
Supplemental Digital Content 3

Gas Exchange, Lung Volume, and Wet/Dry Ratio in Controls

Fig. 1. Data are given as mean ± SD. Comparisons among groups were performed using twoway ANOVA. (A) fraction of arterial partial pressure of oxygen and inspired oxygen fraction (PaO₂/FIO₂); (B) arterial partial pressure of carbon dioxide (PaCO₂) and one-way ANOVA; (C) end-expiratory lung volume (EELV); (D) lung wet/dry ratio).

I:E = inspiratory-to-expiratory; MV = mechanical ventilation; STP_{high} = high levels of stress *vs.* time product (I:E 2:1); STP_{low} = low level of stress *vs.* time product (I:E 1:2); STP_{mid} = middle level of stress *vs.* time product (I:E 1:1).

Hemodynamics in Controls

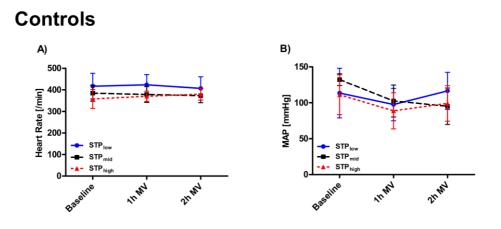


Fig. 2. Data are given as mean ± SD. Comparisons among groups were performed using twoway ANOVA. (A) heart rate; (B) mean arterial pressure (MAP).

I:E = inspiratory-to-expiratory; MV = mechanical ventilation; STP_{high} = high levels of stress *vs.* time product (I:E 2:1); STP_{low} = low level of stress *vs.* time product (I:E 1:2); STP_{mid} = middle level of stress *vs.* time product (I:E 1:1).

Respiratory Mechanics in Controls

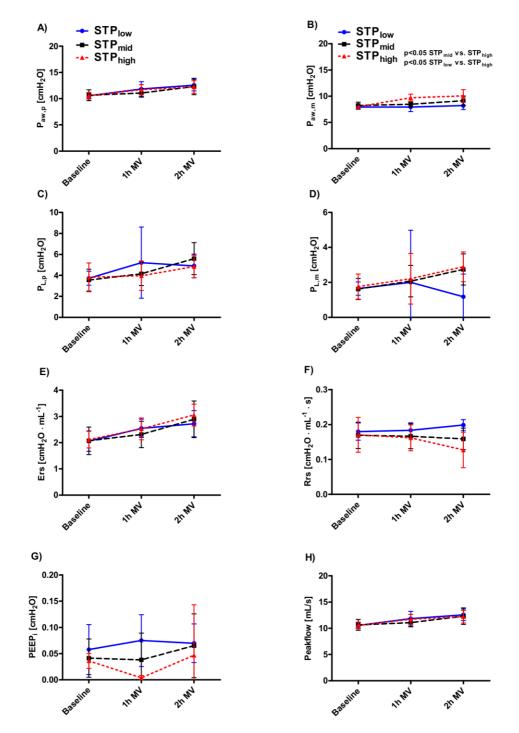
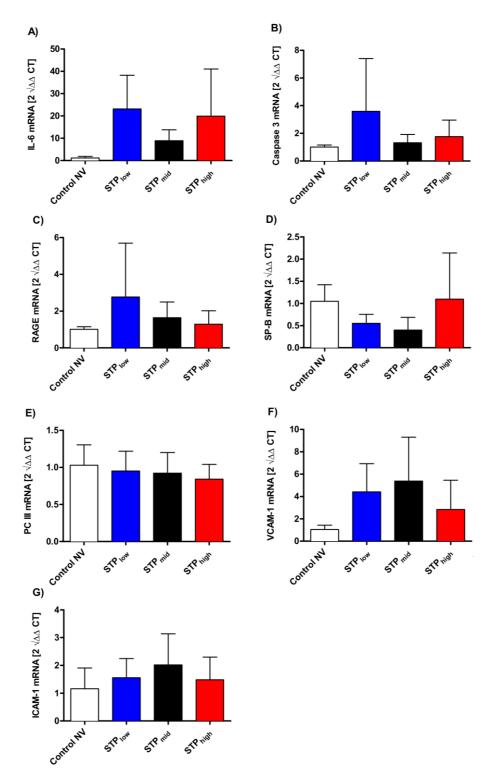
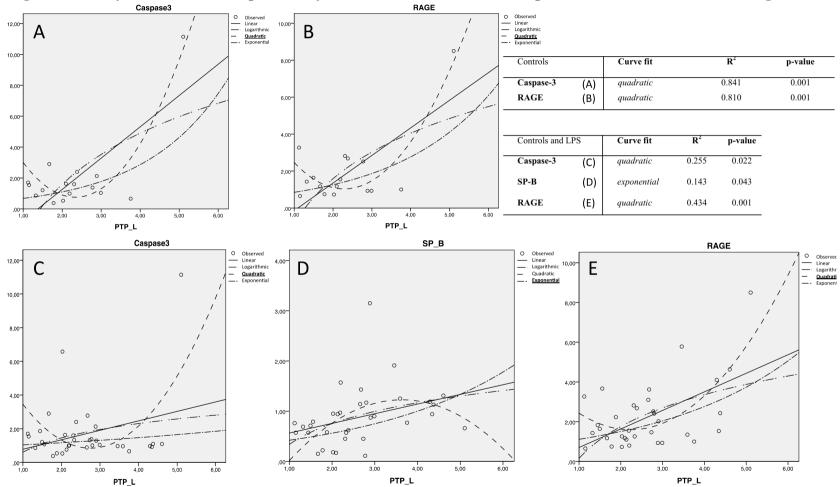



Fig. 3. Data are given as mean \pm SD. Comparisons among groups were performed using twoway ANOVA. (A) $P_{aw,p}$ (peak airway pressure); (B) $P_{aw,m}$ (mean airway pressure); (C) $P_{L,p}$ (peak transpulmonary pressure); (D) $P_{L,m}$ (mean transpulmonary pressure); (E) E_{rs} (elastance

Controls

of the respiratory system); (F) R_{rs} (resistance of the respiratory system); (G) PEEP_i (dynamic intrinsic positive end-expiratory pressure); (H) peak flow.

I:E = inspiratory-to-expiratory; MV= mechanical ventilation; STP_{high} = high levels of stress *vs.* time product (I:E 2:1); STP_{low} = low level of stress *vs.* time product (I:E 1:2); STP_{mid} = middle level of stress *vs.* time product (I:E 1:1).



Controls

Fig. 4. Data are given as mean \pm SD. Comparisons among groups were performed using oneway ANOVA. messenger RNA (mRNA) expressions of genes are normalized to the

respective housekeeping gene (glyceraldehyde 3-phosphate dehydrogenase). (A) IL-6 (interleukin-6); (B) caspase 3; (C) RAGE (receptor of advanced glycation end-products); (D) SP-B (surfactant protein B); (E) PC III (type III procollagen); (F) VCAM-1 (vascular cell adhesion molecule-1); (G) ICAM-1 = (intercellular cell adhesion molecule-1).

Control NV = nonventilated control animals; I:E = inspiratory-to-expiratory; MV = mechanical ventilation; STP_{high} = high levels of stress *vs*. time product (I:E 2:1); STP_{low} = low level of stress *vs*. time product (I:E 1:2); STP_{mid} = middle level of stress *vs*. time product (I:E 1:1).

Regression Analyses between Transpulmonary Pressure-time Product and Expression of Selected Genes in Lung Tissue

Fig. 5. Results of the stepwise curve-fit regression analyses. Transpulmonary pressure time product (PTP_L , in cmH₂O.s) was used as nondependent variable while postmortem measurements of caspase 3, receptor for advanced glycation end products (RAGE) and surfactant protein-B (SP-B) were

used as dependent variables (ratio). Panels A and B show curve fit regression analysis in Control animals and panels C, D, and E, in Control combined with lipopolysaccharide-treated animals. Stepwise curve fits were calculated for linear, logarithmic, quadratic and exponential functions. Best model fits were determined by highest R^2 values.