.5 | 8.5 | 10 | 10 | 9.2 | 12 | 12 | | V_T (ml/kg) | 6 | 6 | 13 | 6 | 6 | 22 | 6 | | PEEP (cmH ₂ O) | 3 | 5.5 | 3 | 9.5 | 7.5 | 3 | 11 | | Pplat,rs (cmH ₂ O) | 11 | 14 | 14 | 20 | 17 | 17 | 24 | | $\Delta P,L (cmH_2O)$ | | | | | | | | | INITIAL | 7.5 ± 1.3 | 8.4 ± 1.0 | 10 ± 0.6 * | $9.7 \pm 0.4*$ | $9.2 \pm 0.4*$ | $12.1 \pm 0.4 $ § | 12.3 ± 0.8 *§ | | END | 6.8 ± 1.2 | 7.6 ± 1.2 | $9.6 \pm 0.3*$ | 9.4 ± 0.7 | 7.9 ± 0.8 | 11.7 ± 0.6 * | $12.4 \pm 1.3 $ § | | Est,rs (cmH ₂ O) | - | | | | | | • | | INITIAL | 3.9 ± 0.7 | 4.3 ± 0.5 | $2.6 \pm 0.3 \dagger$ | $5.4 \pm 0.3 $ *‡ | 4.6 ± 0.2 | $2.0 \pm 0.3**$ | 6.0 ± 0.8 *## | | END | 3.7 ± 0.7 | 3.8 ± 0.6 | $2.7 \pm 0.3 \dagger$ | $5.0 \pm 0.6 $ *‡ | 4.1 ± 0.1 | 1.8 ± 0.3** | 6.2 ± 0.7 *## | | V _T (ml/kg) | | | | | | | | | INITIAL | 6 ± 0 | 6 ± 0 | 13 ± 1 | $6 \pm 0 \ddagger$ | 6 ± 0 | 22 ± 3** | $6 \pm 0 \# \#$ | | END | 6 ± 0 | 6 ± 0 | 12 ± 1 | $6 \pm 0 \ddagger$ | 6 ± 0 | 24 ± 4** | $6 \pm 0 \# \#$ | | PEEP (cmH ₂ O) | - | | | | | | • | | INITIAL | 3.1 ± 0.2 | 5.5 ± 1.0 | 3.3 ± 0.4 | 9.3 ± 1.1 *‡ | 7.5 ± 0.6 | 3.1 ± 0.6 | $11.2 \pm 0.9 * ##$ | | END | 3.3 ± 0.5 | 5.9 ± 1.2 | 3.1 ± 0.1 | 9.6 ± 1.1 *‡ | 8.1 ± 0.5 | 3.1 ± 0.2 | 12.5 ± 1.7 *##§ | | Pplat,rs (cmH ₂ O) | | | | | | | | | INITIAL | 11.4 ± 1.3 | 15.0 ± 0.4 * | $14.2 \pm 0.8*$ | 20.0 ± 1.3*‡ | $17.5 \pm 0.5 * \dagger$ | $17.1 \pm 1.1*$ | 24.1 ± 1.0*##§ | | END | 11.4 ± 1.4 | 14.3 ± 0.6 | $13.5 \pm 0.4*$ | 19.0 ± 1.4*‡ | 17.0 ± 0.4 * | 16.7 ± 0.5 * | 25.7 ± 2.6 *##§ | | RR (bpm) | | | | | | | | | INITIAL | 76 ± 9 | 77 ± 7 | 39 ± 3 | 82 ± 4‡ | 75 ± 7 | 23 ± 3** | $78 \pm 7 \# \#$ | | END | 76 ± 9 | 77 ± 7 | 40 ± 5 | 82 ± 4‡ | 75 ± 7 | 21 ± 2** | $78 \pm 7 \# \#$ | | MAP (mmHg) | | | | | | | | | INITIAL | 73.8 ± 8.7 | 82.8 ± 8.8 | 84.8 ± 13.6† | 63.2 ± 3.7 | 78.8 ± 10.0 | 66.8 ± 12.3 | 66.8 ± 12.3 | END 85.7 ± 24.9 70.0 ± 25.2 105.7 ± 19.6 81.2 ± 9.1 77.7 ± 13.4 76.7 ± 15.8 76.7 ± 15.8 Values are expressed as mean \pm SD of 6 animals per group. One-way ANOVA followed by Bonferroni post-hoc test. *vs. V_T6-PEEP3; †vs. V_T6-PEEP5.5; **vs. V_T6-PEEP7.5; ‡vs. V_T13-PEEP3; §vs. V_T6-PEEP9.5; ##vs. V_T22-PEEP3. Δ P,L: transpulmonary driving pressure; Est,rs: respiratory system static elastance; V_T: tidal volume; PEEP: positive end-expiratory pressure; Pplat,rs: respiratory system plateau pressure; RR: respiratory rate; MAP: mean arterial pressure. Dashed lines represent Pplat,rs similar to Δ P,L_{MEAN} and Δ P,L_{HIGH} at high V_T (13 ml/kg [Pplat,rs = 14 cmH₂O] and 22 ml/kg [Pplat,rs = 17 cmH₂O]). For this purpose, V_T was kept low (6 ml/kg) and PEEP was adjusted for the level of Pplat,rs. Gas exchange was evaluated at PEEP = 3 cmH₂O and FiO₂ = 1.0 in all groups. table 3. Semi-quantitative analysis of electron microscopy | | ΔP , L_{LOW} | Ĺ | ¬ ΔP, | L _{MEAN} | Ĺ | AP | ,L _{HIGH} | |---|------------------------|-----------------------|---------------------|----------------------|-----------------------|---------------------|---------------------| | ΔP,L (cmH ₂ O)
V _T (ml/kg)
PEEP (cmH ₂ O)
Pplat,rs (cmH ₂ O) | 7.5
6
3
11 | 8.5
6
5.5
14 | 10
13
3
14 | 10
6
9.5
20 | 9.2
6
7.5
17 | 12
22
3
17 | 12
6
11
24 | | ACM | 3.0 (2.0-3.0) | 3.0 (2.5-3.0) | 3.0 (3.0-4.0) | 4.0 (3.5-4.0) | 3.0 (3.0-3.5) | 2.0 (2.0-2.5) | 2.0 (1.0-2.0) § | | PI | 3.0 (2.5-3.0) | 2.0 (2.0-3.0) | 2.0 (2.0-2.5) | 3.0 (3.0-4.0) | 3.0 (3.0-3.0) | 2.0 (2.0-2.0) | 2.0 (1.0-2.0)**\$ | | PII | 3.0 (2.5-3.0) | 2.0 (2.0-3.0) | 3.0 (2.0-3.0) | 3.0 (3.0-3.5) | 3.0 (3.0-3.5) | 2.0 (1.5-2.0) | 2.0 (1.0-2.0) **§ | | Interstitial edema | 3.0 (2.0-3.0) | 3.0 (2.0-3.5) | 3.0 (2.5-3.5) | 4.0 (3.5-4.0) | 3.0 (2.0-3.5) | 2.0 (1.5-2.0) | 1.0 (1.0-1.5) § | Semi-quantitative analysis of lung electron microscopy. Pathologic findings were graded on a five-point, semi-quantitative, severity-based scoring system as follows: 0 = normal lung parenchyma, 1 = changes in 1 to 25%, 2 = 26 to 50%, 3 = 51 to 75%, and 4 = 76 to 100% of the examined tissue. Values expressed as median (interquartile range) of 5 rats per group. One-way ANOVA on ranks followed by Bonferroni post-hoc test. ** vs. V_T6-PEEP7.5; § vs. V_T6-PEEP9.5. V_T: tidal volume. PEEP: positive end-expiratory pressures Pplat,rs: respiratory system plateau pressure. ACM: alveolar-capillary membrane. PI and PII: types I and II epithelial cells. Dashed lines represent additional groups in which $V_T = 6$ ml/kg was applied and PEEP adjusted to similar Pplat,rs achieved when ΔP ,L_{MEAN} and ΔP ,L_{HIGH} were associated with high V_T (13 ml/kg [Pplat,rs = 14 cmH₂O] and 22 ml/kg [Pplat,rs = 17 cmH₂O]). table 4. Correlation between mechanical, morphometric, and biochemical parameters in all groups | | IL-6 | RAGE | Amphiregulin | PCIII | Alveolar hyperinflation (%) | Alveolar collapse (%) | Pear son' s corr | |----------------------------------|------------|------------|--------------|------------|-----------------------------|-----------------------|------------------| | $\Delta P,L (cmH_2O)$ | r = 0.256 | r = -0.281 | r = 0.353 | r = -0.211 | r = 0.731 | r = -0.415 | elati
ons | | $\Delta P_{*}L$ (CIII $H_{2}O$) | p = 0.189 | p = 0.148 | p = 0.065 | p = 0.281 | p < 0.001 | p = 0.028 | of
tran | | Pplat,rs (cmH ₂ O) | r = 0.511 | r = -0.055 | r = 0.654 | r = 0.097 | r = 0.745 | r = -0.767 | spul
mon | | | p = 0.005 | p = 0.780 | p<0.001 | p = 0.621 | p < 0.001 | p < 0.001 | ary
driv | | PEEP (cmH ₂ O) | r = 0.583 | r = 0.091 | r = 0.619 | r = 0.036 | r = 0.497 | r = -0.806 | ing
pres | | | p = 0.001 | p = 0.643 | p<0.005 | p = 0.018 | p = 0.007 | p < 0.001 | sure (ΔP, | | V _T (ml/kg) | r = -0.104 | r = -0.155 | r = -0.057 | r = -0.341 | r = 0.178 | r = 0.278 | L),
resp | | | p = 0.600 | p = 0.432 | p = 0.771 | p = 0.075 | p = 0.363 | p = 0.151 | irato
ry | | | | | | | | | syst | em plateau pressure (Pplat,rs), positive-end expiratory pressure (PEEP), and tidal volume (V_T) with IL-6, RAGE, amphiregulin, and PCIII mRNA expressions and alveolar hyperinflation and collapse. The r value represents the correlation coefficient, and p, the respective p-value. Statistical significance was accepted at p < 0.05.