Supplementary Methods

Derivation equations for acid-base calculations in blood plasma used to create summary equation too determine $\mathrm{pH}\left(-\log _{10}\left[\mathrm{H}^{+}\right]\right)$based on principles of electroneutrality.
(a) Water dissociation:

$$
\begin{equation*}
K_{w}^{\prime}=\left[H^{+}\right] \times\left[O H^{-}\right] \quad \text { therefore } \quad\left[O H^{-}\right]=\frac{K^{\prime} w}{\left[H^{+}\right]} \tag{ES1}
\end{equation*}
$$

(b) Bicarbonate $\left(\mathrm{HCO}_{3}^{-}\right)$formation:

$$
\begin{equation*}
K_{c}=\frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{HCO}_{3}^{-}\right]}{p \mathrm{CO}_{2}} \quad \text { therefore } \quad\left[\mathrm{HCO}_{3}^{-}\right]=\frac{\left[K_{c}\right] \times\left[p \mathrm{CO}_{2}\right]}{\left[\mathrm{H}^{+}\right]} \tag{ES2}
\end{equation*}
$$

(c) Carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ formation:

$$
\begin{equation*}
K_{3}=\frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{CO}_{3}^{2-}\right]}{\mathrm{HCO}_{3}^{-}} \quad \text { therefore } \quad\left[\mathrm{CO}_{3}^{2-}\right]=\frac{\left[\mathrm{K}_{3}\right] \times\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}^{+}\right]} \tag{ES3}
\end{equation*}
$$

(d) Weak acid conservation and dissociation:

$$
\begin{align*}
& {\left[A_{\text {tot }}\right]=[H A]+\left[A^{-}\right] \quad \text { and } \quad K_{A}=\frac{\left[H^{+}\right] \times\left[A^{-}\right]}{[H A]}} \tag{ES4}\\
& \text { therefore } \quad\left[A^{-}\right]=\frac{K_{A} \times\left[A_{t o t}\right]}{K_{A}+\left[H^{+}\right]} \tag{ES5}
\end{align*}
$$

(e) Principle of electroneutrality:

$$
\begin{align*}
& {[S I D]=\left[\mathrm{Na}^{+}\right]-\left[\mathrm{Cl}^{-}\right]} \tag{ES6}\\
& {[S I D]+\left[\mathrm{H}^{+}\right]-\left[\mathrm{HCO}_{3}^{-}\right]-\left(2 \times\left[\mathrm{CO}_{3}^{2-}\right]\right)-\left[\mathrm{OH}^{-}\right]-\left[\mathrm{A}^{-}\right]=0} \tag{ES7}
\end{align*}
$$

(f) Using equations E1-E6, equation the weak anions in E7 can be expressed in terms of $\left[\mathrm{H}^{+}\right]$:

$$
\begin{equation*}
[S I D]+\left[H^{+}\right]-\frac{K_{c} \times p C O_{2}}{\left[H^{+}\right]}-2 \times \frac{K_{c} \times K_{3} \times p C O_{2}}{\left[H^{+}\right]^{2}}-\frac{K_{w}}{\left[H^{+}\right]}-\frac{K_{A} \times\left[A_{t o t}\right]}{K_{A}+\left[H^{+}\right]}=0 \tag{ES8}
\end{equation*}
$$

Equilibrium constants used for the model are displayed in table 1. Using goal seeking reiteration processes, it is possible to solve this equation for $\left[\mathrm{H}^{+}\right]$for any given SID, pCO_{2} and $\mathrm{A}_{\text {tot }}$. Once pCO_{2} and $\left[\mathrm{H}^{+}\right]$, it is possible to determine bicarbonate concentration using ES2.

