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Supplemental Digital Content 1.  Technical Appendix 

In this appendix, we provide further details on how we constructed our concentration 

measure as well as details on our regression analysis.   

Concentration Measure 

 We constructed Hirschman-Herfindahl Indices (HHIs) for anesthesia groups.  By 

convention, HHIs have a maximum value of 10,000, reached in monopoly markets.  As the 

amount of competition increases, the HHI falls and approaches 0 as the number of practices 

increases and the size of each individual practice falls. 

 Computing HHIs requires defining product markets.  Here we take product markets to 

include all anesthetics, which are identified using the relevant Current Procedural Terminology 

CPT codes.  HHIs also require defining geographic markets.  We derive geographic markets for 

each practice empirically, based on observed patient flows in the claims data.  This approach 

seems superior to approaches that would identify HHIs under the assumption that practices 

serve areas with boundaries defined by larger areas such as counties—as discussed in the 

main paper, to the degree that anesthesia groups compete across county lines, using a fixed 

geographic boundary such as a county will tend to overestimate the degree of concentration.  

For example, suppose two groups are located in neighboring counties (counties A and B) and 

do compete against each other for contracts from the hospitals in those counties.  By 

happenstance, group A provides all the anesthetics in county A and group B provides all the 

anesthetics in county B.  Since the two groups compete for the contracts located in both 

counties, the true market is counties A and B combined, and each group has a 50% market 

share.  However, a simple analysis at the county level would treat the two counties as separate 

markets and assign each group a 100% share in their respective county.  

 Our analytic approach adapts the approach of Kessler and McClellan to the case of 

hospitals.24  We derive HHIs for in two steps.  We begin by constructing a ZIP code HHI for 

each ZIP code, by specialty, by year.  Denote by servicei,j the number of claims provided by 
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physicians in practice i to patients who reside in ZIP code j . Denoting the total number of claims 

provided to patients in ZIP j as servicej, the market share of practice i for ZIP j is sharei,j = 

servicei,j / servicej .  The ZIP code HHI is then the sum of squared market shares: 

 

𝑍𝐼𝑃𝐻𝐻𝐼𝑗 = ∑ 𝑠ℎ𝑎𝑟𝑒𝑖,𝑗
2

𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠 𝑖 
𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑍𝐼𝑃 𝑗

 

 

 This construction allows flexibility in the market size, basing the HHI on the set of 

physicians actually observed to provide services to patients in the given ZIP code.  We exclude 

from this calculation claims where the physician is more than 100 miles from the patient ZIP, to 

reduce the potential for bias from cases where a patient, perhaps while traveling, sees a distant 

physician who does not play a substantial role in competition for patients residing in the ZIP 

code.  (Distances were determined based on the centroid of the patient and provider ZIP codes, 

using the Haversine formula.  Between 90 and 95% of claims meet the 100 mile criteria in any 

given year.) 

 In the second step, for each practice we identified the set of patient ZIP codes with non-

zero service claims (i.e. the set of j for which servicei,j > 0), excluding cases where the patient 

ZIP is more than 100 miles from the physician ZIP.  Following the FTC/DOJ guidance, we then 

took the smallest set of these ZIP codes that accounted for 75% of allowed charges as the 

practice market area for analysis.  We averaged the ZIPHHI values for the ZIP codes in the 

market area, weighting by the number of services practice i provides in each of the patient ZIPs 

in its market area, to create a practice level HHI: 

 

𝑃𝑅𝐴𝐶𝐻𝐻𝐼𝑖 = ∑ 𝑤𝑖,𝑗𝑍𝐼𝑃𝐻𝐻𝐼𝑗
𝑍𝐼𝑃𝑠 𝑗 𝑖𝑛 

𝑚𝑎𝑟𝑘𝑒𝑡 𝑎𝑟𝑒𝑎
𝑜𝑓 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒 𝑖
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where wi,j is a weight with sum 1 derived from the servicei,j values (i.e. servicei,j / servicei where 

servicei is the sum of all claims provided by practice i). 

 This approach diverges somewhat from approaches that would simply define the market 

area of the practice as the set of ZIP codes served and then compute the HHI from the market 

shares of all practices serving the area.  Our approach allows us to increase the weight put on 

areas from which the practice draws most of its patients.  Many practices draw patients from a 

large number of ZIP codes in total, but have a much smaller set of areas from which the bulk of 

their patients come.  Weighting by the concentration of patients should make the HHIs more 

accurate in this sense. 

 For analysis, we created county level measures of the average PRACHHI of physicians 

located in the county.  Denoting areas by k, we take the average of PRACHHI values over the 

practices i with provider locations in county k, weighting by the services provided by the practice 

attributable to area k. 

 

𝐺𝐸𝑂𝐻𝐻𝐼𝑘 = ∑ 𝑏𝑖,𝑘𝑃𝑅𝐴𝐶𝐻𝐻𝐼𝑗
𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠 𝑖

𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 

𝑍𝐼𝑃𝑠 𝑖𝑛 𝑎𝑟𝑒𝑎 𝑘

 

 

where b is a weight that sums to one, capturing the distribution across practices of claims 

attributable to county k (i.e. bi,k = servicei,k / servicek).  The principle of weighting here is to 

upweight practices that have a prominent presence in the area, and downweight practices that 

do not.  

 To examine robustness to alternate specifications, we computed HHIs in a number of 

different ways.  We examined the effects of 1) using the number of claims as the service unit; 2) 

using the number of work RVUs as the service unit; 3) using all ZIPs, rather than the subset 
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accounting for 75% of allowed charges, as the service area; and 4) relaxing the restriction that 

the physician and patient must be within 100 miles for the claim to be included.  All of these 

produced very similar results, with county-level correlations of 0.97 or higher within each 

specialty.  Finally, we computed HHIs using the SK&A data linked to the Medicare claims, using 

the largest reported practice entity for each physician (SK&A data allow physicians to designate 

a group practice, a hospital owner, a system owner, or any combination of those 3.  From that, 

we took the practice size with the most other physicians).  The correlations between the 

specialty median HHIs based on TIN and SK&A group code are very high -- 0.98 or higher 

across specialties. 

Regression Model 

For our study, we used a difference-in-differences approach to identify the effect of 

concentration on payments for anesthesia CPTs.  We implemented our difference-in-differences 

approach using the following regression: 

𝒍𝒏(𝒑𝒂𝒚𝒎𝒆𝒏𝒕)𝒊𝒋𝒕 = 𝒇𝒊 + 𝒈𝒋 + 𝜹𝒕 + 𝒕𝒓𝒆𝒏𝒅𝒊𝒕 + 𝚪𝑿𝒊𝒕 + 𝒅𝒊𝒕
𝟐𝟓−𝟓𝟎 + 𝒅𝒊𝒕

𝟓𝟎−𝟕𝟓 + 𝒅𝒊𝒕
𝟕𝟓−𝟏𝟎𝟎 + 𝜺𝒊𝒋𝒕 

In the equation above, 𝒑𝒂𝒚𝒎𝒆𝒏𝒕𝒊𝒋𝒕 is the mean payment for CPT j in county i at year t.  

𝒇𝒊represents a fixed effect for county i , 𝜹𝒕 represents a year effect for year t, and 𝒈𝒋 represents 

a fixed effect for CPT j.  𝒕𝒓𝒆𝒏𝒅𝒊𝒕 controls for linear trends at the county level and is the product 

of the year and an indicator variable for the given county. 𝑿𝒊𝒕 is a vector of county 

characteristics, including total population, percentage of the population that is white, percentage 

of the population that is over age 65, percentage of the population that is male, and median 

county income.  The set of dummy variables 𝒅𝒊𝒕  indicate whether the county’s HHI lies in the 

25th-49th percentile (𝒅𝒊𝒕
𝟐𝟓−𝟒𝟗), 50-74th percentile (𝒅𝒊𝒕

𝟓𝟎−𝟕𝟒), and 75th-100th percentile (𝒅𝒊𝒕
𝟕𝟓−𝟏𝟎𝟎).  

Since the omitted group is the 0-24th percentile, the value of these coefficients represents the 

increase in payments associated with the given quartile relative to this group.  𝜺𝒊𝒕 represents the 

error term.   
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 In the regression above, note that we use the natural log of payments as our 

independent variable.  We do so because of the wide range in payments across anesthesia 

CPTs (see table 1).  In this context, the coefficients on the dummy variables 𝒅𝒊𝒕  can be 

translated into the percentage change in payment (relative to the 0-25th percentile) associated 

with the given quartile using methods described elsewhere.30  Note, however, that generally the 

coefficient itself approximates the change in payment associated with the given quartile.  For 

example, if the coefficient associated with 𝒅𝒊𝒕
𝟕𝟓−𝟏𝟎𝟎 is 0.12, this would generally mean that 

payments for counties in the 75th to 100th percentile of HHI are 12 percent higher than payments 

in counties in the 0 to 25th percentile.   

 Our dataset consists of 10,305 observations (229 counties times 9 years times 5 

procedures per county-year).  A simple ordinary least squares (OLS) regression will tend to 

underestimate our standard errors (and therefore overestimate the statistical significance of our 

regression coefficients) because the 10,305 observations are not likely to represent truly 

independent observations; observations within a given county are likely to be correlated.  

Calculating clustered standard errors is an appropriate approach to deal with this issue.a  In 

essence, clustering adjusts the standard errors based on the observed level of correlation within 

a given unit (cluster) defined by the investigator.  Since we are primarily concerned with 

correlation within a given county (across CPT codes and over time), we cluster our standard 

errors at the county level.b  Many statistical packages can easily calculate clustered standard 

errors.     

 Heteroscedasticity is also potential issue in our regression, since our dependent variable 

is an average of random variables.  Moreover, our independent variable of interest—our 

                                                      
a See Wooldridge JM: Cluster-Sample Methods in Applied Econometrics. The American 
Economic Review 2003; 93: 133-138 
 
b See Bertrand M, Duflo E, Mullainathan S: How Much Should We Trust Differences-in-
Differences Estimates? The Quarterly Journal of Economics 2004; 119: 249-275 
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measure of concentration—is also, as described above, an average of random variables.  We 

address the potential for heteroscedasticity in two ways.  First, we perform a weighted least 

squares regression, where the weights are the underlying number of claims used to calculate 

the average payment in a given county.  Second, we calculate clustered standard errors, 

which—akin to Huber-White errors—are robust to heteroscedasticity.c  

 

 

                                                      
c See Petersen M: Estimating Standard Errors in Finance Panel Data Sets: Comparing 
Approaches. Review of Financial Studies 2009; 22: 435-480 
 


