
Appendix 1. Schematic representation of decision tree. Each initial screening test can yield positive or negative results, which may or may not be followed up with an additional test. No results from cell free DNA (cfDNA) screening are treated as screen positive results. The probability of follow-up testing is dependent on the results of the initial test and the options available for follow-up. Chromosomal abnormalities include trisomy 21, 13, 18, sex chromosome aneuploidy (XO, XXX, XXY, XYY), pathogenic copy number variant or rare chromosomal abnormalities, and variants of uncertain clinical significance. The possibility of stillbirth in the context of trisomy 21, 13 or 18 is included. Diagnostic testing may result in miscarriage. Receipt of abnormal results or results indicating a variant of uncertain significance may result in a decision to continue or to terminate a pregnancy. The probability of a future pregnancy in the context of a pregnancy loss is also included. MMS, multiple marker screening; NT, nuchal translucency; VUOS, variants of uncertain clinical significance.

Appendix 2. Probabilities and Costs Used in the Analysis

Probabilities		Reference
Age independent probabilities		
Probability of clinically significant microarray abnormality or rare chromosomal abnormalit	y 0.0114	1,2
Probability of variant of unknown clinical significance	0.013	1
Age dependent probabilities		
Age 20		
Trisomy 13	0.0001	12-18
Trisomy 18	0.0002	12-18
Trisomy 21	0.0008	12-18
Sex chromosome aneuploidy (XXX, XXY, XYY, XO)	0.0034	12-18
Age 25		
Trisomy 13	0.0001	12-18
Trisomy 18	0.0002	12-18
Trisomy 21	0.001	12-18
Sex chromosome aneuploidy (XXX, XXY, XYY, XO)	0.0034	12-18
Age 30		
Trisomy 13	0.0002	12-18
Trisomy 18	0.0004	12-18

Trisomy 21	0.0014	12-18
Sex chromosome aneuploidy (XXX, XXY, XYY, XO)	0.0034	12-18
Age 35		
Trisomy 13	0.0004	12-18
Trisomy 18	0.0009	12-18
Trisomy 21	0.0034	12-18
Sex chromosome aneuploidy (XXX, XXY, XYY, XO)	0.0035	12-18
Age 40		
Trisomy 13	0.0014	12-18
Trisomy 18	0.003	12-18
Trisomy 21	0.0116	12-18
Sex chromosome aneuploidy (XXX, XXY, XYY, XO)	0.0051	12-18
Test characteristics		
Multiple marker screening (NT+1st and 2nd trimester serum samples)		
Age independent test characteristics		
Sensitivity of MMS for trisomy 13	0.804	3
Sensitivity of MMS for microarray or other rare chromosomal abnormalities	0.538	3
Sensitivity of MMS for variant of uncertain clinical significance	0.538	3
Sensitivity of MMS for sex chromosome aneuploidy	0.627	3
Sensitivity of MMS for sex chromosome aneuploidy	0.627	5

Age 20		
Sensitivity of MMS for trisomy 18	0.68	4
Sensitivity of MMS for trisomy 21	0.81	4
Screen positive rate	0.021	4
Age 25		
Sensitivity of MMS for trisomy 18	0.70	4
Sensitivity of MMS for trisomy 21	0.82	4
Screen positive rate	0.021	4
Age 30		
Sensitivity of MMS for trisomy 18	0.074	4
Sensitivity of MMS for trisomy 21	0.084	4
Screen positive rate	0.032	4
Age 35		
Sensitivity of MMS for trisomy 18	0.84	4
Sensitivity of MMS for trisomy 21	0.91	4
Screen positive rate	0.085	4
Age 40		
Sensitivity of MMS for trisomy 18	0.93	4
Sensitivity of MMS for trisomy 21	0.96	4

Screen positive rate	0.23	4
Cell free DNA testing (cfDNA)		
Failed test (no results returned)		
Probability of failed cfDNA when sex chromosome aneuploidy is present	0.0714	5
Probability of failed cfDNA when trisomy 13 is present	0.152	6-9
Probability of failed cfDNA when trisomy 18 is present	0.105	6-9
Probability of failed cfDNA when trisomy 21 is present	0.044	6-9
Probability of failed cfDNA in the absence of aneuploidy	0.04	6-9
cf DNA test characteristics when a result is returned		
Sensitivity of cfDNA for trisomy 13	0.921	10
Sensitivity of cfDNA for trisomy 18	0.968	10
Sensitivity of cfDNA for trisomy 21	0.99	10
Sensitivity of cfDNA for sex chromosome aneuploidy	0.9114	10
False positive rate for cfDNA	0.0067	10
Nuchal translucency (NT)		
Sensitivity of NT for sex chromosome aneuploidy	0.435	11, 12
Sensitivity of NT for variant of uncertain clinical significance	0.398	11, 12
Sensitivity of NT for trisomy 21	0.587	11, 12
Sensitivity of NT for trisomy 18	0.618	11, 12

Sensitivity of NT for trisomy 13	0.586	11, 12
Sensitivity of NT for rare chromosomal abnormalities	0.398	11, 12
Screen positive rate of NT	0.05	11, 12
Diagnostic testing		
Sensitivity of amniocentesis for detection of chromosomal abnormalities	0.998	13,14
Probability of additional testing		
Probability of diagnostic testing with a negative screening test	0.044	15
Probability of diagnostic testing after positive MMS when cfDNA is available	0.392	15
Probability of diagnostic testing with 2 positive screening tests	0.776	16
Probability of cfDNA testing after positive MMS	0.394	15
Probability of diagnostic testing after positive MMS when cfDNA is not available	0.776	16
		Assumption, same as screen
		positive prior to cfDNA
Probability of diagnostic testing after negative cfDNA	0.044	available
		Assumption, same as screen
		positive prior to cfDNA
Probability of diagnostic testing after cfDNA positive for trisomy	0.776	available
Probability of diagnostic testing after cfDNA positive for sex chromosome aneuploidy	0.5	Assumption
Probability of diagnostic testing after failed cfDNA	0.776	Assumption, same as screen

		positive prior to cfDNA
		available
Probability of termination		
Probability of termination for trisomy 13	0.648	17–19
Probability o termination for trisomy 18	0.598	17–19
Probability of termination for trisomy 21	0.742	20
		Assumption, same as trisomy
Probability of termination for microarray or rare chromosome abnormality	0.742	21
		Assumption, same as sex
Probability of termination for variant of uncertain clinical significance	0.325	chromosome aneuploidy
Probability of termination for sex chromsome aneuploidy	0.325	21,22
Probability of miscarriage		
Probability of procedure-related loss	0.0025	23
Probability of spontaneous loss with trisomy 13	0.42	24
Probability of spontaneous loss with trisomy 18	0.72	24
Probability of spontaneous loss with trisomy 21	0.043	25
Probability of intellectual disability		
Probability of intellectual disability in the setting of sex chromosome aneuploidy	0.3	Assumption
Probability of intellectual disability with variant of uncertain clinical significance	0.5	Assumption

Probability of future birth after pregnancy loss		
Age 30 and younger	0.75	26,27
Age 35	0.66	27
Age 40	0.44	27
Other		
		Social Security Actuarial
Life expectancy at 20	61.6	Tables ²⁸
		Social Security Actuarial
Life expectancy at 25	56.8	Tables ²⁸
		Social Security Actuarial
Life expectancy at 30	51.9	Tables ²⁸
		Social Security Actuarial
Life expectancy at 35	47.1	Tables ²⁸
		Social Security Actuarial
Life expectancy at 40	42.3	Tables ²⁸
		Social Security Actuarial
Life expectancy at 45	37.6	Tables ²⁸
Discount rate	0.03	Assumption
Costs		

		Mean of quoted costs from
		major
Serum portion of integrated screen	\$338	lab providers
		Mean of quoted costs for
		insured
Nuchal translucency ultrasound	\$222	and Medicaid patients
		Mean of quoted costs for
		insured
Amniocentesis with CMA	\$2384	and Medicaid patients
		Mean of quoted costs from all
cfDNA	\$1796	cfDNA providers
Termination or miscarriage	\$938	29
Delivery cost	\$8445	30

Appendix 3. Utility Measurement Methods

We measured time tradeoff utilities for 18 different sequences of events that can follow 6 testing strategies beginning with 1) multiple marker testing (serum biochemistry and nuchal translucency ultrasound) alone, 2) cell free DNA analysis alone, 3) multiple marker screening and cell free DNA together, or 4) diagnostic testing with CMA, and 5 different outcomes of pregnancy (birth of an infant with an intellectual disability, birth of an infant with a severely life threatening condition, and birth of an infant following the identification of a variant of unknown significance, as well as pregnancy loss with or without the birth of an infant from a subsequent pregnancy).

Participants were recruited primarily from the Prenatal Diagnosis Center at the University of California, San Francisco (UCSF); secondary recruitment sites included the prenatal care clinics at UCSF and San Francisco General Hospital. After obtaining approval from the institutional review board for each site, participants were enrolled in the study between July, 2013, and November, 2014. Eligibility criteria included being at least 18 years old and less than 20 weeks pregnant, carrying a singleton pregnancy with no major fetal abnormalities, and having the ability to complete a 45 minute interview in English. Women were eligible to participate regardless of whether or not they had undergone any prenatal testing in their current pregnancy.

After signing informed consent, each participant was asked to complete a selfadministered questionnaire, which contained items related to their sociodemographic characteristics, reproductive history, and prior use of prenatal testing. We then providing participants with information on the conditions (intellectual disability (including, but

Kaimal AJ, Norton ME, Kuppermann M. Prenatal testing in the genomic age, clinical outcomes, quality of life, and costs. Obstet Gynecol 2015;126.

The authors provided this information as a supplement to their article.

[©] Copyright 2015 American College of Obstetricians and Gynecologists.

not limited to, Down syndrome), trisomies 13 and 18, and a genetic variant of uncertain or variable clinical significance) and testing options (multiple marker screening, cell free DNA, and CVS and amniocentesis with CMA) for which utilities were sought. The description of multiple marker screening included first and second trimester blood draw as well as nuchal translucency ultrasound, a sequential integrated screening approach.

We employed a 3-form design to minimize responder burden.³¹ All participants assessed the 5 pregnancy outcome scenarios first. The other 18 scenarios were divided into 3 groups (6 scenarios in each), and each participant was randomly assigned to evaluate 2 of the 3 groups of pregnancy scenarios. Each scenario was read aloud by the study interviewer, while the participant viewed a card with the written description and a graphic representation of the sequence of events described. The back of the card listed emotions that might occur as a result of experiencing the scenario, to help the participants consider how they might feel about being in the situation described. After completing the interview, each participant was given a \$40 gift card as remuneration.

Sociodemographic characteristics of the study population are included as Appendix 4. Just over half (55.2%) of the sample self identified as white; the remainder were Asian (22.4%), Latina (13.2%) and African American (7.8%). They ranged in age from 18 to 46; the mean age was 33.4 (\pm 4.8). These women varied substantially in their reproductive histories: about a third (32.0%) had previously given birth, 28.5% had experienced a miscarriage, and 22.8% reported having terminated a pregnancy.

Kaimal AJ, Norton ME, Kuppermann M. Prenatal testing in the genomic age, clinical outcomes, quality of life, and costs. Obstet Gynecol 2015;126.

The authors provided this information as a supplement to their article.

[©] Copyright 2015 American College of Obstetricians and Gynecologists.

Sociodemographic characteristics	n	%
Race/ethnicity		
African American or Black	22	7.8%
Asian	63	22.4%
Latina, Latin American or Hispanic	37	13.2%
White	155	55.2%
Mixed, other	4	0.5%
Age		
18-24	10	3.3%
25-29	45	16.0%
30-34	122	43.4%
35-39	70	24.9%
<u>≥</u> 40	34	12.1%
Education attainment		
High school graduate or less	12	4.2%
Some college	37	13.2%
College graduate	90	32.0%
Professional or graduate degree	142	50.5%

Appendix 4. Utility Measurement Participant Characteristics (n=281)

The authors provided this information as a supplement to their article. © Copyright 2015 American College of Obstetricians and Gynecologists.

Kaimal AJ, Norton ME, Kuppermann M. Prenatal testing in the genomic age, clinical outcomes, quality of life, and costs. Obstet Gynecol 2015;126.

Income		
< \$25,000	32	11.7%
\$25,000 - \$50,000	25	9.2%
\$50,001 - \$100,000	41	15.0%
\$100,001 - \$150,000	68	24.9%
Over \$150,000	107	39.2%
Private insurance	219	78.2%
Married or living with partner	249	88.6%
Personally know someone with intellectual disability	191	69.2%
Reproductive history		
Prior birth	190	32.1%
Prior miscarriage	80	28.6%
Prior termination	64	22.9%
Have met with genetic counselor in current pregnancy	235	83.9%
Have had prenatal testing in current pregnancy*	178	90.4%
Multiple marker screening	167	84.8%
cf DNA screening	37	18.8%
Chorionic villus sampling	5	2.5%
Amniocentesis	1	0.5%

*% out of 281; does not always add to 100% due to missing data.

© Copyright 2015 American College of Obstetricians and Gynecologists.

Kaimal AJ, Norton ME, Kuppermann M. Prenatal testing in the genomic age, clinical outcomes, quality of life, and costs. Obstet Gynecol 2015;126.

The authors provided this information as a supplement to their article.

REFERENCES

1. Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. *N Engl J Med.* 2012;367(23):2175-2184. doi:10.1056/NEJMoa1203382.

2. Forabosco A, Percesepe A, Santucci S. Incidence of non-age-dependent chromosomal abnormalities: a population-based study on 88965 amniocenteses. *Eur J Hum Genet EJHG*. 2009;17(7):897-903. doi:10.1038/ejhg.2008.265.

3. Baer R, Flessel M, Jelliffe-Pawlowski L, et al. 216: Detection of chromosome abnormalities by sequential screening with first and second trimester serum and nuchal translucency. *Am J Obstet Gynecol*. 2015;212(1):S121-S122. doi:10.1016/j.ajog.2014.10.262.

4. *California Prenatal Screening Program Provider Handbook*. http://www.cdph.ca.gov/programs/pns/Documents/ProviderHandbook2009WEB.pdf. Accessed November 12, 2014.

5. Samango-Sprouse C, Banjevic M, Ryan A, et al. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy. *Prenat Diagn*. 2013;33(7):643-649. doi:10.1002/pd.4159.

6. Porreco RP, Garite TJ, Maurel K, et al. Noninvasive prenatal screening for fetal trisomies 21, 18, 13 and the common sex chromosome aneuploidies from maternal blood using massively parallel genomic sequencing of DNA. *Am J Obstet Gynecol*. 2014;211(4):365.e1-e365.e12. doi:10.1016/j.ajog.2014.03.042.

7. Bianchi DW, Platt LD, Goldberg JD, et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. *Obstet Gynecol*. 2012;119(5):890-901. doi:10.1097/AOG.0b013e31824fb482.

8. Norton ME, Brar H, Weiss J, et al. Non-Invasive Chromosomal Evaluation (NICE) Study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18. *Am J Obstet Gynecol.* 2012;207(2):137.e1-e8. doi:10.1016/j.ajog.2012.05.021.

9. Ehrich M, Deciu C, Zwiefelhofer T, et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. *Am J Obstet Gynecol*. 2011;204(3):205.e1-e11. doi:10.1016/j.ajog.2010.12.060.

10. Gil MM, Akolekar R, Quezada MS, Bregant B, Nicolaides KH. Analysis of Cell-Free DNA in Maternal Blood in Screening for Aneuploidies: Meta-Analysis. *Fetal Diagn Ther*. 2014;35(3):156-173. doi:10.1159/000358326.

The authors provided this information as a supplement to their article.

© Copyright 2015 American College of Obstetricians and Gynecologists.

Kaimal AJ, Norton ME, Kuppermann M. Prenatal testing in the genomic age, clinical outcomes, quality of life, and costs. Obstet Gynecol 2015;126.

11. Norton ME, Jelliffe-Pawlowski LL, Currier RJ. Chromosome abnormalities detected by current prenatal screening and noninvasive prenatal testing. *Obstet Gynecol*. 2014;124(5):979-986. doi:10.1097/AOG.0000000000452.

12. Snijders RJ, Noble P, Sebire N, Souka A, Nicolaides KH. UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10-14 weeks of gestation. Fetal Medicine Foundation First Trimester Screening Group. *Lancet*. 1998;352(9125):343-346.

13. Lippman A, Tomkins DJ, Shime J, Hamerton JL. Canadian multicentre randomized clinical trial of chorion villus sampling and amniocentesis. Final report. *Prenat Diagn*. 1992;12(5):385-408.

14. Winsor EJ, Tomkins DJ, Kalousek D, et al. Cytogenetic aspects of the Canadian early and mid-trimester amniotic fluid trial (CEMAT). *Prenat Diagn*. 1999;19(7):620-627.

15. Chetty S, Garabedian MJ, Norton ME. Uptake of noninvasive prenatal testing (NIPT) in women following positive aneuploidy screening. *Prenat Diagn*. 2013;33(6):542-546. doi:10.1002/pd.4125.

16. Nicolaides KH, Chervenak FA, McCullough LB, Avgidou K, Papageorghiou A. Evidencebased obstetric ethics and informed decision-making by pregnant women about invasive diagnosis after first-trimester assessment of risk for trisomy 21. *Am J Obstet Gynecol*. 2005;193(2):322-326. doi:10.1016/j.ajog.2005.02.134.

17. Crider KS, Olney RS, Cragan JD. Trisomies 13 and 18: population prevalences, characteristics, and prenatal diagnosis, metropolitan Atlanta, 1994-2003. *Am J Med Genet A*. 2008;146A(7):820-826. doi:10.1002/ajmg.a.32200.

18. Irving C, Richmond S, Wren C, Longster C, Embleton ND. Changes in fetal prevalence and outcome for trisomies 13 and 18: a population-based study over 23 years. *J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet*. 2011;24(1):137-141. doi:10.3109/14767051003758879.

19. Parker SE, Mai CT, Canfield MA, et al. Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004-2006. *Birt Defects Res A Clin Mol Teratol*. 2010;88(12):1008-1016. doi:10.1002/bdra.20735.

20. Natoli JL, Ackerman DL, McDermott S, Edwards JG. Prenatal diagnosis of Down syndrome: a systematic review of termination rates (1995–2011). *Prenat Diagn*. 2012;32(2):142-153. doi:10.1002/pd.2910.

21. Forrester MB, Merz RD. Pregnancy outcome and prenatal diagnosis of sex chromosome abnormalities in Hawaii, 1986-1999. *Am J Med Genet A*. 2003;119A(3):305-310. doi:10.1002/ajmg.a.20150.

Kaimal AJ, Norton ME, Kuppermann M. Prenatal testing in the genomic age, clinical outcomes, quality of life, and costs. Obstet Gynecol 2015;126.

The authors provided this information as a supplement to their article.

© Copyright 2015 American College of Obstetricians and Gynecologists.

22. Jeon KC, Chen L-S, Goodson P. Decision to abort after a prenatal diagnosis of sex chromosome abnormality: a systematic review of the literature. *Genet Med Off J Am Coll Med Genet*. 2012;14(1):27-38. doi:10.1038/gim.0b013e31822e57a7.

23. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 88, December 2007. Invasive prenatal testing for aneuploidy. *Obstet Gynecol*. 2007;110(6):1459-1467. doi:10.1097/01.AOG.0000291570.63450.44.

24. Morris JK, Savva GM. The risk of fetal loss following a prenatal diagnosis of trisomy 13 or trisomy 18. *Am J Med Genet A*. 2008;146A(7):827-832. doi:10.1002/ajmg.a.32220.

25. Rankin J, Tennant PWG, Bythell M, Pearce MS. Predictors of Survival in Children Born With Down Syndrome: A Registry-Based Study. *Pediatrics*. May 2012:peds.2011-3051. doi:10.1542/peds.2011-3051.

26. Cohen-Overbeek TE, Hop WC, den Ouden M, Pijpers L, Jahoda MG, Wladimiroff JW. Spontaneous abortion rate and advanced maternal age: consequences for prenatal diagnosis. *Lancet*. 1990;336(8706):27-29.

27. Leridon H. Can assisted reproduction technology compensate for the natural decline in fertility with age? A model assessment. *Hum Reprod*. 2004;19(7):1548-1553. doi:10.1093/humrep/deh304.

28. Actuarial Life Table. http://www.ssa.gov/oact/STATS/table4c6.html. Accessed November 14, 2014.

29. Roberts SCM, Gould H, Kimport K, Weitz TA, Foster DG. Out-of-Pocket Costs and Insurance Coverage for Abortion in the United States. *Womens Health Issues*. 2014;24(2):e211-e218. doi:10.1016/j.whi.2014.01.003.

30. The Cost of Having a Baby in the United States.

http://transform.childbirthconnection.org/wp-content/uploads/2013/01/Cost-of-Having-a-Baby1.pdf. Accessed November 11, 2014.

31. Graham JW, Taylor BJ, Olchowski AE, Cumsille PE. Planned missing data designs in

psychological research. *Psychol Methods*. 2006;11(4):323-343.

Kaimal AJ, Norton ME, Kuppermann M. Prenatal testing in the genomic age, clinical outcomes, quality of life, and costs. Obstet Gynecol 2015;126.

The authors provided this information as a supplement to their article.

[©] Copyright 2015 American College of Obstetricians and Gynecologists.