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Appendix 1: GRANGER CAUSALITY 

Granger Causality describes the amount of information flow between two electrodes by using 

autoregressive models to assess whether past information in one electrode helps to predict 

current information in another electrode.1-3 In this section, we present the theory of time-domain 

and frequency-domain Granger causality. For more information and computational 

implementation, we recommend Barnett and Seth.4  

 

Time-domain Granger causality 

For a time-varying signal 𝑋𝑡, a univariate autoregressive model can be used to predict the current 

value of its own signal based on its previous values. This is described by the following equation:  

 

 𝑋𝑡 = ∑ 𝑎𝑛𝑋𝑡−𝑛 + 𝑒𝑥𝑡
𝑘
𝑛=1  [1] 

 

where 𝑡 is the current time point, 𝑋𝑡−𝑛 are the values of the signal in the prior n time points, 

𝑎𝑛are the corresponding autoregressive coefficients, and 𝑘 is the order of the autoregressive 

model (i.e. the number of previous time points taken into account). The error term, 𝑒𝑥𝑡, is the 

difference between the true signal 𝑋𝑡and the predicted signal. If the model is a good fit to the 

data, the error will be small with small variability over time. 

 

To capture whether the contribution of an additional time-varying signal, 𝑌𝑡, can help predict the 

current value of 𝑋𝑡 the autoregressive model is extended to a bivariate model, which is described 

by the following equation:  

 

 𝑋𝑡 = ∑ 𝑎𝑛𝑋𝑡−𝑛 + ∑ 𝑏𝑛𝑌𝑡−𝑛
𝑘
𝑛=1 + 𝑒𝑥𝑦𝑡

𝑘
𝑛=1   [2]

  

where 𝑌𝑡−𝑛 are the values of the additional signal at the prior n time points, 𝑎𝑛 and 𝑏𝑛 are sets of 

autoregressive coefficients, and 𝑒𝑥𝑦𝑡 is the bivariate error term. In practice, 𝑎𝑛 and 𝑏𝑛 and hence 

𝑒𝑥𝑡 and 𝑒𝑥𝑦𝑡 can be derived by standard linear auto-regression methods, including ordinary least 

squares and multivariate Yule-Walker equations. 

 

The Granger causality of signal 𝑌 on signal 𝑋, 𝐺𝑥𝑦, (i.e. the amount of information flow from 

electrode 𝑌 to 𝑋) quantifies the degree to which the past of signal 𝑌 helps to predict the current 

signal 𝑋; that is, it tests the null hypothesis that the coefficients 𝑏𝑛 are significantly different from 

zero. The log-likelihood ratio statistic for this test is the definition of Granger causality: 

 

 𝐺𝑥𝑦 = ln
var(𝑒𝑥)

var(𝑒𝑥𝑦)
 [3] 

 

If 𝑌 does not contribute to 𝑋 then the errors and error variances for the univariate and bivariate 

cases will be the same (i.e. the coefficients 𝑏𝑛 will be zero so that the bivariate equation (Eq. 2) 



reverts to the univariate case (Eq. 1)). In this case, since the natural logarithm of 1 is zero, 𝐺𝑥𝑦 will 

be zero. As the bivariate error term decreases (because previous values of 𝑌 help predict current 

values of 𝑋), the error variance ratio increases, and hence so does 𝐺𝑥𝑦. Thus, greater values of 𝐺𝑥𝑦 

indicate a larger amount of information flow from electrode 𝑌 to 𝑋. For example, Figure A 

illustrates the contribution of 𝑋 and 𝑌 to the predicted 𝑋 signal for a low and high Granger 

causality case.  

 

 

Figure A: Granger causality assesses how much of the past signal 𝑌 contributes to the prediction of the current 

signal 𝑋. On the left, two sets of 𝑋 and 𝑌  EEG signals are shown. Their relative contributions towards predicting 

the future 𝑋 signal are shown in the middle. In the top example, 𝑌 does not contribute much to the future 𝑋 

signal illustrated by the low Granger causality value of 0.031. In contrast, the bottom example shows that 

𝑌 reduces the error of the predicted 𝑋, with a Granger causality value of 0.297. 

 

Frequency-domain Granger causality 

Granger causality can also be evaluated in the frequency domain, where spectral decomposition 

is used to restrict inferences about information flow to particular frequency bands. Spectral 

Granger causality can be thought of as measuring the proportion of power of 𝑋 at the given 

frequency that is derived from its interaction with 𝑌. In comparison, time-domain Granger 

causality as described above can be considered to be an average over all frequencies of the 

spectral region. 



The time varying 𝑋𝑡 and 𝑌𝑡 signals have associated power spectral density functions 𝑆𝑥𝑥() and 

𝑆𝑦𝑦(), where 02. The cross-power spectral density, 𝑆, is defined as the (two-sided) Fourier 

transform of the autocovariance sequence. However, for autoregressive models there is a unique 

spectral factorisation for 𝑆 with a transfer function, 𝐻: 

 

 𝑆(𝜆) = 𝐻(𝜆) Σ𝐻(𝜆)∗ [4] 

 

where * denotes the inverse and 𝛴 is a matrix of the error variances from the autoregressive 

model. The transfer function is the inverse matrix of the Fourier transform of the regression 

coefficients: 

 

 𝐻(𝜆) = (𝐼 − ∑ 𝐴𝑘𝑒−𝑖𝑘𝜆𝑝
𝑘=1 )

−1
 [5] 

 

For the bivariate autoregressive model (of signals 𝑋 and 𝑌), 𝑆 and 𝐻 are 2x2 matrices, such that: 

 

 𝑆(𝜆) =  [
𝑆𝑥𝑥(𝜆) 𝑆𝑥𝑦(𝜆)

𝑆𝑦𝑥(𝜆) 𝑆𝑦𝑦(𝜆)
] [6] 

 

The spectral Granger causality from 𝑌 to 𝑋 is therefore defined as: 

 

 𝐺𝑥𝑦(𝜆) =  ln (
|𝑆𝑥𝑥(𝜆)|

|𝑆𝑥𝑥(𝜆)− 𝐻𝑥𝑦(𝜆)Σ𝑦𝑦𝐻𝑥𝑦(𝜆)∗|
) [7] 

 

All Granger causality analysis in this paper is at a specific frequency between 0.5 and 30 Hz, 

calculated using this frequency-domain representation.  
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Figure S1:  

Time-frequency spectrum for Granger causality on a log scale. This is from participant 1, 

bivariate electrode pair F7 to Fz (i.e. front left to front central). 

 

 

Figure S2:  

Power trajectories of the delta, alpha, and beta frequency bands for the 15 minutes either 

side of loss of behavioral response (top row) and regain of behavioral response (bottom 

row). 

 

 

 

  



Figure S3:  

Alpha (8-14Hz) Granger causality trajectories by subject (normalized values shown). The 

three vertical dashed lines indicate: (i) the start of propofol (always at 10 minutes), (ii) time of 

loss of behavioral response, and (iii) time of regain of behavioral response. 

 

Figure S4:  

Beta (21-30Hz) Granger causality trajectories by subject (normalized values shown). 

 



Figure S5:  

Investigation of Granger causality residuals. For selected electrode pairs, Granger causality 

values (normalised, ‘GC’) for the delta frequency band are plotted against their residuals (also 

normalised, ‘Resid’) for the 15 minutes either side of loss of responsiveness. 

 

Figure S6:  

Principal component analysis on Granger causality values, shown in the first two dimensions 

of the principal component space (PC1 = first principal component; PC2 = second principal 

component). The electrode pairs with coefficients in the top 5% are highlighted in red; the 

lowest 5% are in blue. These correspond to the colors in Figure 4 of the main paper. 

 

 
 



Figure S7:  

Coherence trajectories of each electrode pair (median over all participants) for the 15 

minutes before and after loss of behavioral responsiveness (top row) and regain of 

behavioral responsiveness (bottom row). The delta, alpha and beta frequency bands are 

shown separately. Note the y-axis is logged. 

 

 

 

Figure S8:  

The electrode pairs identified during the Granger causality principal component analysis (i.e. 

the top 5% and lowest 5% principal component coefficients) are shown here for the 

coherence trajectories.  

 

 

 


