Recommendations, Quality of Evidence, and Recommendation Strength

Category Conditio		Recommendation	Quality of Evidence	Recommendation Strength
		Question: Does the use of a nutrition risk indicator identify patients who w	vill most likely benefit from nutrit	ion therapy?
		A1. Based on expert consensus, we suggest a determination of nutrition risk	Ungraded	
		(for example NRS-2002, Nutric Score) be performed on all patients admitted		
		to the ICU for whom volitional intake is anticipated to be insufficient. High		
		nutrition risk identifies that patient most likely to benefit from early EN		
int		therapy.		
sme		Question: What additional tools, components or surrogate markers provid	le useful information when perfor	rming nutrition
Nutrition Assessment		assessment in critically ill adult patients?		
on A		A2. Based on expert consensus, we suggest that nutritional assessment	Ungraded	
Itriti		include an evaluation of co-morbid conditions, function of the gastrointestinal		
NU		tract, and risk of aspiration. We suggest not using traditional nutrition		
		indicators or surrogate markers, as they are not validated in critical care.		
		Question: What is the best method for determining energy needs in the cri	tically ill adult patient?	
		A3a. We suggest that indirect calorimetry (IC) be used to determine energy	Very Low	Weak
		requirements when available and in the absence of variables that affect the		
		accuracy of measurement.		
		A3b. Based on expert consensus, in the absence of IC, we suggest that a	Ungraded	
on ent	_	published predictive equation or a simplistic weight-based equation (25-30		
Nutrition ssessmen	(cont)	kcal/kg/day) be used to determine energy requirements. (See section Q for		
Nutrition Assessment	J	obesity recommendations)		
7		Question: Should protein provision be monitored independently from energy	rgy provision in critically ill adult	patients?

of protein provision be performed.			
Question: What is the benefit of early EN in critically ill adult patients wher	n compared to withholding	g or delaying this therapy?	
B1. We recommend that nutrition support therapy in the form of EN should be	Very Low	Strong	
initiated within the first 24-48 hours following onset of critical illness.			
Question: Is there a difference in outcomes between the use of EN or PN for	r adult critically ill patient	s?	
B2. We suggest the use of EN over PN in critically ill patients who require	Very Low to Low	Weak.	
nutrition support therapy.			
Question: Is the clinical evidence of contractility (bowel sounds, flatus) required prior to initiating EN in critically ill adult patients?			
B3. Based on expert consensus, we suggest that in the majority of medical and	Ungraded		
surgical ICU patient populations, while gastrointestinal contractility factors			
should be evaluated when initiating EN, overt signs of contractility should not			
be required prior to initiation of EN.			
Question: What is the preferred level of infusion of EN within the GI tract for critically ill patients? How does the level of infusion of			
EN affect patient outcomes?			
B4a. We recommend that the level of infusion be diverted lower in the GI tract	Moderate to High	Strong	
in those critically ill patients at high risk for aspiration (see section D4) or			
those who have shown intolerance to gastric EN.			
B4b. Based on expert consensus we suggest that in most critically ill patients it	Ungraded		
is acceptable to initiate EN in the stomach.			
-	 B1. We recommend that nutrition support therapy in the form of EN should be initiated within the first 24-48 hours following onset of critical illness. Question: Is there a difference in outcomes between the use of EN or PN for B2. We suggest the use of EN over PN in critically ill patients who require nutrition support therapy. Question: Is the clinical evidence of contractility (bowel sounds, flatus) record and surgical ICU patient populations, while gastrointestinal contractility factors should be evaluated when initiating EN, overt signs of contractility should not be required prior to initiation of EN. Question: What is the preferred level of infusion of EN within the GI tract of EN affect patient outcomes? B4a. We recommend that the level of infusion be diverted lower in the GI tract in those critically ill patients at high risk for aspiration (see section D4) or those who have shown intolerance to gastric EN. B4b. Based on expert consensus we suggest that in most critically ill patients it 	initiated within the first 24-48 hours following onset of critical illness. Question: Is there a difference in outcomes between the use of EN or PN for adult critically ill patient B2. We suggest the use of EN over PN in critically ill patients who require nutrition support therapy. Question: Is the clinical evidence of contractility (bowel sounds, flatus) required prior to initiating E B3. Based on expert consensus, we suggest that in the majority of medical and surgical ICU patient populations, while gastrointestinal contractility factors should be evaluated when initiating EN, overt signs of contractility should not be required prior to initiation of EN. Question: What is the preferred level of infusion of EN within the GI tract or critically ill patients? He EN affect patient outcomes? B4a. We recommend that the level of infusion be diverted lower in the GI tract in those critically ill patients at high risk for aspiration (see section D4) or those who have shown intolerance to gastric EN. B4b. Based on expert consensus we suggest that in most critically ill patients it Ungraded	

	B5. Based on expert consensus, we suggest that in the setting of hemodynamic	Ungraded		
	compromise or instability, EN should be withheld until the patient is fully			
	resuscitated and/or stable. Initiation/re-initiation of EN may be considered			
	with caution in patients requiring low dose vasopressor support.			
	Question: What population of patients in the ICU setting does not require a	utrition support therapy over the	first week of	
	hospitalization?	nutrition support therapy over the		
	C1. Based on expert consensus, we suggest that patients who are at low	Ungraded		
_	nutrition risk with normal baseline nutrition status and low disease severity			
itior	(for example NRS 2002 score< 3 or Nutric Score < 5) who cannot maintain			
Nutr	volitional intake do not require specialized nutrition therapy over the first			
eral l	week of hospitalization in the ICU.			
Ente	Question: For which population of patients in the ICU setting is it appropriate to provide trophic EN over the first week of			
Dosing of Enteral Nutrition	hospitalization?			
osin	C2. We recommend that either trophic or full nutrition by EN is appropriate	High	Strong	
D	for patients with acute respiratory distress syndrome (ARDS)/acute lung			
	injury (ALI) and those expected to have a duration of mechanical ventilation >			
	72 hours, as these two strategies of feeding have similar patient outcomes			
	over the first week of hospitalization.			
	Question: What population of patients in the ICU requires full EN (as close	as possible to target nutrition goa	ls) beginning in the first	
	week of hospitalization? How soon should target nutrition goals be reached in these patients?			
	C3. Based on expert consensus, we suggest that patients who are determined	Ungraded		
	to be at high nutrition risk (for example an NRS 2002 score >5 or Nutric score			
	>6) or severely malnourished should be advanced towards goal as quickly as			
	tolerated over 24-48 hours. Efforts to provide >80% of estimated or			
	calculated goal energy and protein within 48-72 hours should be made in			
	order to achieve the clinical benefit of EN over the first week of			
		1	<u> </u>	

	hospitalization.				
	Question: Does the amount of protein provided make a difference in clinic	cal outcomes of adult critic	ally ill patients?		
	C4. We suggest that sufficient (high dose) protein should be provided. Protein	Very Low	Weak		
	requirements are expected to be in the range of 1.2 – 2.0 g/kg actual body				
	weight per day, and may likely be even higher in burn or multi-trauma				
	patients (See sections M and P).				
	Question: How should tolerance of EN be monitored in the adult critically i	ill population?			
	D1. Based on expert consensus, we suggest that patients should be monitored	Ungraded			
	daily for tolerance of EN. We suggest that inappropriate cessation of EN				
ition	should be avoided. We suggest that making the patient nil per os (NPO)				
Nutr	surrounding the time of diagnostic tests or procedures should be minimized				
ral h	to limit propagation of ileus and to prevent inadequate nutrient delivery.				
Monitoring Tolerance and Adequacy of Enteral Nutrition	Question: Should GRVs be used as a marker for aspiration to monitor ICU patients on EN?				
y of	D2a. We suggest that GRVs not be used as part of routine care to monitor ICU	Low	Weak		
quac	patients on EN.				
Adec	D2b. We suggest for those ICUs where GRVs are still utilized, that holding EN	Low	Weak		
and .	for GRVs <500 mL in the absence of other signs of intolerance (see D1) should				
nce a	be avoided.				
lera	Question: Should EN feeding protocols be used in the adult ICU setting?				
g To	D3a. We recommend that enteral feeding protocols should be designed and	Moderate to High	Strong		
oring	implemented to increase the overall percentage of goal calories provided.				
onito	D3b. Based on expert consensus we suggest that use of a volume-based	Ungraded			
M	feeding protocol or a top-down multi-strategy protocol be considered.	ongraueu			
		ionto vo sciving FN, and wh			
	Question: How can risk of aspiration be assessed in critically ill adults pati	ients receiving EN, and What	at measures may be taken to		
	reduce the likelihood for aspiration pneumonia?				

D4. Based on expert consensus, we suggest that patients placed on EN should	Ungraded	
be assessed for risk of aspiration, and that steps to reduce risk of aspiration		
and aspiration pneumonia should be proactively employed.		
D4a. We recommend diverting the level of feeding by post-pyloric enteral	Moderate to High	Strong
access device placement in patients deemed to be at high risk for aspiration		
(see also B5)		
D4b. Based on expert consensus, we suggest that for high-risk patients or	Ungraded	
those shown to be intolerant to bolus gastric EN, delivery of EN should be		
switched to continuous infusion.		
D4c. We suggest that in patients at high risk of aspiration, agents to promote	Low	Weak.
motility such as prokinetic medications (metoclopramide or erythromycin) be		
initiated where clinically feasible.		
D4d. Based on expert consensus, we suggest that nursing directives to reduce	Ungraded	
risk of aspiration and ventilator-associated pneumonia be employed. In all		
intubated ICU patients receiving EN, the head of the bed should be elevated		
$30\text{-}45^{\underline{o}}$ and use of chlorhexidine mouthwash twice a day should be considered.		
Question: Are surrogate markers useful in determining aspiration in the cr	ritical care setting?	
D5. Based on expert consensus, we suggest that blue food coloring or any	Ungraded	
coloring agent should not be used as a marker for aspiration of EN. Based on		
expert consensus, we also suggest glucose oxidase strips not be used as		
surrogate markers for aspiration in the critical care setting.		
Question: How should diarrhea associated with EN be assessed in the adult	t critically ill population?	I
D6. Based on expert consensus, we suggest that EN not be automatically	Ungraded	
interrupted for diarrhea but rather feeds be continued while evaluating the		
etiology of diarrhea in an ICU patient to determine appropriate treatment.		

	E1. Based on expert consensus, we suggest using a standard polymeric	Ungraded			
	formula when initiating EN in the ICU setting. We suggest avoiding the				
	routine use of all specialty formulas in the critically ill patient in a medical				
	ICU and disease-specific formulas in the surgical ICU.				
	Question: Do immune-modulating enteral formulations have an impact on	clinical outcomes for the cr	itically ill patient regardless of		
	the ICU setting?				
	E2. We suggest immune-modulating enteral formulations [arginine with	Very Low	Weak		
	other agents including eicosapentaenoic acid (EPA), docosahexaenoic acid				
	(DHA), glutamine and nucleic acid] should not be used routinely in the				
	medical ICU. Consideration for these formulations should be reserved for				
	patients with traumatic brain injury and perioperative patients in the				
	surgical ICU (see sections O, M).				
	Question: Should EN formulas with fish oils, borage oils and anti-oxidants be used in patients with acute lung injury or acute				
ont)	respiratory distress syndrome?				
n (ce	E3. We cannot make a recommendation at this time regarding the routine use	Low	Weak		
latio	of an enteral formulation characterized by an anti-inflammatory lipid profile				
mu	(i.e., omega-3 fish oils, borage oil) and antioxidants, in patients with ARDS				
l Foi	and severe acute lung injury (ALI) given conflicting data.				
tera	Question: In adult critically ill patients, what are the indications, if any, for	enteral formulations cont	aining soluble fiber or small		
ie En	peptides?				
oriat	E4a. We suggest that a commercial-mixed fiber formula not be used routinely	Low	Weak		
prol	in the adult critically ill patient prophylactically to promote bowel regularity				
ofAp	or prevent diarrhea.				
tion	E4b. Based on expert consensus, we suggest considering use of a commercial-	Ungraded			
Selection of Appropriate Enteral Formulation (cont)		-			

	diarrhea. We suggest avoiding both soluble and insoluble fiber in patients at			
	high risk for bowel ischemia or severe dysmotility. We suggest considering			
	use of small peptide formulations in the patient with persistent diarrhea with			
	suspected malabsorption, risk for bowel ischemia or lack of response to fiber.			
	Question: Should a fiber additive be used routinely in all hemodynamical	ly stable ICU patients on standard	enteral formulas?	
	Should a soluble fiber supplement be provided as adjunctive therapy in t	ne critically ill patient who develop	ps diarrhea and is	
	receiving a standard non-fiber containing enteral formula?			
	F1. Based on expert consensus, we suggest that a fermentable soluble fiber	Ungraded		
	(e.g. FOS, inulin) additive be considered for routine use in all			
	hemodynamically stable medical and surgical ICU patients placed on a			
	standard enteral formulation. We suggest that a fermentable soluble fiber			
	supplement be given as adjunctive therapy if there is evidence of diarrhea.			
apy	Question: Is there a role for probiotic administration in critically ill patients? Is there any harm in delivering probiotics to critically			
Adjunctive Therapy	ill patients?			
ive '	F2. We suggest that while the use of studied probiotics species and strains	Very Low to Low	Weak	
unct	appear to be safe in the general ICU patients, they should be used only for			
Adj	select medical and surgical patient populations where RCTs have			
	documented safety and outcome benefit. We cannot make a recommendation			
	at this time for the routine use of probiotics across the general population of			
	ICU patients.			
	Question: Does the provision of antioxidants and trace minerals affect ou	tcome in critically ill adult patient	s?	
	F3. We suggest a combination of antioxidant vitamins and trace minerals in	Low	Weak	
	doses reported to be safe in critically ill patients be provided to those			
	patients who require specialized nutrition therapy.			
		s in the adult ICU setting?		

		enteral nutrition regimen routinely in critically ill patients.		
		Question: When should parenteral nutrition be initiated in the adult critic	cally ill patient at low nutritional r	risk?
		G1. We suggest in the patient who is at low nutrition risk (for example NRS 2002	Very Low	Weak
		score \leq 3 or Nutric Score \leq 5), exclusive parenteral nutrition (PN) should be		
		withheld over the first 7 days following ICU admission in the patient who cannot		
		maintain volitional intake and early EN is not feasible.		
tion		Question: When should PN begin in the critically ill patient at high nutritio	on risk?	
Jutri		G2. Based on expert consensus in the patient determined to be at high nutrition	Ungraded	
ral N		risk (for example an NRS 2002 score <u>></u> 5 or Nutric score <u>></u> 6) or severely		
ente		malnourished, when EN is not feasible, we suggest initiating exclusive PN as soon		
Par		as possible following ICU admission.		
Use		Question: What is the optimal timing for initiating supplemental PN when	EN does not meet energy or prote	in goals in the patient at
When to Use Parenteral Nutrition		low or high nutrition risk?		
Who		G3. We recommend in patients at either low or high nutrition risk, use of	Moderate	Strong
		supplemental PN be considered after 7 to 10 days if unable to meet > 60% of		
		energy and protein requirements by the enteral route alone. Initiating		
		supplemental PN prior to this 7-10 day period in critically ill patients on some EN		
		does not improve outcomes and may be detrimental to the patient.		
ze		Question: When PN is needed in the adult critically ill patient what strateg	ies can be adopted to improve effi	cacy?
ximi eral		H1. Based on expert consensus, we suggest the use of protocols and nutrition	Ungraded	
, Mai rent	uc	support teams to help incorporate strategies to maximize efficacy and reduce		
ated of Pa	Nutrition	associated risk of PN.		
ndic acy c	Nu	Question: In the appropriate candidate (high risk or severely malnourishe	d) for PN, should the dose be adju	sted over the first week
When Indicated, Maximize Efficacy of Parenteral		of hospitalization in the ICU?		
WE		H2. We suggest that hypocaloric PN dosing (≤ 20 kcal/kg/day or 80% of	Very Low	Weak

estimated energy needs) with adequate protein (≥ 1.2 g protein/kg/day) be				
considered in appropriate (high risk or severely malnourished) patients				
requiring PN, initially over the first week of hospitalization in the ICU.				
Question: Should soy-based IV fat emulsions (IVFE) be provided in the firs	t week of ICU stay? Is th	ere an advantage of using		
alternative IVFE (i.e., MCT, olive oil, fish oil, mixture of oils) over tradition	al soybean oil-based lip	id emulsions in critically i		
patients?				
H3a. We suggest withholding soy-based IVFE during the first week following	Very Low	Weak		
initiation of PN in the critically ill patient unless the patient has high-risk of				
essential fatty acid deficiency.				
H3b Alternative IVFE may provide outcome benefit over soy-based IVFE,	Ungraded			
however we cannot make a recommendation at this time due to lack of				
availability of these products in the U.S. When these alternative IVFE (SMOF,				
MCT, OO and FO) become available in the U.S. based on expert opinion, we				
suggest their use be considered in the critically ill patient who is an				
appropriate candidate for PN.				
Question: Is there an advantage to using standardized commercially-available PN (pre-mixed PN) versus compounded PN				
admixtures?				
H4. Based on expert consensus, use of standardized commercially-available	Ungraded			
PN vs. compounded PN admixtures in the ICU patient has no advantage in				
terms of clinical outcomes.				
Question: What is the desired target blood glucose range in adult ICU patie	ents?	I		
H5. We recommend a target blood glucose range of 140-150 to180 mg/dL for	Moderate	Strong		
the general ICU population; ranges for specific patient populations (post				
cardiovascular surgery, head trauma) may differ and is beyond the scope of				
this guideline.				

		H6. We recommend that parenteral glutamine supplementation not be used	Moderate	Strong
		routinely in the critical care setting.		
		Question: In transition feeding, as an increasing volume of EN is tolerated	by a patient already receiving PN,	at what point should the
		PN be terminated?		
		H7. Based on expert consensus, we suggest as tolerance to EN improves, the	Ungraded	
		amount of PN energy should be reduced and finally discontinued when the		
		patient is receiving > 60% of target energy requirements from EN.		
		Question: What is the optimal carbohydrate to fat ratio for the adult ICU p	atient with pulmonary failure?	
		I1. We suggest that specialty high fat: low carbohydrate formulations designed	Very Low	Weak
		to manipulate the respiratory quotient and reduce CO2 production not be		
		used in ICU patients with acute respiratory failure (not to be confused with		
ilure		recommendation E3).		
v Fa		Question: Does use of energy-dense EN formulas to restrict fluid administration benefit the adult ICU patient with acute respiratory		
nary		failure?		
- uc				
nomlu		I2. Based on expert consensus, we suggest that fluid-restricted energy dense	Ungraded	
Pulmonarv Failure			Ungraded	
Pulmon		I2. Based on expert consensus, we suggest that fluid-restricted energy dense	Ungraded	
Pulmon		I2. Based on expert consensus, we suggest that fluid-restricted energy dense EN formulations should be considered for patients with acute respiratory		nt with respiratory
Pulmon		I2. Based on expert consensus, we suggest that fluid-restricted energy dense EN formulations should be considered for patients with acute respiratory failure (especially if in state of volume overload).		nt with respiratory
Pulmon		 I2. Based on expert consensus, we suggest that fluid-restricted energy dense EN formulations should be considered for patients with acute respiratory failure (especially if in state of volume overload). Question: Should serum phosphate concentrations be monitored when EN 		nt with respiratory
Pulmon		 I2. Based on expert consensus, we suggest that fluid-restricted energy dense EN formulations should be considered for patients with acute respiratory failure (especially if in state of volume overload). Question: Should serum phosphate concentrations be monitored when EN failure? 	or PN is initiated in the ICU patien	nt with respiratory
Pulmon		 I2. Based on expert consensus, we suggest that fluid-restricted energy dense EN formulations should be considered for patients with acute respiratory failure (especially if in state of volume overload). Question: Should serum phosphate concentrations be monitored when EN failure? I3. Based on expert consensus, we suggest that serum phosphate 	or PN is initiated in the ICU patien	nt with respiratory
		 I2. Based on expert consensus, we suggest that fluid-restricted energy dense EN formulations should be considered for patients with acute respiratory failure (especially if in state of volume overload). Question: Should serum phosphate concentrations be monitored when EN failure? I3. Based on expert consensus, we suggest that serum phosphate concentrations should be monitored closely, and phosphate replaced 	or PN is initiated in the ICU patien	
		 I2. Based on expert consensus, we suggest that fluid-restricted energy dense EN formulations should be considered for patients with acute respiratory failure (especially if in state of volume overload). Question: Should serum phosphate concentrations be monitored when EN failure? I3. Based on expert consensus, we suggest that serum phosphate concentrations should be monitored closely, and phosphate replaced appropriately when needed. 	or PN is initiated in the ICU patien Ungraded at are the indications for use of spe	
Renal Failure Pulmon.	IY	 I2. Based on expert consensus, we suggest that fluid-restricted energy dense EN formulations should be considered for patients with acute respiratory failure (especially if in state of volume overload). Question: Should serum phosphate concentrations be monitored when EN failure? I3. Based on expert consensus, we suggest that serum phosphate concentrations should be monitored closely, and phosphate replaced appropriately when needed. Question: In adult critically ill patients with acute kidney injury (AKI), wh 	or PN is initiated in the ICU patien Ungraded at are the indications for use of spe	

	standard ICU recommendations for protein (1.2 – 2 g/kg actual body weight		
	per day) and energy (25-30 kcal/kg/day) provision should be followed. If		
	significant electrolyte abnormalities develop, a specialty formulation designed		
	for renal failure (with appropriate electrolyte profile) may be considered.		
	Question: In adult critically ill patients with AKI receiving hemodialysis or	continuous renal replacement th	erapy, what are
	appropriate targets for protein intake to support increased nitrogen losse	s?	
	J2. We recommend that patients receiving hemodialysis or continuous renal	Very Low	Weak
	replacement therapy (CRRT) should receive increased protein, up to a		
	maximum of 2.5 g/kg/day. Protein should not be restricted in patients with		
	renal insufficiency as a means to avoid or delay initiating dialysis therapy.		
	Question: Should energy and protein requirements be determined similar	ly in critically ill patients with he	patic failure as those
	without hepatic failure?		
	K1. Based on expert consensus, we suggest a dry weight or usual weight be	Ungraded	
ilure	used instead of actual weight in predictive equations to determine energy and		
c Fa	protein in patients with cirrhosis and hepatic failure, due to complications of		
Hepatic Failure	ascites, intravascular volume depletion, edema, portal hypertension, and		
He	hypoalbuminemia. We suggest nutrition regimens avoid restricting protein in		
	patients with liver failure, using the same recommendations as other critically		
	ill patients (see section C4).		
	Question: What is the appropriate route of nutrition delivery in patients w	/ith hepatic failure?	
	K2. Based on expert consensus, we suggest EN be used preferentially when	Ungraded	
ilure	providing nutrition therapy in ICU patients with acute and/or chronic liver		
c Fai	disease.		
		nationts with liver disease?	
pati	Question: Is a disease-specific enteral formulation needed for critically ill	patients with liver disease:	
Hepatic Failure	Question: Is a disease-specific enteral formulation needed for critically illK3. Based on expert consensus, we suggest standard enteral formulations	Ungraded	

	no evidence of further benefit of branched chain amino acid formulations		
	(BCAA) on coma grade in the ICU patient with encephalopathy who is already		
	receiving first-line therapy with luminal acting antibiotics and lactulose.		
	Question: Does disease severity in acute pancreatitis influence decisions to provide specialized nutrition therapy?		
	L1a. Based on expert consensus, we suggest the initial nutrition assessment in	Ungraded	
	acute pancreatitis evaluate disease severity to direct nutrition therapy. Since		
	disease severity may change quickly, we suggest frequent reassessment of		
	feeding tolerance and need for specialized nutrition therapy.		
	Question: Do patients with mild acute pancreatitis need specialized nutrit	tion therapy?	1
	L1b. We suggest not providing specialized nutrition therapy to patients with	Very Low	Weak
	mild acute pancreatitis, instead advancing to an oral diet as tolerated. If an		
	unexpected complication develops or there is failure to advance to oral diet		
	within 7 days, then specialized nutrition therapy should be considered.		
	L1c. We suggest that patients with moderate to severe acute pancreatitis		
titis	should have a naso/oroenteric tube placed and EN started at a trophic rate		
crea	and advanced to goal as fluid volume resuscitation is completed (within 24-48		
Acute Pancreatitis	hours of admission) (Very Low/Weak)		
ute	Question: Which is the most appropriate formula to use when initiating early EN in the patient with moderate to severe acute		
Ac	pancreatitis?		
	L2. We suggest using a standard polymeric formula to initiate EN in the	Very Low	Weak
	patient with severe acute pancreatitis. Although promising, the data are		
	currently insufficient to recommend placing a patient with severe acute		
	pancreatitis on an immune-enhancing formulation at this time.		
	Question: Should patients with severe acute pancreatitis receive EN or PN	?	
	L3a. We suggest the use of EN over PN in patients with severe acute	Very Low	Weak
L			l

	pancreatitis that require nutrition therapy.					
	Question: Should patients with severe acute pancreatitis be fed into the stomach or small bowel?					
	L3b. We suggest that EN be provided to the patient with severe acute	Very Low	Weak			
	pancreatitis by either the gastric or jejunal route, as there is no difference in					
	tolerance or clinical outcomes between these two levels of infusion.					
	Question: In the presence of intolerance, what strategies can be used to en	hance tolerance to EN in patients	with severe acute			
	pancreatitis?					
	L4. Based on expert consensus, we suggest in patients with moderate to	Ungraded				
	severe acute pancreatitis who have intolerance to EN, measures should be					
	taken to improve tolerance.					
	Question: Should patients with severe acute pancreatitis receive probiotics?					
	L5. We suggest that use of probiotics be considered in patients with severe	Low	Weak			
	acute pancreatitis who are receiving early EN.					
	Question: When is it appropriate to use PN in patients with severe acute p	ancreatitis?				
	L6. Based on expert consensus, we suggest that for the patient with severe	Ungraded				
	acute pancreatitis, when EN is not feasible, use of PN should be considered					
	after one week from the onset of the pancreatitis episode.					
ES	Question: Does the approach for nutrition therapy for the trauma patient	differ from that of other critically	ill patients?			
Surgical Subsets Trauma	M1a. We suggest that similar to other critically ill patients, early enteral	Very Low	Weak			
gical Sub Trauma	feeding with a high protein polymeric diet be initiated in the immediate post-					
rgic. Tr	trauma period (within 24 to 48 hours of injury) once the patient is					
Su	hemodynamically stable.					
а	Question: Should immune-modulation formulas be used routinely to impro	ove outcomes in a patient with sev	vere trauma?			
Trauma	M1b. We suggest that immune-modulating formulations containing arginine	Very Low	Weak			
Tr	and fish oil be considered in patients with severe trauma.					

	Question: Does the approach for nutrition therapy for the traumatic brain	ı injury (TBI) patient differ from	that of other critically ill	
	patients or trauma patients without head injury?			
s ijury	M2a. We recommend that similar to other critically ill patients, early enteral	Very Low	Weak	
bset in Ir	be initiated in the immediate post-trauma period (within 24 to 48 hours of			
al Su Bra	injury) once the patient is hemodynamically stable.			
Surgical Subsets Traumatic Brain Injury	Question: Should immune-modulating formulas be used in a patient with	ГВІ?		
Su raun	M2b: Based on expert consensus, we suggest the use of either arginine-	Ungraded		
Ē	containing immune-modulating formulations or EPA/DHA supplement with			
	standard enteral formula in patients with TBI.			
	Question: Is it safe to provide EN to patients with an open abdomen?			
	M3a. Based on expert consensus, we suggest early EN (24 - 48 hours post	Ungraded		
S U	injury) in patients treated with an open abdomen (OA) in the absence of			
lbset	bowel injury.			
Surgical Subsets Open Abdomen	Question: Do patients with open abdomen have increased protein or energy needs?			
Irgic	M3b. Based on expert consensus, we suggest providing an additional 15 to 30	Ungraded		
Sı 0	grams protein per liter of exudate lost for patients with open abdomen (with			
	energy provision similar to other patients in a surgical ICU setting). Energy			
	needs should be determined as for other ICU patients (see section A).			
	Question: What mode of nutrition support should be used to feed burn pa	tients?		
	M4a. Based on expert consensus EN should be provided to the burn patient	Ungraded		
sets	whose gastrointestinal tract is functional and volitional intake is inadequate to			
subs	meet estimated energy needs. PN should be reserved for those burn patients			
ical Sut Burns	for whom EN is not feasible or not tolerated.			
Surgical Subsets Burns	Question: How should energy requirements be determined in burn patien	ts?	-	
	M4b. Based on expert consensus, we suggest that IC be used when available	Ungraded		
	to assess energy needs in burn patients with weekly repeated measures.			

	M4c. Based on expert consensus, we suggest that patients with burn injury	Ungraded					
	should receive protein in the range of 1.5 to 2g/kg/day.						
	Question: When should nutrition support be initiated in a patient with bu	Question: When should nutrition support be initiated in a patient with burn injury?					
	M4d. Based on expert consensus, we suggest very early initiation of EN (if	Ungraded					
	possible within 4-6 hours of injury) in a patient with a burn injury.						
	Question: Are patients with severe sepsis candidates for early enteral nut	rition therapy?					
	N1. Based on expert consensus, we suggest that critically ill patients receive	Ungraded					
	EN therapy within 24-48 hours of making the diagnosis of severe						
	sepsis/septic shock as soon as resuscitation is complete and the patient is						
	hemodynamically stable.						
	Question: Should exclusive or supplemental PN be added to EN providing < 60% of goal in the septic patient?						
	N2. We suggest not using PN alone or in conjunction with EN early in the first	Very Low	Weak				
	week after the diagnosis of severe sepsis or septic shock is made, regardless of						
	their degree of nutrition risk.						
Sepsis	Question: What is the optimal micronutrient supplementation in sepsis?						
š	N3. We cannot make a recommendation regarding selenium, zinc and	Moderate	Weak				
	antioxidant supplementation in sepsis at this time due to conflicting studies.						
	Question: What are the protein and energy requirements for septic patients in the acute phase of management?						
	N4. Based on expert consensus, we suggest the provision of trophic feeding	Ungraded					
	(defined as up to 500 kcal/day) for the initial phase of sepsis, advancing as						
	tolerated after 24-48 hours to > 80% of target energy goal over the first week.						
	We suggest delivery of 1.2 to 2 g protein/kg/day.						
	Question: Is there any advantage to providing immune or metabolic-mod	ulating enteral formulation	s (arginine with other agents				
	including EPA, DHA, glutamine and nucleic acid) in sepsis?						
	N5. Based on expert consensus, we suggest immune-modulating formulas	Ungraded					
		-					

should not be used routinely in patients with severe sepsis.Question: Is the use of a nutrition risk indicator to identify patients who we	ill most likely honofit from	nact anorative nutrition		
	ill most likely denefit from	i post-operative nutrition		
therapy more useful than traditional markers of nutrition assessment?	1			
01. Based on expert consensus, we suggest determination of nutrition risk	Ungraded			
(for example NRS-2002 or Nutric Score) be performed on all post-operative				
patients in the ICU and that traditional "visceral protein levels" (serum				
albumin, prealbumin and transferrin concentrations) should not be used as				
markers of nutrition status.				
Question: What is the benefit of providing EN early in the post-operative s	etting compared to provid	ing PN or STD		
02. We suggest that EN be provided when feasible in the post-operative	Very Low	Weak		
period within 24 hours of surgery, as it results in better outcomes than use of				
PN or STD.				
Question: Should immune-modulation formulas be used routinely to improve outcomes in a post-operative patient?				
03. We suggest the routine use of an immune-modulating formula (containing	Low to Moderate	Weak		
both arginine and fish oils) in the surgical ICU for the post-operative patient				
who requires EN therapy.				
Question: Is it appropriate to provide EN to a surgical ICU patient in the presence of difficult post-operative situations such as operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations such as operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations such as operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations such as operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations such as operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient in the presence of difficult post-operative situations are provided as a surgical ICU patient post-operative situation as a surgical ICU patient post-operative situatio				
abdomen, bowel wall edema, fresh intestinal anastomosis, vasopressor therapy, or ileus?				
04. We suggest enteral feeding for many patients in difficult post-operative	Low	Weak		
situations such as prolonged ileus, intestinal anastomosis, open abdomen, and				
need of vasopressors for hemodynamic support. Each case should be				
individualized based on perceived safety and clinical judgment.				
Question: When should PN be used in the post-operative ICU patient?				
Question. When should I'v be used in the post-operative ico patient.				
05. Based on expert consensus, we suggest that for the patient who has	Ungraded			
	Ungraded			

	should not be started in the immediate post-operative period, but should be				
	delayed for 5-7 days.				
	Question: Is advancing to a clear liquid diet required as the first volitional intake in the post-operative ICU patient?				
	O6. Based on expert consensus, we suggest that upon advancing the diet post-	Ungraded			
	operatively, patients be allowed solid food as tolerated and that clear liquids				
	are not required as the first meal.				
	Question: How should the chronically critically ill patient be managed by	nutrition thorony?			
'III	P1. Based on expert consensus, we suggest that the chronically critically ill	Ungraded			
nica	patient (defined as those requiring mechanical ventilation greater than 21				
Chronically Critically Ill	days) be managed with aggressive high protein enteral nutrition therapy, and				
00	when feasible, that a resistance exercise program be used.				
	Question: Do obese ICU patients benefit less from early EN in the first wee	k of hospitalization, due to their nu	trition reserves, than		
	their lean counterparts?				
	Q1. Based on expert consensus, we suggest early EN to start within 24-48	Ungraded			
s	hours of admission to the ICU for the obese patient who cannot sustain				
llnes	volitional intake.				
Obesity in Critical Illness	Question: What additional parameters should be addressed with a nutrition assessment in critical illness when the patient is obese?				
Criti	Q2. Based on expert consensus we suggest that nutrition assessment of the	Ungraded			
/ in (obese ICU patient focus on biomarkers of the metabolic syndrome, an				
esity	evaluation of comorbidities, and a determination of level of inflammation in				
Ob	addition to those described for all ICU patients				
	Question: What factors on assessment identify obese patients in the ICU to	be at high risk?			
	Q3. Based on expert consensus, we suggest that nutrition assessment of the	Ungraded			
	obese ICU patient focus on evidence of central adiposity, metabolic syndrome,				

	sarcopenia, BMI >40, SIRS, or other comorbidities that correlate with higher			
	obesity-related risk for cardiovascular disease and mortality.			
	Question: In adult ICU obese patients, does use of high protein, hypocaloric	c feeding improve clinical outcome	s compared with use of	
	high protein, eucaloric feeding?			
	Q4. Based on expert consensus, we suggest that high protein hypocaloric	Ungraded		
	feeding be implemented in the care of the obese ICU patient to preserve lean			
	body mass, mobilize adipose stores, and minimize the metabolic complications			
	of overfeeding.			
	Question: In adult ICU obese patients, what are the appropriate targets for	energy and protein intake to achie	eve nitrogen equilibrium	
	and meet metabolic requirements?			
	Q5. Based on expert consensus, we suggest for all classes of obesity that the	Ungraded		
	goal of the EN regimen should not exceed 65-70% of target energy			
nt)	requirements as measured by IC. If IC is unavailable, we suggest using the			
(co	weight-based equation 11-14 kcal/kg actual body weight/day for patients			
less	with BMI in the range 30-50 and 22-25 kcal/kg ideal body weight/day for			
ıl Illr	patients with BMI >50. We suggest that protein should be provided in a range			
itica	from 2.0 g/kg ideal body weight/day for patients with BMI 30-40 up to 2.5			
n Cr	g/kg ideal body weight/day for patients with BMI \ge 40.			
Obesity in Critical Illness (cont)	Question: What indications exist, if any, for use of specialty enteral formulations for adult ICU obese patients?			
Obe:	Q6. Based on expert consensus, we suggest that if available an enteral formula	Ungraded		
	with low caloric density and a reduced nonprotein calorie:nitrogen be used in			
	the obese adult ICU patient. While an exaggerated immune response in obese			
	patients implicates potential benefit from immune-modulating formulas, lack			
	of outcomes data precludes a recommendation at this time.			
es	Question: What are appropriate monitors to follow for the obese critically	vill patient receiving early EN?		
al Illnes	Q7. Based on expert consensus, we suggest additional monitoring to assess	Ungraded		

	worsening of hyperglycemia, hyperlipidemia, hypercapnia, fluid overload, and		
	hepatic fat accumulation in the obese critically ill patient receiving EN.		
	Question: Does the obese ICU patient with a history of bariatric surgery of	r other malabsorptive condition rea	quire any additional
	supplementation of micronutrients when starting nutrition therapy?		
	Q8. Based on expert consensus, we suggest that the obese ICU patient with a	Ungraded	
	history of bariatric surgery receive supplemental thiamine prior to initiating		
	dextrose-containing IV fluids or nutrition therapy. In addition, evaluation for		
	and treatment of micronutrient deficiencies such as calcium, thiamin, vitamin		
	B12, fat-soluble vitamins (A,D,E,K), and folate, along with the trace minerals		
	iron, selenium, zinc, and copper should be considered.		
' ns	Question: What is the role of artificial nutrition and hydration (ANH) in en	d-of-life situations?	
Therapy Situations	R1. Based on expert consensus, we suggest ANH is not obligatory in cases	Ungraded	
	of futile care or end-of-life situations. The decision to provide ANH should		
tion	be based on evidence, best practices, clinical experience and judgment,		
Nutrition Therapy End-of-Life Situation	effective communication with the patient, family and/or authorized		
Enc	surrogate decision maker, and respect for patient autonomy and dignity.		

Clinical Practice Guidelines Data Abstraction Form

First Author:	Journal Citation:	
Country of origin of first Author:		
Title of paper:		
Purpose of the paper:		
Purpose of the paper:		

How many centers involved in recruiting patients: How many nations:							
Source of Funding: ☐ Industry ☐ Government or peer reviewed (non-industry)							
	□ None specified	□ Other, please specify					
Abstractor:		Date of Abstraction:					
			dd/mm/vvvv				
Inclusion Criteria			YES	NO			
 Is the study a randomize a. What is the unit of analys patient Clusters (ICU or 							
RCTs (meta-anal) 2. Is target population criti	ysis)						

2.	(critically ill is defined as being treated in ICU environment: i.e. either mechanically ventilated or if unable to determine this, mortality of >5% in the control group. Elective surgery patients are excluded).	
3.	Does the intervention involve any form of enteral and/or parenteral nutrition or nutritional intervention?	
4.	Are the study outcomes clinically important? (Must have one of the following: mortality, length of stay, quality of life, functional status or	
	complications. Studies with only biochemical, metabolic or nutritional outcomes will be excluded.)	
lf	YES to all of the above then study is included	

Canadian Nutrition Support Clinical Practice Guidelines Data Abstraction Form Abstractor initials: _____ Author name:_____ Z A. Patient population 1) Total number of patients randomized: _ 2) Please, describe patient population 3) If critically ill specify illness case mix (i.e., proportion with trauma, burns, etc.) If not all critically ill patients, please 4) specify the quantity and nature of their illness 5) Subgroup of Malnourished patients analyzed? □ Yes □ No Study intervention Β. Experimental Z Specify for both experimental and control: 1) composition

2) amount/dose: intended & received

3) timing of start of intervention: intended & received

4) duration of intervention: intended and actual

Control

A

In your opinion, does the control group represent "usual care" 🗖 Y	YES 🗖NO	🗖 Don't Know	□Not applicable
Explain any issues:			

Experimental and control diets intended to be isonitrogenous Section YES NO Don't Know Not applicable

Experimental and control diets intended to be isocaloric Know DNot applicable

Are the experimental nutrients provided dissociated from standard nutrition (pharmaconutrition concept): Don't Know DNot applicable Comments:______ □ YES □NO □ Don't

□ YES □NO □

Canadian Nutrition Support Clinical Practice Guidelines Data Abstraction Form

Author name:_____

Abstractor initials: _____

C. Study Outcomes¹: if more than one experimental/control group, list all

		Experimental group		Control group	P value
		(n=)		
Mortality	ICU				
	Hospital				
	Other (specify what type)				
	Not specified				

¹ Report results of intention to treat analysis on all patients randomized, if possible.

ICU length of stay ²		
mean and SD		
median and ranges		
Hospital length of stay ²		
mean and SD		
Complications ³		
# Infections/Infectious		
complications		
(specify type)		
# Other complications		
(specify types)		
Length of ventilation ²		
mean and SD		
Nutritional intake		
Nutritional indices		
Other relevant outcomes		

- # patients with complications (preferred) •
- # complications per group ٠
- # complications per patient ٠

² Length of stay and length of ventilation: Specify if reported as mean, median, Standard Error or Standard Deviation (latter is ³ Report all complications that apply and the time over which the complications occurred. Record as follows:

Canadian Nutrition Support Clinical Practice Guidelines Methodology Scoring

This scoring is for Randomized Controlled Trials only, not for meta-analyses

		Score								
	0	1		2						
Randomization		Not concealed or not sure		Concealed* randomization						
Analysis	Other			Intention to treat						
Blinding	Not blinded	Single blind		Double blinded						
Patient selection	Selected patients or unable to tell	Consecutive eligible patients								
Comparability of groups at baseline	No or not sure	Yes								
Extent of follow-up	< 100%	100%								

Treatment protocol	Poorly described	Reproducibly		
		described		
Co-interventions**	Not described	Described but not	Well described and	
		equal or not sure	all equal	
Outcomes	Not described	Partially described	Objectively defined	

Total Score:

(max 14)

Concealed randomization means the person enrolling the patients is unaware of the next treatment *

assignment (e.g. phone in randomization, computer generated).

** Extent to which antibiotics, TPN, ventilation, oxygen, transfusions, etc were applied equally across groups

Abstractor's conclusions:

Additional GRADE and Forest Plots

Should. EN vs. IV fluids/NPO be used in critically ill patient?

Bibliography	0	79; Moore 1986;	Chiarelli 1990; S	Schroeder1991	; Eyer 1993 Carr	ient intake for Stu 1996; Chuntrasakul 1996; N Kompan 2004; Peck 2004].	Watters, 1997	Beier-Holo	gersen 1996		8; Kompan 1999;	
			Quality as	sessment				Su	mmary of ∣	Findings		
	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study even (%)	t rates	Relative effect (95% Cl)	Anticipated absolute effects		
							With delayed nutrient intake	With Early EN		Risk with delayed nutrient intake	Risk difference with Early EN (95% Cl)	
Mortality	(CRITICAL (DUTCOME)		I								
966 (21 studies)	serious ^{1,2,3}	serious ⁴	no serious indirectness	serious ⁵	reporting bias strongly suspected ⁶	VERY LOW ^{1,2,3,4,5,6} due to risk of bias, inconsistency, imprecision, publication bias	66/482 (13.7%)	41/484 (8.5%)	RR 0.7 (0.49 to 1)	137 per 1000	41 fewer per 1000 (from 70 fewer to 0 more)	
Infectious	s Compli	cations (CRI	FICAL OUTCOM	E)	1		1			1	1	
708	serious ^{1,2,3}	serious ⁴	no serious	serious ⁷	undetected		181/350	130/358	RR 0.74	Study pop	oulation	

(13 studies)	indirectness		VERY LOW ^{1,2,3,4,} due to risk of bias, inconsistency, imprecision	(51.7%)	(36.3%)	(0.58 to 0.93)	517 per 1000	134 fewer per 1000 (from 36 fewer to 217 fewer)

¹Allocation concealment is only described well in 2/21 studies.

² Blinding is poorly described, it is a difficult intervention to blind.

³ Intention to treat analysis was more likely to be done in recent studies than in earlier studies. In general, studies prior to 2000 were analyzed per protocol.

⁴ Not all studies specifically looked at the effect of early vs. delayed EN on the outcome of mortality. One study reported primarily on cell-mediated immunity, while another was primarily done to look at nutritional outcomes.

⁵ Only one of the studies has greater than 20% mortality in the control group. In general, the included studies have small number of subjects and small number of events (deaths) ⁶ Small studies with large numbers of deaths are not seen in the published literature.

⁷ Study size is the major source of imprecision. The smallest study included 27 subjects, while the largest included 200 subjects. The number of infections ranged from 0-67. There were various types of infections, blood stream, pneumonia, wound; this contributes to the imprecision of this estimate of the effect.

⁸ Length of stay was rarely a primary outcome. Sample size was not necessarily large enough to detect a meaningful difference in this outcome.

Outcome: Mortality

	Early	EN	Delayed/	None		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Ye	ar M-H, Random, 95% Cl
Sagar 1979	0	15	0	15		Not estimable 19	79
Moore 1986	1	32	2	31	2.3%	0.48 [0.05, 5.07] 19	•
Chiarelli 1990	0	10	0	10		Not estimable 19	90
Schroeder 1991	0	16	0	16		Not estimable 19	91
Eyer 1993	2	19	2	19	3.7%	1.00 [0.16, 6.38] 19	93
Beier-Holgersen 1996	2	30	4	30	4.9%	0.50 [0.10, 2.53] 19	96 +
Carr 1996	0	14	1	14	1.3%	0.33 [0.01, 7.55] 19	96 +
Chuntrasakul 1996	1	21	3	17	2.7%	0.27 [0.03, 2.37] 19	96 +
Watters 1997	0	14	0	14		Not estimable 19	97
Singh 1998	4	21	4	22	8.2%	1.05 [0.30, 3.66] 19	98
Kompan 1999	0	14	1	14	1.3%	0.33 [0.01, 7.55] 19	99 ←
Minard 2000	1	12	4	15	3.0%	0.31 [0.04, 2.44] 20	
Pupelis 2000	1	11	5	18	3.2%	0.33 [0.04, 2.45] 20	
Pupelis 2001	1	30	7	30	3.1%	0.14 [0.02, 1.09] 20	D1 +
Dvorak 2004	0	7	0	10		Not estimable 20	04
Kompan 2004	0	27	1	25	1.3%	0.31 [0.01, 7.26] 20	04 -
Peck 2004	4	14	5	13	11.0%	0.74 [0.25, 2.18] 20)4
Malhotra 2004	12	100	16	100	26.5%	0.75 [0.37, 1.50] 20	04
Nguyen 2008	6	14	6	14	17.5%	1.00 [0.43, 2.35] 20	08
Moses 2009	3	29	3	30	5.6%	1.03 [0.23, 4.71] 20	09
Chourdakis 2012	3	34	2	25	4.4%	1.10 [0.20, 6.12] 20	12
Total (95% CI)		469		467	100.0%	0.70 [0.49, 1.00]	•
Total events	41		66				
Heterogeneity: Tau ² = 0	.00; Chi² =	7.23,	df = 15 (P =	= 0.95);	l² = 0%		
Test for overall effect: Z	= 1.97 (P	= 0.05)				0.1 0.2 0.5 1 2 5 10 Favors Early EN Favors Delayed/None

Outcome: Infections

	Early	EN	Delayed/	None		Risk Ratio		Risk	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Rano	dom, 95% Cl
Sagar 1979	3	15	5	15	3.1%	0.60 [0.17, 2.07]	1979		
Moore 1986	3	32	9	31	3.3%	0.32 [0.10, 1.08]	1986		+
Schroeder 1991	1	16	0	16	0.5%	3.00 [0.13, 68.57]	1991		
Carr 1996	0	14	3	14	0.6%	0.14 [0.01, 2.53]	1996	←	
Beier-Holgersen 1996	2	30	14	30	2.5%	0.14 [0.04, 0.57]	1996	←	
Singh 1998	7	21	12	22	7.6%	0.61 [0.30, 1.25]	1998		+
linard 2000	6	12	7	15	6.6%	1.07 [0.49, 2.34]	2000		•
lalhotra 2004	54	100	67	100	20.9%	0.81 [0.64, 1.01]	2004		1
Compan 2004	9	27	16	25	9.4%	0.52 [0.28, 0.96]	2004		-
Peck 2004	12	14	11	13	17.7%	1.01 [0.74, 1.39]	2004	_	•
lguyen 2008	3	14	6	14	3.5%	0.50 [0.15, 1.61]	2008		
loses 2009	17	29	19	30	14.5%	0.93 [0.61, 1.39]	2009		
Chourdakis 2012	13	34	12	25	9.8%	0.80 [0.44, 1.44]	2012		<u> </u>
otal (95% CI)		358		350	100.0%	0.74 [0.58, 0.93]		•	
Total events	130		181						
leterogeneity: Tau ² = 0	.05; Chi² =	= 19.58	, df = 12 (F	9 = 0.08)	; l² = 39%				+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
Test for overall effect: Z	= 2.54 (P	= 0.01)					0.1 0.2 0.5 Favors Farly FN	Favors Delayed/None
									1 avois Delayed/NOIle

Outcome Hospital LOS

	Ea	rly El	N	Dela	yed/No	one		Mean Difference		Mean Differe	nce
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 9	5% CI
Chiarelli 1990	69.2	10.4	10	89	18.9	10	5.9%	-19.80 [-33.17, -6.43]	1990		
Schroeder 1991	10	4	16	15	10	16	18.2%	-5.00 [-10.28, 0.28]	1991	-	
Carr 1996	9.8	6.6	14	9.3	2.8	14	22.5%	0.50 [-3.26, 4.26]	1996	†	
Watters 1997	17	9	14	16	7	14	16.4%	1.00 [-4.97, 6.97]	1997	+	
Singh 1998	14	6.9	19	13	7	18	20.4%	1.00 [-3.48, 5.48]	1998	†	
Minard 2000	30	14.7	12	21.3	13.7	15	8.1%	8.70 [-2.13, 19.53]	2000		
Pupelis 2000	45	96	11	29	103	18	0.2%	16.00 [-58.04, 90.04]	2000		
Pupelis 2001	35.3	22.9	30	35.8	32.5	30	5.3%	-0.50 [-14.73, 13.73]	2001	-+	
Dvorak 2004	53	34.4	7	37.9	14.6	10	1.7%	15.10 [-11.94, 42.14]	2004		
Peck 2004	60	44	14	60	38	13	1.3%	0.00 [-30.95, 30.95]	2004		_
Total (95% CI)			147			158	100.0%	-0.62 [-4.23, 2.99]		•	
Heterogeneity: Tau ² =	11.41; C	2hi² = 1	15.98, c	lf = 9 (P	= 0.07	'); I ² = 4	4%				<u> </u>
Test for overall effect:	Z = 0.34	(P = 0).74)							-100 -50 0 Favors Early EN Fav	50 100 ors Delayed/None

Does the use of indirect calorimetry or predictive equations lead to improved clinical outcomes in critically ill adult patients?

			Questio			e try vs predi affle 1990; Singer	-	uations fo	or					
		(Quality assessi	nent			Summary of Findings							
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study eve	nt rates (%)	Relative effect	Anticipated absolute effects				
Follow up							Predictive equations	Indirect calorimetry	(95% CI)	Risk with Predictive equations	Risk difference with Indirect calorimetry (95% Cl)			
Hospital	mortali	ty	no serious	serious ²	undetected	LOW ^{1,2}	29/79	19/82	RR 0.63	Study popula	tion			
(2 studies)	Senous	inconsistency	indirectness	Sellous	unuelecieu	due to risk of bias, imprecision	(36.7%)	(23.2%)	(0.39 to 1.02)	367 per 1000				
Hospital	LOS (Be	tter indicated by lo	wer values)	<u> </u>	<u> </u>	ļ	<u> </u>	·						
161 (2 studies)	serious ¹	no serious inconsistency	no serious indirectness	serious ²	undetected	LOW ^{1,2} due to risk of bias, imprecision	79	82	-		The mean hospital los in the intervention groups was 1.45 higher (6.22 lower to 9.12 higher)			

¹ Randomization unclear in one of two studies, ITT analysis used in one.

² Wide confidence interval.

Indirect Calorimetry vs. Predictive Equations, Outcome Mortality

	Indirect calori	metry	Predictive equat	ions		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Saffle	3	26	2	23	7.8%	1.33 [0.24, 7.26]	1990	
Singer	16	56	27	56	92.2%	0.59 [0.36, 0.97]	2011	
Total (95% CI)		82		79	100.0%	0.63 [0.39, 1.02]		-
Total events	19		29					
Heterogeneity: Tau ² =	: 0.00; Chi ² = 0.8	1, df = 1	(P = 0.37); I ² = 0%					
Test for overall effect:	Z = 1.90 (P = 0.0	06)						0.1 0.2 0.5 1 2 5 10 Favours IC Favours PEqu

Indirect Calorimetry vs. Predictive Equations, Outcome Hospital Length of Stay

	Indirect	calorim	etry	Predictive equations				Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
Saffle	48.8	22.9	26	48.5	24.9	23	32.5%	0.30 [-13.15, 13.75]	1990	← →
Singer	33.8	22.9	56	31.8	27.3	56	67.5%	2.00 [-7.33, 11.33]	2011	∎ →
Total (95% CI)			82			79	100.0%	1.45 [-6.22, 9.12]		
Heterogeneity: Tau² =	: 0.00; Chi ^z	= 0.04,	df = 1 (P	= 0.84); l ²	= 0%					
Test for overall effect:	Z = 0.37 (F	P = 0.71)								Favours IC Favours PEqu

Should. EN vs. IV fluids/NPO be used in critically ill patient?

								•	004		
		Quality a	ssessment	No o	f patients	E	Quality	Importance			
Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	A2. EN	IV fluids/NPO	Relative (95% Cl)	Absolute		
(follow-up	13-89 day	s; assessed with: D	Deaths)			<u>I</u>			I		
randomized trials	serious ^{1,2}	no serious inconsistency	no serious indirectness	serious ³	none	20/215 (9.3%)	37/218 (17%)	RR 0.62 (0.37 to 1.05)	•		CRITICAL
							28% ⁴		106 fewer per 1000 (from 176 fewer to 14 more)		
					T	1				1	1
randomized trials	serious ^{1,2}	no serious inconsistency	no serious indirectness	serious⁵	none			RR 0.70 (0.48 to 1.02)	1000 (from 299	LOW	CRITICAL
							67% ⁷		201 fewer per 1000 (from 348 fewer to 13 more)		
gth of Stay (follow-up	6-48 days; measure	ed with: days ; Better in	ndicated by I	ower values)						
randomized trials	serious ^{1,2}	no serious inconsistency	no serious indirectness	serious ³	none	62	65	-	MD 0.48 lower (3.74 lower to 2.79 higher)	LOW	CRITICAL
	randomized trials s complicat randomized trials	Design bias (follow-up 13-89 day randomized serious ^{1,2} trials serious ^{1,2} s complications (follow- randomized serious ^{1,2} trials serious ^{1,2} th of Stay (follow-up randomized serious ^{1,2}	Bibliography: N Quality a Design Risk of bias Inconsistency (follow-up 13-89 days; assessed with: D randomized serious ^{1,2} no serious randomized serious ^{1,2} no serious s complications (follow-up 21 days ⁵ ; assessed with: D randomized serious ^{1,2} no serious inconsistency inconsistency gth of Stay (follow-up 6-48 days; measure randomized randomized serious ^{1,2} no serious	Bibliography: Moore 1986; Chuntrasal Quality assessment Design Risk of bias Inconsistency Indirectness (follow-up 13-89 days; assessed with: Deaths) Indirectness Indirectness randomized serious ^{1,2} no serious indirectness no serious indirectness strials serious ^{1,2} no serious inconsistency no serious indirectness strials serious ^{1,2} no serious inconsistency no serious indirectness gth of Stay (follow-up 6-48 days; measured with: days ; Better in randomized serious ^{1,2} no serious no serious indirectness	Bibliography: Moore 1986; Chuntrasakul 1996; Sin Quality assessment Design Risk of bias Inconsistency Indirectness Imprecision (follow-up 13-89 days; assessed with: Deaths) Indirectness serious ^{1,2} no serious no serious indirectness serious ³ trials serious ^{1,2} no serious no serious indirectness serious ³ s complications (follow-up 21 days ⁵ ; assessed with: infections) no serious indirectness serious ⁶ trials serious ^{1,2} no serious no serious indirectness serious ⁶ trials serious ^{1,2} no serious no serious indirectness serious ⁶ uth of Stay (follow-up 6-48 days; measured with: days ; Better indicated by I no serious indirectness serious ³	Bibliography: Moore 1986; Chuntrasakul 1996; Singh 1998; Pupelis Quality assessment Quality assessment Design Risk of bias Inconsistency Indirectness Imprecision Other considerations (follow-up 13-89 days; assessed with: Deaths) Indirectness Imprecision Other considerations (randomized serious ^{1/2} no serious no serious indirectness serious ³ none statement statement finals serious ^{1/2} no serious none as complications (follow-up 21 days ³ ; assessed with: infections) none none randomized serious ^{1/2} no serious indirectness serious ⁶ none (rials serious ^{1/2} no serious indirectness serious ⁶ none (pt of Stay (follow-up 6-48 days; measured with: days ; Better indicated by lower values) mone mone randomized serious ^{1/2} no serious no serious indirectness serious ³ none	Bibliography: Moore 1986; Chuntrasakul 1996; Singh 1998; Pupelis 2000; I Quality assessment No or Design Risk of bias Inconsistency Indirectness Imprecision Other considerations A2. EN (follow-up 13-89 days; assessed with: Deaths) Indirectness Imprecision Other considerations 20/215 (follow-up 13-89 days; assessed with: Deaths) Inconsistency no serious indirectness serious ³ none 20/215 (rials serious ^{1,2} no serious no serious indirectness serious ⁶ none 64/153 strials serious ^{1,2} no serious no serious indirectness serious ⁶ none 64/153 trials serious ^{1,2} no serious no serious indirectness serious ⁶ none 64/153 trials serious ^{1,2} no serious no serious indirectness serious ⁶ none 64/153 trials serious ^{1,2} no serious indirectness serious ⁶ none 64/153 trials serious ^{1,2} no serious indirectness serious ⁶ none 64/153 trials serious ^{1,2}	Bibliography: Moore 1986; Chuntrasakul 1996; Singh 1998; Pupelis 2000; Pupelis 2001 Quality assessment No of patients Design Risk of bias Inconsistency Indirectness Imprecision Other considerations A2. EN IV fluids/NPO (follow-up 13-89 days; assessed with: Deaths) no serious no serious indirectness serious ³ none 20/215 37/218 randomized serious ^{1,2} no serious indirectness serious ³ none 20/215 37/218 s complications (follow-up 21 days ³ ; assessed with: infections) none 64/153 88/153 trials serious ^{1,2} no serious indirectness serious ⁶ none 64/153 trials serious ^{1,2} no serious indirectness serious ⁶ none 64/153 65/75%) trials serious ^{1,2} no serious indirectness serious ⁶ none 64/153 65/75%) trials serious ^{1,2} no serious indirectness serious ⁶ none 64/153 65/75%) trials serious ^{1,2} no serious indirectness serious ⁶ none 64/153 65/75%) <td>Quality assessment No of patients Relative (95% Cl) Design Risk of bias Inconsistency Indirectness Imprecision considerations Other considerations A2. EN fluids/NPO IV Relative (95% Cl) (follow-up 13-89 days; assessed with: Deaths) more serious indirectness serious^{1,2} no serious indirectness serious³ none 20/215 37/218 RR 0.62 (0.37 to 1.05) s complications (follow-up 21 days³; assessed with: infections) none 64/153 88/153 RR 0.70 (0.48 to 1.02) randomized serious^{1,2} serious^{1,2} no serious indirectness serious⁶ none 64/153 88/153 (57.5%) RR 0.70 (0.48 to 1.02) trials serious^{1,2} no serious indirectness serious⁶ none 64/153 (57.5%) 88/153 (57.5%) RR 0.70 (0.48 to 1.02) gth of Stay (follow-up 6-48 days; measured with: days ; Better indicated by lower values) fone 62 65 -</td> <td>Bibliography: Moore 1986; Chuntrasakul 1996; Singh 1998; Pupelis 2000; Pupelis 2001; Malhotra 2004 Quality assessment Effect Design Risk of bias Inconsistency Indirectness Imprecision Other considerations A2. EN IV fluids/NPO Relative (95%; Cl) Absolute (follow-up 13-89 days; assessed with: Deaths) Inconsistency no serious indirectness serious³ none 20/215 37/218 RR 0.62 (0.37) 64 fewer per 1000 (from 107 fewer to 8 more) inconsistency no serious indirectness serious³ none 20/215 37/218 RR 0.62 (0.37) 64 fewer per 1000 (from 107 fewer to 8 more) a complications (follow-up 21 days²; assessed with: infections) no serious indirectness serious⁶ none 64/153 88/153 RR 0.70 (0.48) 173 fewer per 1000 (from 29 fewer to 12 more) rinals serious¹³ no serious indirectness serious⁶ none 64/153 88/153 RR 0.70 (0.48) 173 fewer per 1000 (from 29 fewer to 12 more) trials no serious indirectness serious⁶ none 64/153 88/153 RR 0.70 (0.48) 173 fewer per 1000 (from 348 fewer to 13 more) 201 fewer per 1000 (from 34</td> <td>Bibliography: Moore 1986; Chuntrasakul 1996; Singh 1998; Pupelis 2000; Pupelis 2001; Malhotra 2004 Quality assessment Considerations Design Risk of bias Inconsistency Indirectness Imprecision Other considerations A2. EN IV Relative (95% Cl) Absolute (follow-up 13-89 days; assessed with: Deaths) Inconsistency Indirectness Imprecision Other considerations A2. EN IV RR 0.62 (0.37) 64 fewer per 1000 (from 107 fewer per 1000 (from 107 fewer per 1000 (from 107 fewer per 1000 (from 176 fewer per 1000 (from 348 fewer to 11 more) IDO (from 348 fewer per 1000 (from 348 fewer to 12 more) IDO (from 348 fewer to 13 more) IDO (from 348 fe</td>	Quality assessment No of patients Relative (95% Cl) Design Risk of bias Inconsistency Indirectness Imprecision considerations Other considerations A2. EN fluids/NPO IV Relative (95% Cl) (follow-up 13-89 days; assessed with: Deaths) more serious indirectness serious ^{1,2} no serious indirectness serious ³ none 20/215 37/218 RR 0.62 (0.37 to 1.05) s complications (follow-up 21 days ³ ; assessed with: infections) none 64/153 88/153 RR 0.70 (0.48 to 1.02) randomized serious ^{1,2} serious ^{1,2} no serious indirectness serious ⁶ none 64/153 88/153 (57.5%) RR 0.70 (0.48 to 1.02) trials serious ^{1,2} no serious indirectness serious ⁶ none 64/153 (57.5%) 88/153 (57.5%) RR 0.70 (0.48 to 1.02) gth of Stay (follow-up 6-48 days; measured with: days ; Better indicated by lower values) fone 62 65 -	Bibliography: Moore 1986; Chuntrasakul 1996; Singh 1998; Pupelis 2000; Pupelis 2001; Malhotra 2004 Quality assessment Effect Design Risk of bias Inconsistency Indirectness Imprecision Other considerations A2. EN IV fluids/NPO Relative (95%; Cl) Absolute (follow-up 13-89 days; assessed with: Deaths) Inconsistency no serious indirectness serious ³ none 20/215 37/218 RR 0.62 (0.37) 64 fewer per 1000 (from 107 fewer to 8 more) inconsistency no serious indirectness serious ³ none 20/215 37/218 RR 0.62 (0.37) 64 fewer per 1000 (from 107 fewer to 8 more) a complications (follow-up 21 days ² ; assessed with: infections) no serious indirectness serious ⁶ none 64/153 88/153 RR 0.70 (0.48) 173 fewer per 1000 (from 29 fewer to 12 more) rinals serious ¹³ no serious indirectness serious ⁶ none 64/153 88/153 RR 0.70 (0.48) 173 fewer per 1000 (from 29 fewer to 12 more) trials no serious indirectness serious ⁶ none 64/153 88/153 RR 0.70 (0.48) 173 fewer per 1000 (from 348 fewer to 13 more) 201 fewer per 1000 (from 34	Bibliography: Moore 1986; Chuntrasakul 1996; Singh 1998; Pupelis 2000; Pupelis 2001; Malhotra 2004 Quality assessment Considerations Design Risk of bias Inconsistency Indirectness Imprecision Other considerations A2. EN IV Relative (95% Cl) Absolute (follow-up 13-89 days; assessed with: Deaths) Inconsistency Indirectness Imprecision Other considerations A2. EN IV RR 0.62 (0.37) 64 fewer per 1000 (from 107 fewer per 1000 (from 107 fewer per 1000 (from 107 fewer per 1000 (from 176 fewer per 1000 (from 348 fewer to 11 more) IDO (from 348 fewer per 1000 (from 348 fewer to 12 more) IDO (from 348 fewer to 13 more) IDO (from 348 fe

3	randomized trials		no serious inconsistency	no seri	ous indirectness	serious ⁸	none	60	66	-		1D 0.06 higher 9 lower to 0.41 higher)	LOW	CRITICAL
Ventilato No of studies	or days (follo Design	Pisk of	3 days; measure Inconsistency			-	r values)	A2. EN	IV fluid:		Relative (95%		Quality	Importance
1	randomized trials	serious ^{1,2}	no serious incon	-	serious directness	serious ⁹	none	21	17	-		33 lower (4.52 o 2.86 higher)	LOW	CRITICAL

¹ Allocation concealment is poorly described.

² Difficult to blind personnel and participants in the included studies, but it is not clear if outcome assessors were blinded.

³ Wide confidence intervals are reported in most studies.

⁴ The highest risk of mortality in a control group was 28% (Pupelis, 2001).

⁵ Only one of the three studies reported length of stay. It was a maximum of 21 days in each group.

⁶ There were relatively few subjects and few events in two of the three included studies.

⁷ The highest risk of infection in a control group was 67% in Malhotra (2004).

⁸ Only three studies reported on this outcome.

⁹ Only one study reported on this outcome

EN vs. IV fluids/NPO, Outcome: Mortality

	EN		STD/N	PO		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Moore 1986	1	32	2	31	5.0%	0.48 [0.05, 5.07]	1986	
Chuntrasakul 1996	1	21	3	17	5.9%	0.27 [0.03, 2.37]	1996	-
Singh 1998	4	21	4	22	17.8%	1.05 [0.30, 3.66]	1998	-
Pupelis 2000	1	11	5	18	6.9%	0.33 [0.04, 2.45]	2000	
Pupelis 2001	1	30	7	30	6.7%	0.14 [0.02, 1.09]	2001	
Malhotra 2004	12	100	16	100	57.6%	0.75 [0.37, 1.50]	2004	
Total (95% CI)		215		218	100.0%	0.62 [0.37, 1.05]		
Total events	20		37					
Heterogeneity: Tau ² = 0	.00; Chi² = 4	4.10, df :	= 5 (P = 0.	54); l² =	0%			
Test for overall effect: Z	. = 1.78 (P =	0.08)						0.01 0.1 1 10 100 Favors EN Favors IVF/NPO

EN vs. IV fluids/NPO, Outcome: Infections

	EN		STD/N	PO		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Yea	r M-H, Random, 95% Cl
Moore 1986	3	32	9	31	8.7%	0.32 [0.10, 1.08] 1980	6
Singh 1998	7	21	12	22	21.3%	0.61 [0.30, 1.25] 1998	8
Malhotra 2004	54	100	67	100	69.9%	0.81 [0.64, 1.01] 2004	4
Total (95% CI)		153		153	100.0%	0.70 [0.48, 1.02]	•
Total events	64		88				
Heterogeneity: Tau ² = Test for overall effect:				9 = 0.26); I² = 26%	5	0.01 0.1 1 10 100 Favors EN Favors IVF/NPO

EN vs. IV fluids/NPO, Outcome ICU LOS

		EN		ST	D/NPO			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Chuntrasakul 1996	8.1	6.3	21	8.35	48	17	12.2%	-0.25 [-23.23, 22.73]	
Pupelis 2000	7	41	11	6	34	18	7.7%	1.00 [-27.87, 29.87]	← □
Pupelis 2001	13.9	14.6	30	16	20.4	30	80.0%	-2.10 [-11.08, 6.88]	←
Total (95% CI)			62			65	100.0%	-1.63 [-9.67, 6.40]	
Heterogeneity: Tau ² = 0	.00; Chi² =	0.06, d	lf = 2 (P	= 0.97);	l² = 0%				
Test for overall effect: Z	= 0.40 (P	= 0.69)							-10 -5 0 5 10 Favors EN Favors IVF/NPO

EN vs. IV fluids/NPO, Outcome Hospital LOS

		EN		ST	D/NPO			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl
Singh 1998	14	6.9	19	13	7	18	90.7%	1.00 [-3.48, 5.48]	1998	
Pupelis 2000	45	96	11	29	103	18	0.3%	16.00 [-58.04, 90.04]	2000	
Pupelis 2001	35.3	22.9	30	35.8	32.5	30	9.0%	-0.50 [-14.73, 13.73]	2001	ب
Total (95% CI)			60			66	100.0%	0.91 [-3.35, 5.18]		
Heterogeneity: $Tau^2 = 0$. Test for overall effect: Z	-	-	2 (P = 0	0.91); l² =	0%					-10 -5 0 5 10 Favors EN Favors IVF/NPO

Should EN vs. PN be used in critically ill patients?

		Qua	ality assessr	nent					Summa	iry of	Findings	
Participants (studies) Follow up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study event rates (%)		Relative effect (95% CI)	Anticipated absolute effects		
							With PN	With EN		Risk with PN	Risk difference with EN (95% Cl	
Mortality	I (CRITICAL	OUTCOME)								<u> </u>		
618 (12 studies)	serious ^{1,2,3}	serious ^{4,5}	no serious indirectness	serious ⁶	undetected	VERY LOW ^{1,2,3,4,5,6} due to risk of bias, inconsistency, imprecision	47/304 (15.5%)	60/314 (19.1%)	RR 1.25 (0.86 to 1.81)	155 per 1000	39 more per 1000 (from 22 fewer to 125 more)	
Infection	S (CRITICA	L OUTCOME)		1	1	1	1		<u> </u>	1	<u>.</u>	
496 (9 studies)	serious ^{1,2,4}	serious ^{4,7}	no serious indirectness	no serious imprecision	undetected	LOW ^{1,2,4,7} due to risk of bias, inconsistency		53/249 (21.3%)	RR 0.56 (0.39 to 0.79)	409 per 1000	180 fewer per 1000 (from 86 more to 249 more)	

355 (6 studies)	serious ^{1,2}	serious ⁴	no serious indirectness	serious ⁸	undetected	VERY LOW ^{1,2,4,8} due to risk of bias, inconsistency, imprecision	171	184	-	The mean Hospital length of stay in the intervention groups was 0.35 lower (1.76 lower to 1.05 higher)
ICU LOS	(CRITICAL	OUTCOME; Be	tter indicated by	/ lower values)					
180 (3 studies)	serious ^{1,2}	serious ⁸	no serious indirectness	serious ⁸	undetected	VERY LOW ^{1,2,8} due to risk of bias, inconsistency, imprecision	91	89	-	The mean ICU length of stay in the intervention groups was 0.82 lower (1.29 to 0.34 lower)

¹ 20% of the studies blinded participants, personnel, or outcome assessors.

 2 ~ 30% of the studies included all subjects randomized into treatment groups in their analyses.

³ Only 75% of the included studies reported on Mortality as an outcome

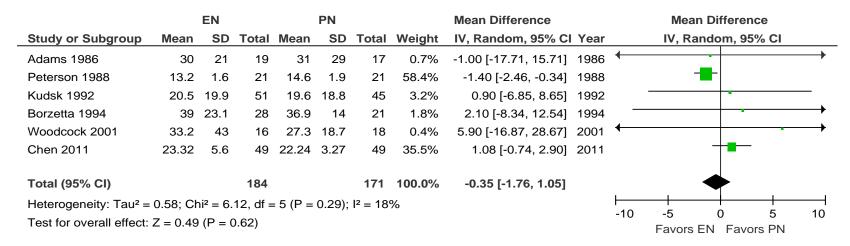
⁴ The subjects groups varied greatly between studies, brain injury, trauma with abdominal injury, subjects in ICU status post sepsis, pancreatitis, and elderly patients

⁵ Sensitivity analysis was done to differentiate effects if PN kcals> > than EN or PN kcals were equivalent to EN.

⁶ Small number of events and small sample sizes decrease the precision of the findings for this outcome.

⁷ Infection type is not noted. Blood stream infection, pneumonia and or wound infection are included in this outcome

⁸ Small sample size. Length of stay variables are confounded by early deaths that appear as shorter LOS, but not a desirable outcome.


	EN		PN			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI
Adams 1986	15	23	17	23	25.0%	0.88 [0.60, 1.30]	1986	
Young 1987	5	28	4	23	6.9%	1.03 [0.31, 3.39]	1987	
Peterson 1988	2	21	8	25	5.1%	0.30 [0.07, 1.25]	1988	←
Moore 1989	5	29	11	30	10.2%	0.47 [0.19, 1.19]	1989	
Kudsk 1992	9	54	19	45	15.0%	0.39 [0.20, 0.78]	1992	-
Kalfarentzos 1997	5	18	10	20	11.2%	0.56 [0.23, 1.32]	1997	
Woodcock 2001	6	16	11	21	13.5%	0.72 [0.34, 1.52]	2001	
Casas 2007	1	11	3	11	2.6%	0.33 [0.04, 2.73]	2007	·
Chen 2011	5	49	18	49	10.5%	0.28 [0.11, 0.69]	2011	
Total (95% CI)		249		247	100.0%	0.56 [0.39, 0.79]		•
Total events	53		101					
Heterogeneity: Tau² =	0.09; Chi	i ^z = 12.1	10, df = 8	(P = 0.	15); I² = 34	4%		
Test for overall effect:	Z = 3.26 ((P = 0.0)01)	-				0.1 0.2 0.5 1 2 5 10 Favors EN Favors PN

EN vs. PN, Outcome: Infectious Complications

EN vs. PN, Outcome: ICU LOS

		EN			PN			Mean Difference			M	ean Differei	nce	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV,	Random, 9	5% CI	
Adams 1986	13	11	19	10	10	17	0.5%	3.00 [-3.86, 9.86]	1986				-	
Peterson 1988	3.7	0.8	21	4.6	1	25	82.7%	-0.90 [-1.42, -0.38]	1988					
Chen 2011	9.09	2.75	49	9.6	3.06	49	16.9%	-0.51 [-1.66, 0.64]	2011					
Total (95% CI)			89			91	100.0%	-0.82 [-1.29, -0.34]				•		
Heterogeneity: Tau ² =	0.00; Cł	ni² = 1.	56, df =	= 2 (P =	0.46);	$I^2 = 0\%$	b			+				+
Test for overall effect:	Z = 3.38	(P = 0	0.0007)							-10	-5 Favo	rs EN Favo	ors PN	10

EN vs. PN, Outcome: Hospital LOS

EN vs PN, Outcome: Mortality

	EN		PN			Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Yea	ır	M-H, Rand	lom, 95% Cl	
Rapp 1983	9	18	3	20	9.7%	3.33 [1.07, 10.43] 198	3			
Adams 1986	1	23	3	23	2.8%	0.33 [0.04, 2.97] 198	6 🔶 🚽			_
Young 1987	10	28	10	23	23.4%	0.82 [0.42, 1.62] 198	7		<u> </u>	
Cerra 1988	1	12	1	15	1.9%	1.25 [0.09, 17.98] 198	8 🔶 🚽			
Kudsk 1992	1	51	1	45	1.8%	0.88 [0.06, 13.70] 199	2 +			
Borzetta 1994	5	28	1	21	3.1%	3.75 [0.47, 29.75] 199	4			→
Dunham 1994	5	28	1	21	3.1%	3.75 [0.47, 29.75] 199	4			
Hadfield 1995	1	18	2	20	2.5%	0.56 [0.05, 5.62] 199	5 🔶 🚽	•		
Kalfarentzos 1997	7	31	8	35	15.0%	0.99 [0.40, 2.41] 199	7		•	
Woodcock 2001	9	17	5	21	15.2%	2.22 [0.92, 5.40] 200	1	-	-	
Casas 2007	0	11	2	11	1.6%	0.20 [0.01, 3.74] 200	7 +			
Chen 2011	11	49	10	49	19.7%	1.10 [0.51, 2.35] 201	1		•	
Total (95% CI)		314		304	100.0%	1.25 [0.86, 1.81]		-		
Total events	60		47							
Heterogeneity: Tau ² =	0.03; Chi ²	² = 11.9	1, df = 11	(P = 0.	.37); l ² = 8	%	— <u>+</u>		+	
Test for overall effect:	Z = 1.17 (P = 0.2	4)				0.2	0.5	1 2 Favors PN	5

Favors EN Favors PN

Should EN be started early within the first 24-48 hours following admission?

			Quality as	sessment					Summary	of Findi	ngs
Participants (studies) Follow up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study ev rates (%		Relative effect (95% CI)	Anticipa	ted absolute effects
							With Delayed	With Early		Risk with Delayed	Risk difference with Early (95% CI)
Mortality	(CRITICAL	LOUTCOME)		-	<u> </u>		. <u>.</u>	·	<u></u>	. <u>.</u>	·
355 (10 studies)	serious ^{1,2}	no serious inconsistency ³	no serious indirectness	serious ⁴	reporting bias strongly suspected ⁵	VERY LOW ^{1,2,3,4,5} due to risk of bias, imprecision, publication bias	24/175 (13.7%)	19/180 (10.6%)	RR 0.83 (0.49 to 1.39)	137 per 1000	23 fewer per 1000 (from 70 fewer to 53 more)
Infection	S (CRITICA	AL OUTCOME)	. _	_	<u> </u>		1		<u> </u>	<u> </u>	-
272 (7 studies)	serious ^{1,2}	serious ⁶	no serious indirectness	serious ⁴	reporting bias strongly suspected ⁵	VERY LOW ^{1,2,4,5,6} due to risk of bias, inconsistency, imprecision, publication bias	78/132 (59.1%)	63/140 (45%)	OR 0.82 (0.64 to 1.05)	591 per 1000	49 fewer per 1000 (from 111 fewer to 12 more)
ICU LOS	(CRITICAL	OUTCOME; rang	e of scores: 14-4	0; Better indica	ted by lower valu	es)	,		1	,	1
231 (6 studies)	serious ^{1,2}	serious ⁷	no serious indirectness	serious ^{4,8}	undetected	VERY LOW ^{1,2,4,7,8} due to risk of bias, inconsistency, imprecision	111	120	-		The mean icu los in the intervention groups was 0.06 lower (3.92 lower to 3.81 higher)

Ventilato	r days (C	CRITICAL OUTCC	ME; range of sco	ores: 8.1-31.8;	Better indicated b	y lower values)				
189 (6 studies)	serious ^{1,2}	serious ⁷	no serious indirectness	serious	reporting bias strongly suspected ⁵	VERY LOW ^{1,2,5,7} due to risk of bias, inconsistency, imprecision, publication bias	96	93	-	The mean ventilator days in the intervention groups was 2.11 higher (0.95 lower to 5.16 higher)

¹Blinding is difficult in this type of study, only two are reported to have blinded participants and or outcome assessors.

² Allocation concealment is poorly described, as it was not required to be reported when most of the studies were published. It is unclear if those who enrolled subjects knew to which group subjects would be assigned.

³ The studies included subjects from many sub-populations of patients in ICU. Head injury, trauma, burn and post-op peritonitis are the various subject pools. Not downgrading for this measure of quality of evidence since this is the makeup of patients in ICUs

⁴ Small sample sizes [range 7-34 subjects] and small numbers of deaths in each group.

⁵ Studies that favored delayed EN are not included in the studies found and selected for this outcome.

⁶ Various infections are counted, bacteremia, pneumonia, wound infection

⁷ In measuring ICU LOS or ventilator days, it is uncertain if some subjects had decreased utilization d/t early mortality. Difficult to interpret.

⁸ The outcome hospital length of stay is not a primary outcome. Do not know if enough subjects were enrolled to detect a difference in this outcome.

Early EN vs Standard, Outcome: Mortality

	Favors Ea	rly EN	Favors Delay	/ed EN		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Chiarelli 1990	0	10	0	10		Not estimable	1990	
Eyer 1993	2	19	2	19	7.8%	1.00 [0.16, 6.38]	1993	
Kompan 1999	0	14	1	14	2.8%	0.33 [0.01, 7.55]	1999	
Minard 2000	1	12	4	15	6.3%	0.31 [0.04, 2.44]	2000	
Dvorak 2004	0	7	0	10		Not estimable	2004	
Peck 2004	4	14	5	13	23.1%	0.74 [0.25, 2.18]	2004	
Kompan 2004	0	27	1	25	2.7%	0.31 [0.01, 7.26]	2004	
Nguyen 2008	6	14	6	14	36.6%	1.00 [0.43, 2.35]	2008	-
Moses 2009	3	29	3	30	11.6%	1.03 [0.23, 4.71]	2009	
Chourdakis 2012	3	34	2	25	9.1%	1.10 [0.20, 6.12]	2012	
Total (95% CI)		180		175	100.0%	0.83 [0.49, 1.39]		•
Total events	19		24					
Heterogeneity: Tau ² =	0.00; Chi ² = 2	2.07, df =	7 (P = 0.96); l	² = 0%				
Test for overall effect:	Z = 0.72 (P =	0.47)						0.01 0.1 1 10 100 Favors Early EN Favors Delayed EN

Early EN vs Standard, Outcome: Infectious Complication

	Favors Ea	rly EN	Favors Dela	yed EN		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI
Chiarelli 1990	3	10	7	10	5.3%	0.43 [0.15, 1.20]	1990	_
Minard 2000	6	12	7	15	8.7%	1.07 [0.49, 2.34]	2000	
Kompan 2004	9	27	16	25	13.2%	0.52 [0.28, 0.96]	2004	
Peck 2004	12	14	11	13	31.4%	1.01 [0.74, 1.39]	2004	- + -
Nguyen 2008	3	14	6	14	4.2%	0.50 [0.15, 1.61]	2008	
Moses 2009	17	29	19	30	23.3%	0.93 [0.61, 1.39]	2009	
Chourdakis 2012	13	34	12	25	13.8%	0.80 [0.44, 1.44]	2012	
Total (95% CI)		140		132	100.0%	0.82 [0.64, 1.05]		•
Total events	63		78					
Heterogeneity: Tau ² =	0.03; Chi ² = 7	7.80, df =	6 (P = 0.25); I	l² = 23%				
Test for overall effect:	Z = 1.58 (P =	0.11)						0.1 0.2 0.5 1 2 5 10 Favors Early EN Favors Delayed EN

Early EN vs Standard, Outcome: ICU LOS

	Favor	s Early	y EN	Favors	Delaye	d EN		Mean Difference			Mear	n Differ	rence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV, Ra	ndom,	95% CI	
Eyer 1993	11.8	7.9	19	9.9	6.7	19	21.1%	1.90 [-2.76, 6.56]	1993		_			
Minard 2000	18.5	8.8	12	11.3	6.1	15	18.2%	7.20 [1.34, 13.06]	2000			-		■ →→
Kompan 2004	15.9	9.7	27	20.6	18.5	25	13.6%	-4.70 [-12.82, 3.42]	2004	←	•			
Peck 2004	40	32	14	37	33	13	2.6%	3.00 [-21.55, 27.55]	2004	←			•	
Nguyen 2008	11.3	3	14	15.9	7.1	14	22.6%	-4.60 [-8.64, -0.56]	2008	_	-			
Chourdakis 2012	24.8	7.6	34	28.5	8.9	25	21.9%	-3.70 [-8.02, 0.62]	2012	_	•	-		
Total (95% CI)			120			111	100.0%	-0.70 [-4.83, 3.43]						
Heterogeneity: Tau ² =	15.41; Cł	ni² = 14	1.43, df =	= 5 (P = 0	0.01); l ² =	65%				+	<u> </u>	<u> </u>	<u> </u>	+
Test for overall effect:	Z = 0.33 (P = 0.	74)							-10 Favo	-5 ors Early	0 EN Fa	5 avors Del	10 aved EN

Favors Early EN Favors Delayed EN

Early EN vs Standard, Outcome: Hospital LOS

	Favor	s Early	/ EN	Favors	Delayed	I EN		Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI	
Chiarelli 1990	69.2	10.4	10	89	18.9	10	30.3%	-19.80 [-33.17, -6.43]	1990		
Minard 2000	30	14.7	12	21.3	13.7	15	32.1%	8.70 [-2.13, 19.53]	2000	+∎-	
Dvorak 2004	53	34.4	7	37.9	14.6	10	20.0%	15.10 [-11.94, 42.14]	2004		
Peck 2004	60	44	14	60	38	13	17.6%	0.00 [-30.95, 30.95]	2004		
Total (95% CI)			43			48	100.0%	-0.18 [-18.24, 17.88]		•	
Heterogeneity: Tau ² =	233.93; (Chi² = 1	2.04, df	= 3 (P =	0.007); l ²	² = 75%					-
Test for overall effect:	Z = 0.02	(P = 0.9	98)							-100 -50 0 50 10 Favors Early EN Favors Delayed	00 EN

Early EN vs Standard, Outcome: Ventilator Days

	Favors	s Early	/ EN	Favors Delayed EN				Mean Difference			Mea	n Differ	ence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year		IV, Ra	andom,	95% CI	
Eyer 1993	10.2	8.1	19	8.1	6.8	19	41.3%	2.10 [-2.66, 6.86]	1993		-			-
Minard 2000	15.1	7.5	12	10.4	6.1	15	34.0%	4.70 [-0.55, 9.95]	2000			-		
Kompan 2004	32	37	14	23	26	13	1.6%	9.00 [-14.99, 32.99]	2004	◀				
Peck 2004	31.8	35	7	20.9	14.4	10	1.2%	10.90 [-16.52, 38.32]	2004	◀				
Dvorak 2004	12.9	8.1	27	15.6	16.1	25	19.0%	-2.70 [-9.71, 4.31]	2004		-			
Nguyen 2008	9.2	34	14	13.7	7.1	14	2.8%	-4.50 [-22.69, 13.69]	2008	•				
Total (95% CI)			93			96	100.0%	2.11 [-0.95, 5.16]						
Heterogeneity: Tau ² =	0.00; Chi ²	$^{2} = 3.9$	6, df = 5	(P = 0.55	5); I ² = 0%	6				H	<u> </u>		<u> </u>	I
Test for overall effect:	Z = 1.35 (P = 0.	18)							-10	-5 ors Early		5 vors Dela	10

Does the level of infusion of EN (gastric versus small bowel) affect tolerance or risk of aspiration?

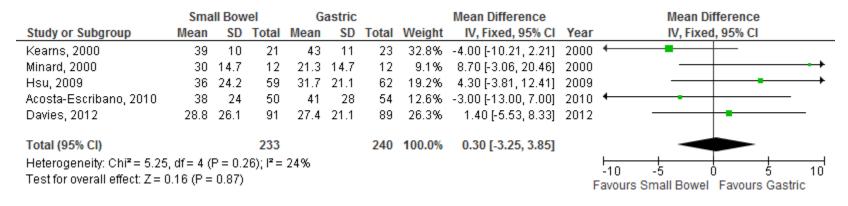
Bibliograpl	ny: Monteca	lvo 1992; Kortbeel	•	99; Kearns 2000	; Minard 2000;	Gastric for Cri Day 2001; Esparza 2 cribano 2010; Davies	001; Boivi		vmann 2002	2; Davies 2	2002; Montejo 2002; Hsu	
			Quality asses	sment					Summar	y of Find	ings	
Participants Risk of (studies) bias Follow up		Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study ev (%)	vent rates	Relative effect (95% CI)	Anticipated absolute effects		
							With Gastric	With Small Bowel		Risk with Gastric	Risk difference with Small Bowel (95% Cl)	
Pneumor	nia	<u> </u>		<u> </u>								
976	no serious	no serious	no serious	no serious	undetected	HIGH		110/482	RR 0.75	Study po	opulation	
(12 studies)	risk of bias	inconsistency	indirectness	imprecision			(31%)	(22.8%)	(0.6 to 0.93)	310 per 1000	77 fewer per 1000 (from 22 fewer to 124 fewer)	
Mortality	ł	ł	1	ł	-1	1	1		1		1	
1186	no serious	no serious	no serious	serious ¹	undetected	MODERATE ¹		147/579	RR 1.03	Study po	opulation	
(14 studies)	risk of bias	inconsistency	indirectness			due to imprecision	(24.2%)	(25.4%)	(0.86 to 1.24)	242 per 1000	7 more per 1000 (from 34 fewer to 58 more)	
ICU LOS	(Better indica	ated by lower valu	es)	1			1			1		
895 (10 studies)	no serious risk of bias	serious ²	no serious indirectness	serious ¹	undetected	LOW ^{1,2} due to inconsistency, imprecision	458	437	-		The mean icu los in the intervention groups was 0.48 higher (1.25 lower to 2.21 higher)	
Hospital	LOS (Bette	er indicated by low	er values)	·	·	•			·	ı	·	

473 (5 studies)	risk of bias	no serious inconsistency	no serious indirectness	serious ^{1,3}	undetected	MODERATE ^{1,3} due to imprecision	240	233	-		The mean hospital los in the intervention groups was 0.3 higher (3.25 lower to 3.85 higher)
576 (6 studies)	no serious	ation (Better in no serious inconsistency	no serious indirectness	serious ¹	undetected	MODERATE ¹ due to imprecision	294	282	-		The mean duration of ventilation in the intervention groups was 0.36 lower (2.02 lower to 1.3 higher)
Nutrition 689 (7 studies)	no serious risk of bias	ncy (Better indic	no serious indirectness	no serious imprecision	undetected	MODERATE ² due to inconsistency	349	340	-		The mean nutritional efficiency in the intervention groups was 11.06 higher (5.82 to 16.3 higher)
Pneumo 569 (6 studies)	no serious	according to	no serious	no serious	undetected	HIGH	95/291 (32.6%)	66/278 (23.7%)	RR 0.72 (0.55 to		opulation
(o studies)	TISK OF DIAS						(32.0%)	(23.170)	0.93)	326 per 1000	91 fewer per 1000 (from 23 fewer to 147 fewer)

¹ Combined effect size crosses the line of no effect. ² Heterogeneitc with I2 > 50%³ Wide confidence intervals

	Small B	owel	Gastric		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Montecalvo, 1992	5	19	5	19	3.1%	1.00 [0.35, 2.90]	
Kortbeek, 1999	4	37	3	43	1.7%	1.55 [0.37, 6.48]	
Taylor, 1999	5	41	6	41	2.9%	0.83 [0.28, 2.52]	
Kearns, 2000	5	21	6	23	3.3%	0.91 [0.33, 2.55]	
Minard, 2000	1	12	4	15	0.8%	0.31 [0.04, 2.44]	←
Esparaza, 2001	10	27	11	27	7.8%	0.91 [0.47, 1.78]	
Boivin, 2001	18	39	18	39	15.3%	1.00 [0.62, 1.62]	
Davies, 2002	4	34	5	39	2.3%	0.92 [0.27, 3.14]	
Montejo, 2002	19	50	22	51	15.6%	0.88 [0.55, 1.42]	
Hsu, 2009	26	59	24	62	19.4%	1.14 [0.74, 1.74]	
White, 2010	11	51	5	57	3.6%	2.46 [0.92, 6.60]	
Acosta-Escribano, 2010	6	50	9	54	3.8%	0.72 [0.28, 1.88]	
Davies, 2012	13	91	12	89	6.6%	1.06 [0.51, 2.19]	_
Huang, 2012	20	48	17	48	13.6%	1.18 [0.71, 1.96]	- -
Total (95% CI)		579		607	100.0%	1.03 [0.86, 1.24]	◆
Total events	147		147				
Heterogeneity: Tau ² = 0.00); Chi ² = 6.	41.df=	13 (P = 0	.93); I ^z	= 0%		
Test for overall effect: Z = I	•	•					0.1 0.2 0.5 1 2 5 10
	· -	· ·					Favours small bowel Favours gastric

Small Bowel vs. Gastric Feedings; Outcome: Mortality


	Small Bo	owel	Gastr	ic		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Montecalvo, 1992	4	19	6	19	3.9%	0.67 [0.22, 1.99]	
Kortbeek, 1999	10	37	18	43	10.4%	0.65 [0.34, 1.22]	
Taylor, 1999	18	41	26	41	20.6%	0.69 [0.46, 1.05]	
Kearns, 2000	4	21	3	23	2.5%	1.46 [0.37, 5.78]	
Minard, 2000	6	12	7	15	7.2%	1.07 [0.49, 2.34]	_
Day, 2001	0	14	2	11	0.6%	0.16 [0.01, 3.03]	←
Davies, 2002	2	31	1	35	0.9%	2.26 [0.22, 23.71]	
Montejo, 2002	16	50	20	51	14.2%	0.82 [0.48, 1.39]	
Hsu, 2009	5	59	15	62	5.1%	0.35 [0.14, 0.90]	-
White, 2010	11	57	5	51	4.7%	1.97 [0.73, 5.28]	
Acosta-Escribano, 2010	16	50	31	54	17.5%	0.56 [0.35, 0.89]	-
Davies, 2012	18	91	19	89	12.4%	0.93 [0.52, 1.65]	
Total (95% CI)		482		494	100.0%	0.75 [0.60, 0.93]	◆
Total events	110		153				
Heterogeneity: Tau ² = 0.02	; Chi ² = 12	.33, df=	= 11 (P =	0.34);1			
Test for overall effect: Z = 2	.56 (P = 0	.01)				1	Favours Small bowel Favours Gastric

Small Bowel vs. Gastric Feedings, Outcome: Pneumonia

	Sma	all Bow	/el	G	astric			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
Montecalvo, 1992	11.7	8.2	19	12.3	10.8	19	5.4%	-0.60 [-6.70, 5.50]
Kearns, 2000	17	2	21	16	2	23	15.4%	1.00 [-0.18, 2.18] +
Minard, 2000	18.5	8.8	12	11.3	6.1	15	5.7%	7.20 [1.34, 13.06]
Davies, 2002	13.9	1.8	34	10.4	1.2	39	16.2%	3.50 [2.79, 4.21] –
Montejo, 2002	15	10	50	18	16	51	6.7%	-3.00 [-8.19, 2.19]
Hsu, 2009	18.2	11.8	59	18.2	11.2	62	8.6%	0.00 [-4.10, 4.10]
White, 2010	7.12	6	51	9.1	10.55	55	10.5%	-1.98 [-5.22, 1.26]
Acosta-Escribano, 2010	16	9	50	18	7	54	10.8%	-2.00 [-5.12, 1.12]
Davies, 2012	12.5	8.6	91	12.7	9.8	89	11.9%	-0.20 [-2.90, 2.50]
Huang, 2012	17.2	11.4	50	16.9	9.1	51	8.8%	0.30 [-3.73, 4.33	1
Total (95% CI)			437			458	100.0%	0.48 [-1.25, 2.21	•
Heterogeneity: Tau ^z = 4.69	; Chi ^z =	42.54,	df = 9 ((P < 0.0)	0001); P	² = 79%	5		
Test for overall effect: Z = 0	-			-					-10 -5 0 5 10 Favours Small Bowel Favours Gastric

Small Bowel vs. Gastric Feedings, Outcome: ICU LOS

Small Bowel vs. Gastric Feedings, Outcome: Hospital LOS

Small Bowel vs. Gastric Feedings, Outcome: Days of Ventilation

	Sma	II Bow	/el	G	astric			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
Montecalvo, 1992	10.2	7.1	19	11.4	10.8	19	6.9%	-1.20 [-7.01, 4.61]
Minard, 2000	15.1	7.5	12	10.4	6.1	15	8.2%	4.70 [-0.55, 9.95	j <u>+</u>
Hsu, 2009	28.5	24.9	59	23.8	18.2	62	4.1%	4.70 [-3.10, 12.50	ı] — — →
White, 2010	5.73	5.29	51	7.68	9.81	55	18.5%	-1.95 [-4.92, 1.02]
Acosta-Escribano, 2010	7.3	4	50	8.9	4	54	32.8%	-1.60 [-3.14, -0.08	i] — — —
Davies, 2012	9.8	6.2	91	9.7	6.3	89	29.4%	0.10 [-1.73, 1.93	ıj — <mark>–</mark> –
Total (95% CI)			282			294	100.0%	-0.36 [-2.02, 1.30	1 +
Heterogeneity: Tau ² = 1.53	7; Chi² =	8.67, 0	#f = 5 (F	^o = 0.12)); l ² = 4	2%			
Test for overall effect: Z = I	0.43 (P =	0.67)							Favours Small Bowel Favours Gastric

Small Bowel vs. Gastric Feedings, Outcome: Nutritional Efficiency

	Sma	II Bow	/el	G	astric			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Montecalvo, 1992	61	17	19	46.9	25.9	19	8.2%	14.10 [0.17, 28.03]	1992	
Kearns, 2000	69	7	21	47	7	23	17.4%	22.00 [17.86, 26.14]	2000	
Montejo, 2002	80	28	50	75	30	51	10.2%	5.00 [-6.31, 16.31]	2002	- + •
Hsu, 2009	95	5	59	83	6	62	19.0%	12.00 [10.04, 13.96]	2009	+
Acosta-Escribano, 2010	92	7	50	84	15	54	17.1%	8.00 [3.55, 12.45]	2010	
Davies, 2012	72	21	91	71	19	89	15.7%	1.00 [-4.85, 6.85]	2012	
Huang, 2012	90.4	20.5	50	76.2	24.9	51	12.5%	14.20 [5.31, 23.09]	2012	
Total (95% CI)			340			349	100.0%	11.06 [5.82, 16.30]		◆
Heterogeneity: Tau² = 36.7	²0; Chi <mark>²</mark> =	= 40.88	3, df = 6	6 (P < 0.	00001); l² = 8	5%			-50 -25 0 25 50
Test for overall effect: Z = 4	4.14 (P <	0.000	1)							Favours Gastric Favours Small Bowel

Small Bowel vs. Gastric Feedings, Outcome: Pneumonia, VAP by Micro

	Small B	owel	Gast	ric		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Montecalvo, 1992	4	19	6	19	5.7%	0.67 [0.22, 1.99]	
Kortbeek, 1999	10	37	18	43	16.8%	0.65 [0.34, 1.22]	
Davies, 2002	2	31	1	35	1.2%	2.26 [0.22, 23.71]	
Montejo, 2002	16	50	20	51	24.3%	0.82 [0.48, 1.39]	
Acosta-Escribano, 2010	16	50	31	54	31.4%	0.56 [0.35, 0.89]	
Davies, 2012	18	91	19	89	20.6%	0.93 [0.52, 1.65]	
Total (95% CI)		278		291	100.0%	0.72 [0.55, 0.93]	•
Total events	66		95				
Heterogeneity: Tau ² = 0.00	0; Chi² = 3.	18, df=	5 (P = 0.)	67); I ² =	:0%		
Test for overall effect: Z = :	2.52 (P = 0	.01)					0.01 0.1 1 10 100 Favours Small bowel Favours Gastric

Does the use of trophic EN improve outcomes in patients diagnosed with ALI/ARDS? In patients at moderate risk with ALI/ARDS, trophic feeds should be considered.

		Question: 1	•	is versus fi g raphy: 3.3a Tro		•	•	nts with Acut 1; Rice 2012	e Lung I	njury		
		Q	uality assessn		Summary of Findings							
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of	Study event rates (%)		Relative effect	Anticipated absolute effects		
Follow up						evidence	With Control	With Trophic feeds versus full feeds in critically ill patients	(95% CI)	Risk with Control	Risk difference with Trophic feeds versus full feeds in critically ill patients (95% Cl)	
Mortality			<u> </u>	ļ		<u> </u>			1	1	·	
1190	no serious	no serious no serious	no serious	undetected	$\oplus \oplus \oplus \oplus$	129/584	34 140/606	RR 1.04	Study population			
(2 studies)	risk of bias	inconsistency	indirectness	imprecision		HIGH	(22.1%)	(23.1%)	(0.85 to 1.29)	221 per 1000	9 more per 1000 (from 33 fewer to 64 more)	
Ventilato	r associa	ated pneumo	onia				-				+	
1200		no serious	no serious	no serious	undetected	$\oplus \oplus \oplus \oplus$	51/594	51/606	RR 0.98	Study po	opulation	
(2 studies)	risk of bias	inconsistency	stency indirectness imprecision HIGH (8.6%)		· / · /		(0.68 to 1.43)	86 per 1000	2 fewer per 1000 (from 27 fewer to 37 more)			

Full vs. Trophic Feeds, Outcome Mortality

	Troph	lic	Full			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Rice 2011	22	98	20	102	15.3%	1.14 [0.67, 1.96]	
Rice 2012	118	508	109	492	84.7%	1.05 [0.83, 1.32]	
Total (95% CI)		606		594	100.0%	1.06 [0.86, 1.31]	•
Total events	140		129				
Heterogeneity: Tau ² =	: 0.00; Ch	i ^z = 0.0!	9, df = 1 (P = 0.7	7); I ^z = 09	6	
Test for overall effect:	Z=0.57	(P = 0.5	57)				Favors trophic Favors full

Full vs Trophic Feeds, Outcome VAP

	Troph	lic	Full			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Rice 2011	14	98	18	102	33.3%	0.81 [0.43, 1.54]	
Rice 2012	37	508	33	492	66.7%	1.09 [0.69, 1.71]	
Total (95% CI)		606		594	100.0%	0.98 [0.68, 1.43]	•
Total events	51		51				
Heterogeneity: Tau ² =	0.00; Chi	i ^z = 0.54	4, df = 1 (P = 0.4	6); l² = 0%	6	
Test for overall effect:	Z = 0.08 ((P = 0.9	94)				Favors trophic Favors full

Full vs Trophic Feeds, Outcome Ventilator-free Days

		Trophic			Full			Mean Difference		Mea	an Differe	ence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, R	andom, 9	5% CI	
Rice 2011	17.9	10.4	98	17.8	10.5	102	17.7%	0.10 [-2.80, 3.00]				_	
Rice 2012	14.9	11.4722	508	15	10.1603	492	82.3%	-0.10 [-1.44, 1.24]					
Total (95% CI)			606			594	100.0%	-0.06 [-1.28, 1.15]			•		
Heterogeneity: Tau² = Test for overall effect		•	`	(P = 0.90	0); I² = 0%				-10 Fa	-5 avors tro	0 phic Fav	5 vors full	10

Protein Dose

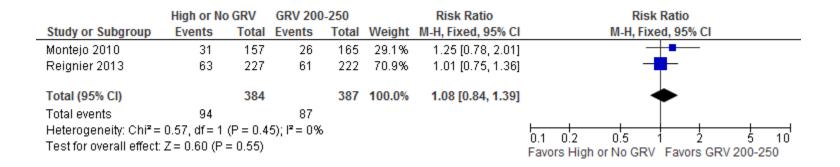
			Questi			Low protein for 1985 and Scheinkestel		ness				
			Quality ass	Summary of Findings								
Participants (studies) Follow up	dies) bias evidence						Study ev (%)	ent rates	Relative effect (95% Cl)	Anticipated absolute effects		
							With Low protein	With High protein		Risk with Low protein	Risk difference with High protein (95% CI)	
Mortality 70	(CRITICAL serious ^{1,2}	OUTCOME)	no serious	serious⁴	undetected	VERY LOW ^{1,2,3,4}	5/20	10/50	RR 0.6	Study pop	ulation	
(2 studies) 1 months			indirectness			due to risk of bias, inconsistency, imprecision	(25%)	(20%)	(0.25 to 1.47)	250 per 1000	100 fewer per 1000 (from 188 fewer to 118 more)	
										Moderate	1	
										250 per 1000	100 fewer per 1000 (from 188 fewer to 118 more)	

¹ Study personnel were not blinded ² Allocation concealment is not clear. ³ Small number of subjects in both studies.. ⁴ Confidence intervals are wide

High protein EN only vs. Low protein EN only, Outcome: Mortality

	High pr	otein	Low pro	otein		Risk Ratio			F	Risk Rati	0	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, R	andom,	95% CI	
Clifton 1985	1	10	1	10	11.6%	1.00 [0.07, 13.87]	1985			_		
Scheinkestel 2003	9	40	4	10	88.4%	0.56 [0.22, 1.46]	2003					
Total (95% CI)		50		20	100.0%	0.60 [0.25, 1.47]			•			
Total events	10		5									
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.17,	df = 1 (P =	= 0.68);	l² = 0%		ł	⊢ 0.01	0.1		10	100
Test for overall effect:	Z = 1.11 (F	P = 0.27)						high prot	ein Fav	10 /ors low pi	

High protein EN only vs. Low protein EN only, Outcome: Infection


	High pro	otein	Low pro	otein		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Year	r M-H, Random, 95% Cl
Clifton 1985	3	10	2	10	100.0%	1.50 [0.32, 7.14] 1985	5
Total (95% CI)		10		10	100.0%	1.50 [0.32, 7.14]	-
Total events	3		2				
Heterogeneity: Not ap	•						0.01 0.1 1 10 100
Test for overall effect:	Z = 0.51 (F	P = 0.61)				Favors high protein Favors low protein

Should GRVs be used as a marker for aspiration to monitor ICU patients on EN?

	Question: Should High vs Low Gastric Residual Volume be used for Critical Illness? Bibliography: Montejo 2010 Reignier 2013												
		(Quality assessi	Summary of Findings									
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Study ev	vent rates (%)	Relative effect	Anticipated absolute effects						
Follow up							With With High vs Low Control Gastric Residual Volume		(95% CI)	Risk with Control	Risk difference with High vs Low Gastric Residual Volume (95% CI)		
Mortality	<u> </u>	ļ		ļ			1	·		<u> </u>	-		
771	serious ¹	no serious	no serious	serious ²	undetected	LOW ^{1,2}	87/387	94/384	RR 1.08 (0.84 to	Study po	opulation		
(2 studies) inconsistency indirectness due to risk bias, impre								(22.5%) (24.5%)		225 per 1000	18 more per 1000 (from 36 fewer to 88 more)		

¹ The studies were not blinded, and one did not use ITT analysis. ² The combined effect size crosses the line of no effect.

Outcome Mortality

Should EN feeding protocols be used in the adult ICU setting?

			Quality asses		Summary of Findings						
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study eve	ent rates (%)	Relative effect	Anticipa	ted absolute effects
Follow up							With Control	With Nutritional Adequacy	(95% CI)	Risk with Control	Risk difference with Nutritional Adequacy (95% CI)
Mortality						1	<u> </u>			1	·
2311	no serious	serious ¹	no serious	serious ²	undetected	LOW ^{1,2}		331/1173	RR 1.01	Study po	opulation
(5 studies)	risk of bias		indirectness			due to inconsistency, imprecision	(27.7%)	(28.2%)	(0.89 to 1.15)	277 per 1000	3 more per 1000 (from 30 fewer to 42 more)
ICU LOS	(Better indica	ated by lower valu	les)		-	1	ļ	·	<u> </u>	1	1
1737 (3 studies)	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ²	undetected	MODERATE ² due to imprecision	874	863	-		The mean icu los in the intervention group was 0.63 lower (2.07 lower to 0.81 higher)
Infection	S										
701	no serious	RR 0.59	Study po	opulation							
(2 studies)	risk of bias	inconsistency	indirectness	imprecision			(15%)	(10.9%)	(0.43 to 0.81)	150 per 1000	61 fewer per 1000 (from 28 fewer to 85 fewer)

1737 (3 studies)	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ²	undetected	MODERATE ² due to imprecision	-	363	-	The mean hospital los in the intervention groups was 0.03 lower (3.29 lower to 3.23 higher)
Nutrition	nal Efficac	Y (Better indicate	ed by lower values	3)						
519 (1 study)	serious ³	no serious inconsistency	no serious indirectness	no serious imprecision	undetected	MODERATE ³ due to risk of bias	267 2	252	-	The mean nutritional efficacy in the intervention groups was 10.3 higher (4.89 to 15.71 higher)

¹ Varied protocols tested ² The estimate of effect for all studies crosses the line of no effect. ³ Single study

Feeding Protocol vs. Control, Outcome: Mortality

	Proto	col	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Desachy, 2008	14	50	11	50	3.4%	1.27 [0.64, 2.53]	
Doig, 2008	172	561	153	557	47.8%	1.12 [0.93, 1.34]	-
Heyland, 2013	68	252	63	267	19.0%	1.14 [0.85, 1.54]	-+=
Martin, 2004	72	269	82	223	27.9%	0.73 [0.56, 0.95]	
Taylor, 1999	5	41	6	41	1.9%	0.83 [0.28, 2.52]	
Total (95% CI)		1173		1138	100.0%	1.01 [0.89, 1.15]	
Total events	331		315				
Heterogeneity: Chi ² =	8.37, df=	4 (P =	0.08); I ^z =	= 52%			
Test for overall effect:	Z = 0.20	(P = 0.8	34)				Favours Protocol Favours Control

Feeding Protocol vs. Control, Outcome: ICU LOS

	1	Protocol			Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Desachy, 2008	15	11	50	15	11	50	11.1%	0.00 [-4.31, 4.31]	
Doig, 2008	9.1	12.0585	561	9.9	14.4183	557	85.3%	-0.80 [-2.36, 0.76]	
Heyland, 2013	7.2	37.1715	252	5.7	50.624	267	3.6%	1.50 [-6.11, 9.11]	
Total (95% CI)			863			874	100.0%	-0.63 [-2.07, 0.81]	•
Heterogeneity: Tau² = Test for overall effect:	•			P = 0.81	l); I² = 0%				-10 -5 0 5 10 Favours Protocol Favours Control

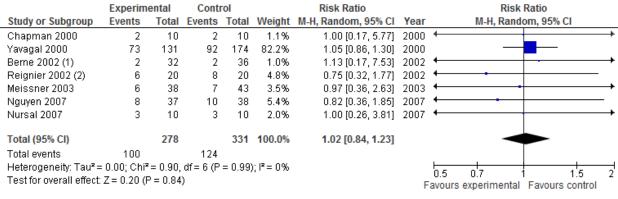
Feeding Protocol vs. Control, Outcome: Hospital LOS

	1	Protocol			Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Desachy, 2008	56	59	50	51	75	50	1.5%	5.00 [-21.45, 31.45]	<→
Doig, 2008	24.2	31.3521	561	24.3	25.232	557	95.7%	-0.10 [-3.43, 3.23]	
Heyland, 2013	13.5	120.099	252	13.8	106.2275	267	2.8%	-0.30 [-19.85, 19.25]	<→
Total (95% CI)			863			874	100.0%	-0.03 [-3.29, 3.23]	
Heterogeneity: Chi² = Test for overall effect	•			= 0%					-10 -5 0 5 10 Favours Protocol Favours Control

Feeding Protocol vs. Control, Outcome: Infections

	Protoc	col	Cont	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Heyland, 2013	7	252	26	367	37.7%	0.39 [0.17, 0.89]	
Taylor, 1999	25	41	35	41	62.3%	0.71 [0.54, 0.94]	
Total (95% CI)		293		408	100.0%	0.59 [0.43, 0.81]	•
Total events	32		61				
Heterogeneity: Chi ² =	2.73, df =	1 (P =	0.10); l² =	= 63%			
Test for overall effect:	Z = 3.26 ((P = 0.0	101)				Favours Protocol Favours Control

Feeding Protocol vs Standard, Outcome: Infections


	Proto	col	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
Heyland, 2013	7	252	26	367	37.7%	0.39 [0.17, 0.89]	
Taylor, 1999	25	41	35	41	62.3%	0.71 [0.54, 0.94]	-
Total (95% CI)		293		408	100.0%	0.59 [0.43, 0.81]	•
Total events	32		61				
Heterogeneity: Chi ² =	•	,		= 63%			
Test for overall effect:	Z = 3.26 ((P = 0.0	JO1)				Favours Protocol Favours Control

Should Motility Agents be used Routinely?

			Quality assess	ment					Summa	ary of Fin	dings	
Participants (studies) Follow up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study ev (%)	vent rates	Relative effect (95% CI)	Anticipated absolute effects		
							With Control	With Motility agent		Risk with Control	Risk difference with Motility agent (95% Cl)	
Mortality												
609	serious ¹	no serious	no serious	serious ^{2,3}	undetected	LOW ^{1,2}		100/278	RR 1.02	Study po	opulation	
(7 studies)		inconsistency ² indirectness due	due to risk of bias, imprecision	(37.5%)	(36%)	(0.84 to 1.23)	375 per 1000	7 more per 1000 (from 60 fewer to 86 more)				
Infection	(pneur	nonia)			<u>I</u>		1					
454	serious ¹	no serious	serious	Serious ³	undetected	LOW ¹	66/253	48/201	RR 0.84	Study po	opulation	
(3 studies)		inconsistency				due to risk of bias, indirectness	(26.1%)	(23.9%)	(0.57 to 1.25)	261 per 1000	42 fewer per 1000 (from 112 fewer to 65 more)	
Length o	f Stay L	ocation not	specified (Be	tter indicated b	y lower values)	1		1			
19 1 study)	serious ¹	no serious inconsistency	no serious indirectness	serious ²	undetected	LOW ^{1,2} due to risk of bias, imprecision	9	10	-		The mean length of stay location not specified in the intervention groups was 1.2 lower	

¹ Intent to treat analysis was used in less than half the trials.
 ² The CI are very wide, suggesting imprecision
 ³The combined effect size crosses the line of no effect.

Motility Agent vs. Control, Outcome Mortality

⁽¹⁾ N

(2) Chapman 2000 and McClaren 2008 excluded, no deaths

Motility Agent vs. Control, Outcome Pneumonia

	Experim	ental	Cont	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI
Yavagal 2000	22	131	24	174	32.9%	1.22 [0.72, 2.07]	2000	
Berne 2002	13	32	18	36	33.0%	0.81 [0.48, 1.38]	2002	
Meissner 2003 (1)	13	38	24	43	34.2%	0.61 [0.37, 1.03]	2003	
Total (95% CI)		201		253	100.0%	0.84 [0.57, 1.25]		-
Total events	48		66					
Heterogeneity: Tau² =	= 0.05; Chi ^a	² = 3.40,	df = 2 (P	= 0.18); I² = 41 %	, b		
Test for overall effect:	Z = 0.85 (ł	P = 0.40)				F	avours [experimental] Favours [control]

(1) Unknown safety and efficacy of the agent used in the Meissner 2003 study, naloxone.

Motility Agent vs. Control, Outcome: LOS

	Metoc	loprom	nide	S	aline			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Nursal 2007	15.6	11.1	10	16.8	8.5	9	100.0%	-1.20 [-10.04, 7.64]	2007	<
Total (95% CI)			10			9	100.0%	-1.20 [-10.04, 7.64]		
Heterogeneity: Not ap Test for overall effect:	•		79)						F	-10 -5 0 5 10 avours [experimental] Favours [control]

Should a combination (Erythro 200 mg + Metoclopramide 10 mg) vs monotherapy (Erythro 200 mg) be used for patients at risk for aspiration

					Bibliogr	aphy: Nguye	en 2007						
		Qu	ality assessn	nent			Summary of Findings						
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	bias qu	Overall quality of	Study event	rates (%)	Relative effect	Anticipated absolute effects			
Follow up						evidence	With Monotherapy (Erythro 200 mg)	With Combination (Erythro 200 mg + Metoclopromide 10mg)	(95% CI)	Risk with Monotherapy (Erythro 200 mg)	Risk difference with Combination (Erythro 200 mg + Metoclopromide 10mg) (95% Cl)		
Mortality													
75	no	no serious	no serious	no serious	undetected		10/38	8/37	RR 0.82	Study popula	tion		
(1 study)	serious risk of bias	inconsistency	indirectness	imprecision		HIGH	(26.3%)	(21.6%)	(0.36 to 1.85)	263 per 1000	47 fewer per 1000 (from 168 fewer to 224 more)		
Hospital	Length	of Stay (Bette	er indicated by lo	ower values)							224 more)		

75 (1 study)	no serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	undetected	HIGH	38	37	-		The mean hospital length of stay in the intervention groups was 5.2 higher (1.7 to 8.7 higher)
Failure	of feedir	ng day (Better i	indicated by hig	ner values)							
75 (1 study)	no serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	undetected	HIGH	38	37	-		The mean failure of feeding day in the intervention groups was 2 higher (1.77 to 2.23 higher)
Need fo	r post p	yloric feeds							·		
75	no	no serious	no serious	no serious	undetected		8/38	2/37	RR 0.26	Study popula	tion
(1 study)	serious risk of bias	inconsistency	indirectness	imprecision		HIGH	(21.1%)	(5.4%)	(0.06 to 1.13)	211 per 1000	156 fewer per 1000 (from 198 fewer to 27 more)
Diarrhea	Incide	nce									
75	no	no serious	no serious	no serious	undetected		10/38	20/37	OR 3.29	Study popula	tion
(1 study)	serious risk of bias	inconsistency	indirectness	imprecision		HIGH	(26.3%)	(54.1%)	(1.25 to 8.68)	263 per 1000	277 more per 1000 (from 45 more to 493 more)

¹ Blinding and/or ITT analysis only used in half the studies ² Combined effect size crosses the line of no effect.

Should immune modulation formula versus standard formula be used in critically ill patients?

				Diets wi	th arginin	e and other vs. s	standard					
Bibliograph	•			dez 1997; Moo	•	91; Chuntrasakul 2003 rce 2006; Rodrigo 199	•	; Weimann 199	•	nbeyer 200	•	
			Quality ass	essment				Jui	iiiiai y Oi i	Finangs		
Participants (studies) Follow up	Risk of bias				Publication bias	Overall quality of evidence	Study eve	ent rates (%)	Relative effect (95% CI)	Anticipated absolute effects		
							With standard	With Diets with arginine and other		Risk with standard	Risk difference with Diets with arginine and other (95% CI)	
Mortality	(w/ qua	lity sub-ana	alysis) (CRITIC		Ξ)	1					<u>.</u>	
2343 (21 studies)	serious ¹		no serious indirectness	serious ⁴	undetected	VERY LOW ^{1,2,3,4} due to risk of bias, inconsistency, imprecision	299/1135 (26.3%)	322/1208 (26.7%)	RR 1.03 (0.91 to 1.17)	263 per 1000	8 more per 1000 (from 24 fewer to 45 more)	
Infectious	s comp	lications (w	/ quality sub	p-analyses	(CRITICAL)	OUTCOME)		·	<u> </u>	<u> </u>		
1606 (12 studies)	serious ¹	serious ^{2,3,5}	serious ⁶	serious ⁷	undetected	VERY LOW ^{1,2,3,5,6,7} due to risk of bias, inconsistency, indirectness, imprecision	365/773 (47.2%)	385/833 (46.2%)	RR 0.98 (0.81 to 1.18)	472 per 1000	9 fewer per 1000 (from 90 fewer to 85 more)	

1099 (12 studies)	serious ¹	serious ^{2,3,8}	no serious indirectness	serious ^{9,10,11}	undetected	VERY LOW ^{1,2,3,8,9,10,11} due to risk of bias, inconsistency, imprecision	538	561	-	The mean hospital length of stay in the intervention groups was 0.93 lower (5.75 lower to 3.89 higher)
		-	CAL OUTCOME; B		-		400			
818	serious ¹	serious ^{2,3}	no serious indirectness	serious ^{9,11}	undetected	VERY LOW ^{1,2,3,9,11} due to risk of bias,	403	415	-	The mean ventilated days in

¹ In studies published prior to 2000, reporting biases such as concealing the allocation of subjects or assuring subjects all subjects randomized are included in the analysis was not clearly reported. More than half the studies in this review were published =/< 2000.

² The populations from which the subjects in the included studies varies, and includes trauma, burn, critically ill and septic subjects. Since these groups reflect the population of an ICU, did not down grade for this

³ Two different formula were study formula (Immun-Aid and Impact) and control formula varied form "standard" to high protein formula to elemental formula. Downgraded for this inconsistency across studies.

⁴ Confidence intervals are very wide for the included studies. Sub-analysis looking at only studies with > 50 subjects did not change the estimate of the effect.

 5 The I² statistic for the outcome Infectious Complications is 66%. Desired value is < 50%

⁶ Uncertain of specific infection, central line infection vs. pneumonia vs. wound infection.

⁷ Confidence intervals the smaller studies are very wide. Removing the studies with less than 50 total subjects did not change the estimate of the effect, it still crossed the line of no effect. Studies done more recently have narrower confidence intervals, but still a difference is not seen between the experimental groups.

 8 The I² statistic for Hospital Length of Stay is 85%. Desired is < 50%

⁹ Deaths are not handled uniformly in the reporting of the included studies. Uncertain if early death drove down the LOS in any study.

¹⁰ Studies performed prior to 1996 favor the experimental formula, while studies performed since 2005 favor the control formula

¹¹ The study was not powered to detect a difference in LOS variables.

Immune Modulating EN vs. Standard EN, Outcome: Mortality

	Diets with Arg	Contr	ol		Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Beale 2008	7	27	7	28	2.0%	1.04 [0.42, 2.56]	2008	
Kuhls 2007	3	22	2	22	0.6%	1.50 [0.28, 8.12]	2007	
Wibbenmeyer 2006	2	12	0	11	0.2%	4.62 [0.25, 86.72]	2006	
Pearce 2006	0	15	3	16	0.2%	0.15 [0.01, 2.71]	2006	←
Kieft 2005	114	302	106	295	36.7%	1.05 [0.85, 1.30]	2005	
Tsuei 2004	1	13	0	12	0.2%	2.79 [0.12, 62.48]	2004	
Chuntrasakul 2003	1	18	1	18	0.2%	1.00 [0.07, 14.79]	2003	\longleftrightarrow
Conejero 2002	14	43	9	33	3.3%	1.19 [0.59, 2.41]	2002	
Caparros 2001	27	130	30	105	7.9%	0.73 [0.46, 1.14]	2001	
Galban 2000	17	89	28	87	5.9%	0.59 [0.35, 1.00]	2000	
Atkinson 1998	95	197	85	193	35.1%	1.09 [0.88, 1.36]	1998	-
Weimann 1998	2	16	4	13	0.7%	0.41 [0.09, 1.88]	1998	·
Rodrigo 1997	2	16	1	14	0.3%	1.75 [0.18, 17.29]	1997	
Engel 1997	7	18	5	18	1.8%	1.40 [0.54, 3.60]	1997	
Mendez 1997	1	22	1	21	0.2%	0.95 [0.06, 14.30]	1997	\longleftrightarrow
Kudsk 1996	1	17	1	18	0.2%	1.06 [0.07, 15.62]	1996	← →
Bower 1995	24	153	12	143	3.8%	1.87 [0.97, 3.60]	1995	
Moore 1994	1	51	2	47	0.3%	0.46 [0.04, 4.92]	1994	· · · · ·
Brown 1994	0	19	0	18		Not estimable	1994	
Cerra 1991	1	11	1	9	0.2%	0.82 [0.06, 11.33]	1991	← · · · · · · · · · · · · · · · · · · ·
Gottschlich 1990	2	17	1	14	0.3%	1.65 [0.17, 16.33]	1990	
Total (95% CI)		1208		1135	100.0%	1.03 [0.91, 1.17]		•
Total events	322		299					
Heterogeneity: Tau ² =	0.00; Chi² = 16.	18, df = 1	9 (P = 0.	65); l² =	= 0%			
Test for overall effect: 2	7 = 0.43 (P = 0.6)	37)						0.1 0.2 0.5 1 2 5 10 Favours Arginine Favours Control

Immune modulating formula versus Standard EN, Outcome: Infection, with sub analysis by study quality

	Diets wih Ar	ginine	standa	ard		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Ye	ear M-H, Random, 95% Cl
1.2.1 High Quality Stu	ıdies (8+)						
Brown 1994	3	19	10	18	0.0%	0.28 [0.09, 0.87] 19	994
Bower 1995	86	153	90	143	26.3%	0.89 [0.74, 1.08] 19	95 -
Kudsk 1996	5	16	11	17	0.0%	0.48 [0.22, 1.08] 19	996
Caparros 2001	64	130	37	105	19.2%	1.40 [1.02, 1.91] 20	001
Conejero 2002	11	43	17	33	8.8%	0.50 [0.27, 0.91] 20	002
Tsuei 2004	8	13	6	11	0.0%	1.13 [0.57, 2.25] 20	004
Kieft 2005	130	302	123	295	26.4%	1.03 [0.86, 1.24] 20	005
Wibbenmeyer 2006	9	12	7	11	0.0%	1.18 [0.68, 2.05] 20	006
Subtotal (95% CI)		628		576	80.8%	0.97 [0.75, 1.26]	\bullet
Total events	291		267				
Heterogeneity: Tau ² =	0.05; Chi² = 11	.01, df =	3 (P = 0.0	01); I ² =	73%		
Test for overall effect: 2	Z = 0.23 (P = 0	.82)					
1.2.2 Low Quality Stu	dies (<8)						
Rodrigo 1997	5	16	3	14	0.0%	1.46 [0.42, 5.03] 19	97
Mendez 1997	19	22	12	21	0.0%	1.51 [1.01, 2.27] 19	997
Engel 1997	6	18	5	18	0.0%	1.20 [0.45, 3.23] 19	997
Galban 2000	39	89	44	87	19.2%	0.87 [0.63, 1.19] 20	
Subtotal (95% CI)		89		87	19.2%	0.87 [0.63, 1.19]	•
Total events	39		44				
Heterogeneity: Not app	olicable						
Test for overall effect: 2	Z = 0.90 (P = 0	.37)					
Total (95% CI)		717		663	100.0%	0.95 [0.77, 1.18]	+
Total events	330		311				
Heterogeneity: Tau ² =	0.03; Chi² = 11	.59, df =	4 (P = 0.0	02); l² =	66%		1 + + + + + + + + + + + + + + + + + + +
Test for overall effect: 2	Z = 0.43 (P = 0	.67)					0.1 0.2 0.5 1 2 5 10 Favours Arginine Favours standard
	rences: Chi ² =						

Immune modulating formula vs. Standard EN Outcome: LOS

	Diets v	with Argi	nine	C	ontrol			Mean Difference			Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	Year		IV, Ra	ndom,	95% CI		
Cerra 1991	36.7	8.5	11	54.7	10.5	9	9.3%	-18.00 [-26.50, -9.50]	1991	←					
Moore 1994	14.6	1.3	51	17.2	2.8	47	12.9%	-2.60 [-3.48, -1.72]	1994			-			
Bower 1995	27.6	23	153	30.9	26	143	11.1%	-3.30 [-8.91, 2.31]	1995			•			
Kudsk 1996	18.3	2.8	16	32.6	7	17	12.1%	-14.30 [-17.90, -10.70]	1996	_	•				
Mendez 1997	34	21.2	22	21.9	11	21	8.3%	12.10 [2.07, 22.13]	1997			-	•		
Atkinson 1998	20.6	26	197	23.2	32	193	10.9%	-2.60 [-8.39, 3.19]	1998						
Weimann 1998	70.2	53	16	58.1	30	13	2.1%	12.10 [-18.57, 42.77]	1998				•		
Chuntrasakul 2003	45	30	18	29	26	18	4.5%	16.00 [-2.34, 34.34]	2003			+		•	
Tsuei 2004	22	9	13	27	17	11	7.7%	-5.00 [-16.17, 6.17]	2004	-			_		
Pearce 2006	19.1	14.4	15	13.4	11.1	16	8.9%	5.70 [-3.39, 14.79]	2006			-	-		
Kuhls 2007	40	23.45	22	30.3	22.98	22	6.3%	9.70 [-4.02, 23.42]	2007			-			
Beale 2008	43.8	28	27	31.3	27.2	28	5.9%	12.50 [-2.10, 27.10]	2008			+			
Total (95% CI)			561			538	100.0%	-0.93 [-5.75, 3.89]			-				
Heterogeneity: Tau ² =	46.49; Ch	i ² = 75.65	5, df = 1	1 (P < 0	.00001)); l ² = 8	5%			<u> </u>		<u> </u>	-+		
Test for overall effect:	Z = 0.38 (P = 0.71))							-20	-10 rs Araini	0	10 avours C	20	

Favours Arginine Favours Control

Immune Modulating Formula vs. Standard EN, Outcome: Ventilator Days

L

	Diets v	vith Argi	nine	c	ontrol			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl
Gottschlich 1990	9	4.5	17	10	2.5	14	9.6%	-1.00 [-3.51, 1.51]	1990	
Moore 1994	19.9	0.9	51	5.3	3.1	57	9.7%	14.60 [13.76, 15.44]	1994	
Kudsk 1996	2.4	1.3	16	5.4	2	17	9.7%	-3.00 [-4.14, -1.86]	1996	+
Engel 1997	14.8	5.6	18	16	5.6	18	9.4%	-1.20 [-4.86, 2.46]	1997	
Mendez 1997	16.5	19.4	22	9.3	6	21	8.3%	7.20 [-1.30, 15.70]	1997	+
Weimann 1998	21.4	10.8	16	27.8	14.6	13	8.0%	-6.40 [-15.94, 3.14]	1998	
Atkinson 1998	8	11.1	197	9.4	17.7	193	9.5%	-1.40 [-4.34, 1.54]	1998	
Galban 2000	12.4	10.4	89	12.2	10.3	87	9.5%	0.20 [-2.86, 3.26]	2000	-+-
Chuntrasakul 2003	2.7	5.2	18	7.4	13.5	18	8.8%	-4.70 [-11.38, 1.98]	2003	
Tsuei 2004	10	5	13	14	10	12	8.9%	-4.00 [-10.28, 2.28]	2004	
Kuhls 2007	23.1	12.66	22	20.9	12.66	22	8.6%	2.20 [-5.28, 9.68]	2007	
Total (95% CI)			479			472	100.0%	0.31 [-6.08, 6.70]		
Heterogeneity: Tau ² =	109.15; C	hi² = 745	.64, df =	= 10 (P -	< 0.0000	01); l² =	99%			
Test for overall effect:	Z = 0.09 (P = 0.92)	1							-20 -10 0 10 20 Favours Arginine Favours Control

mmune Modulation formula vs. Standard Formula, Outcome: Mortality, with Trauma Sub-analysis

Study or Subgroup 1.8.1 Trauma patients Kudsk 1996 Mendez 1997 Engel 1997 Veimann 1998 Chuntrasakul 2003 Kuhls 2007 Subtotal (95% CI)	Events 1 7 2 1 3 15 00: Chi ² = 2.0	Total 17 22 18 16 18 22 113	Events 1 5 4 1 2	Total 18 21 18 13 18 22	Weight 0.3% 0.3% 2.7% 1.0% 0.3%	M-H, Random, 95% Cl 1.06 [0.07, 15.62] 0.95 [0.06, 14.30] 1.40 [0.54, 3.60]	Year 1996 1997 1997	↓ ↓	M-H, Ran	dom, 95%	<u>CI</u>
Kudsk 1996 Mendez 1997 Engel 1997 Veimann 1998 Chuntrasakul 2003 Kuhls 2007 Subtotal (95% CI)	1 7 2 1 3 15	22 18 16 18 22	1 5 4 1	21 18 13 18	0.3% 2.7% 1.0%	0.95 [0.06, 14.30] 1.40 [0.54, 3.60]	1997	←			
Mendez 1997 Engel 1997 Veimann 1998 Chuntrasakul 2003 Kuhls 2007 Subtotal (95% CI)	1 7 2 1 3 15	22 18 16 18 22	1 5 4 1	21 18 13 18	0.3% 2.7% 1.0%	0.95 [0.06, 14.30] 1.40 [0.54, 3.60]	1997	<		-	
Engel 1997 Weimann 1998 Chuntrasakul 2003 Kuhls 2007 Subtotal (95% CI)	7 2 1 3 15	18 16 18 22	5 4 1	18 13 18	2.7% 1.0%	1.40 [0.54, 3.60]		•		·	
Weimann 1998 Chuntrasakul 2003 Kuhls 2007 Subtotal (95% CI)	2 1 3 15	16 18 22	4 1	13 18	1.0%		1997				-
Chuntrasakul 2003 Kuhls 2007 Subtotal (95% CI)	1 3 15	18 22	1	18		0 44 50 00 4 001					
Kuhls 2007 Subtotal (95% CI)	3 15	22			0.20/	0.41 [0.09, 1.88]	1998	•	-		
Subtotal (95% CI)	15		2	22	0.3%	1.00 [0.07, 14.79]	2003	←		+	
		113		22	0.9%	1.50 [0.28, 8.12]	2007				
				110	5.6%	1.06 [0.55, 2.05]					
Total events	00: Chi² = 2.0		14								
Heterogeneity: Tau ² = 0.0	,	2, df = 5 ((P = 0.85)); $I^2 = 0^4$	%						
Fest for overall effect: Z =	= 0.18 (P = 0.	86)									
.8.2 Non-trauma patier	nts										
Gottschlich 1990	2	17	1	14	0.5%	1.65 [0.17, 16.33]	1990			+	
Cerra 1991	1	11	1	9	0.4%	0.82 [0.06, 11.33]	1991	•			
Bower 1995	24	153	12	143	5.3%	1.87 [0.97, 3.60]	1995				-
Rodrigo 1997	2	16	1	14	0.5%	1.75 [0.18, 17.29]	1997				
Atkinson 1998	95	197	85	193	28.6%	1.09 [0.88, 1.36]	1998			╆═╌	
Galban 2000	17	89	28	87	7.9%	0.59 [0.35, 1.00]	2000			-	
Capparos 2001	27	130	30	105	10.2%	0.73 [0.46, 1.14]	2001			+	
Conejero 2002	14	43	9	33	4.6%	1.19 [0.59, 2.41]	2002			+	
Dent 2003	20	87	8	83	4.0%	2.39 [1.11, 5.11]	2003				
Kieft 2005	114	302	106	295	29.3%	1.05 [0.85, 1.30]	2005		-	- -	
Pearce 2006	0	15	3	16	0.3%	0.15 [0.01, 2.71]	2006	←			
Beale 2008	7	27	7	28	2.9%	1.04 [0.42, 2.56]	2008			-	
Subtotal (95% CI)		1087		1020	94.4%	1.05 [0.85, 1.30]			•	◆	
lotal events	323		291								
Heterogeneity: Tau ² = 0.0	04; Chi² = 16.	88, df = 1	1 (P = 0.1)	11); l² =	35%						
Test for overall effect: Z =	= 0.47 (P = 0.	64)									
otal (95% CI)		1200		1130	100.0%	1.05 [0.89, 1.23]				♦	
Total events	338		305								
Heterogeneity: Tau ² = 0.0		89, df = 1		33); l² =	= 10%					+ + -	<u> </u>
Test for overall effect: Z =			· -					0.1 0.2	0.5	1 2 Favours	5 1

Test for subgroup differences: $Chi^2 = 0.00$, df = 1 (P = 0.98), $I^2 = 0\%$

Should fiber-containing vs. standard EN be used for diarrhea?

		Questi			-	versus Stand			diarrhea	1?	
			Quality assess	sment				Su	mmary of	Findings	i
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study ev	vent rates (%)	Relative effect	Anticipa	ted absolute effects
Follow up							With Control	With Fiber containing EN versus Standard EN	(95% CI)	Risk with Control	Risk difference with Fiber containing EN versus Standard EN (95% Cl)
Diarrhea	(CRITICAL (DUTCOME)	I		I	1		·	_		
171	no serious	serious ²	no serious	serious ⁴	undetected	LOW ^{1,2,3,4}	39/73	40/98	RR 0.75	Study po	opulation
(4 studies)	risk of bias ¹		indirectness ³			due to inconsistency, imprecision	(53.4%)	(40.8%)	(0.43 to 1.31)	534 per 1000	134 fewer per 1000 (from 305 fewer to 166 more)
										Moderat	e
										523 per 1000	131 fewer per 1000 (from 298 fewer to 162 more)

¹ Major risk of bias is not including all randomized subjects in the denominator when doing analysis

² Jevity Plus or Nepro+pectin, Promote +pectin, formula with added guar gum, Osmolite HN + Fybogel, or Nutren fiber+ FOS and pectin and insoluble fibers were intervention formula. Standard formula included Nutren Optimum, Osmolite, Promote, Osmolite HN vs unspecified standard formula

³ Definition of diarrhea not stated

⁴ Low number of subjects in included studies

Question E4b: Peptide-based vs Standard EN

		Que		•		ersus Standar 90; Mowatt-Larson ⁻			Diarrhea		
			Quality asse	ssment				Su	immary of	Findings	\$
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study ev	vent rates (%)	Relative effect	Anticipat	ted absolute effects
Follow up							With With Peptide EN Control versus Standard EN		(95% CI)	Risk with Control	Risk difference with Peptide EN versus Standard EN (95% CI)
Diarrhea	(CRITICAL	OUTCOME)		<u> </u>			1				
121 (4 studies)	serious ¹	serious ²	no serious indirectness ³	no serious imprecision	undetected	LOW ^{1,2,3} due to risk of bias, inconsistency	17/58 (29.3%)	17/63 (27%)	RR 0.76 (0.25 to 2.33)	293 per 1000	70 fewer per 1000 (from 220 fewer to 390 more)

¹Blinding and intention to treat analysis are the major threats of bias in the 4 included studies ² Vital, Reablilan HN, and unspecified "small peptide" formula were the intervention formula. Control formula included Osmolite HN, Isocal and unspecified "whole protein" formula. ³ Definition of diarrhea not stated

Fiber EN versus Standard EN, Outcome Diarrhea

	Fiber contain	ing EN	Standar	d EN		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Hart 1988	19	35	19	33	40.6%	0.94 [0.62, 1.44]	1988	
Schultz 2000	11	33	1	11	7.2%	3.67 [0.53, 25.26]	2000	
Spapen 2001	6	13	11	12	32.4%	0.50 [0.27, 0.93]	2001	_
Chittawatanarat 2010	4	17	8	17	19.8%	0.50 [0.18, 1.35]	2010	
Total (95% CI)		98		73	100.0%	0.75 [0.43, 1.31]		•
Total events	40		39					
Heterogeneity: Tau ² = (0.15; Chi² = 6.21,	df = 3 (P	e = 0.10); l	² = 52%				
Test for overall effect: 2	Z = 1.01 (P = 0.3	1)						0.1 0.2 0.5 1 2 5 10 Favors fiber EN Favors standard EN

Peptide EN vs. Standard EN, Outcome Diarrhea

	Peptide	e EN	Standar	d EN		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Y	ear M-H, Random, 95% Cl
Meredith 1990	0	9	4	9	12.0%	0.11 [0.01, 1.80] 19	990 +
Mowatt-Larson 1992	6	21	6	20	34.9%	0.95 [0.37, 2.47] 19	992
Heimburger 1997	10	26	4	24	33.7%	2.31 [0.83, 6.39] 19	997
Brinson 1998	1	7	3	5	19.4%	0.24 [0.03, 1.67] 19	998 +
Total (95% CI)		63		58	100.0%	0.76 [0.25, 2.33]	
Total events	17		17				
Heterogeneity: Tau ² =	0.70; Chi ²	= 7.20,	df = 3 (P =	= 0.07);	l² = 58%		
Test for overall effect:	Z = 0.48 (F	P = 0.63	3)				0.1 0.2 0.5 1 2 5 10 Favors Peptide EN Favors Standard EN

Does the provision of antioxidants and trace minerals affect outcome in critically ill adult patients?

					Questic	on: Selenium					
		(Quality assess	sment				Sun	nmary of F	Findings	
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study eve	ent rates (%)	Relative effect	Anticipa	ted absolute effects
Follow up							With Control	With Antioxidants (Selenium; single+ combined)	(95% CI)	Risk with Control	Risk difference with Antioxidants (Selenium; single+ combined) (95% Cl)
Mortality	(Se alo	ne)	<u> </u>		<u> </u>	1			1		·
1341	no	serious ²	no serious	serious ¹	undetected	LOW ^{1,2}	239/675	203/666	RR 0.88	Study p	opulation
(11)	serious risk of bias		indirectness			due to inconsistency, imprecision	(35.4%)	(30.5%)	(0.74 to 1.04)	354 per 1000	42 fewer per 1000 (from 92 fewer to 14 more)
Infection	s subgr	oup analyses	s: PN seleni	ium mono	therapy v	s combined	_		. <u>.</u>		1
2321	no	no serious	no serious	Serious ⁴	undetected	MODERATE		339/1166	RR 0.88	Study p	opulation
(9 studies)	serious risk of bias	inconsistency	indirectness				(32.7%)	(29.1%)	(0.78 to 0.99)	327 per 1000	39 fewer per 1000 (from 3 fewer to 72 fewer)
ICU LOS	(Better ind	icated by lower valu	ues)	1	ł	,	_ I		1		1
1830 (10 studies)	no serious risk of bias	serious ²	no serious indirectness	serious ¹	undetected	LOW ^{1,2} due to inconsistency, imprecision	912	918	-		The mean icu los in the intervention groups was 0.47 higher (0.7 lower to 1.64 higher)

1500 (6 studies)	no serious risk of bias	ter indicated by lov	no serious indirectness	serious ¹	undetected	LOW ^{1,2} due to inconsistency, imprecision	742	758	-		The mean hospital los in the intervention groups was 1.15 lower (4.88 lower to 2.58 higher)
Ventilato	or Days (Better indicated by	lower values)							,	
1412 (7 studies)	no serious risk of bias	serious ³	no serious indirectness	serious ¹	undetected	LOW ^{1,3} due to inconsistency, imprecision	699	713	-		The mean ventilator days in the intervention groups was 1.76 lower (4.9 lower to 1.38 higher)

¹ Combined estimate of effect size crosses the line of no effect. ² Wide confidence intervals ³ Heterogenity among studies

⁴Infectious complications are heterogeneous among studies

Selenium vs Control, Outcome: Mortality

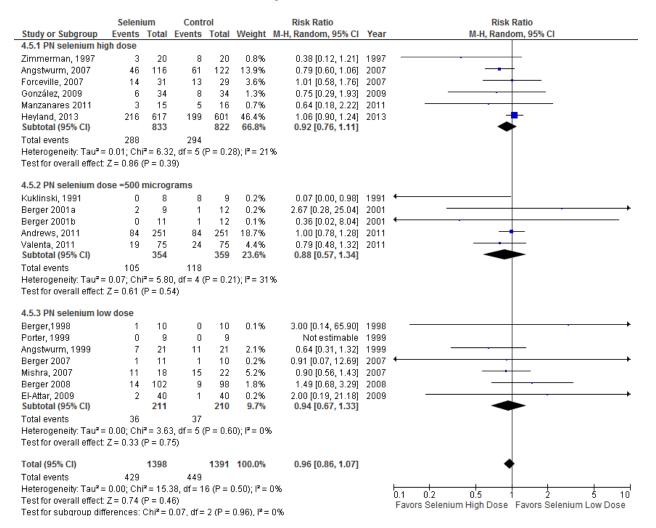
	Seleni		Conti			Risk Ratio		Risk Ratio
Study or Subgroup			Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
4.3.1 PN Selenium Mo	onothera	ру						
Kuklinski	0	8	8	9	0.2%	0.07 [0.00, 0.98]	1991	<
Zimmerman	3	20	8	20	0.8%	0.38 [0.12, 1.21]	1997	
Angstwurm 1999	7	21	11	21	2.1%	0.64 [0.31, 1.32]	1999	
Angstwurm 2007	46	116	61	122	13.9%	0.79 [0.60, 1.06]	2007	
Mishra	11	18	15	22	5.2%	0.90 [0.56, 1.43]	2007	
Forceville	14	31	13	29	3.6%	1.01 [0.58, 1.76]	2007	
González	6	34	8	34	1.3%	0.75 [0.29, 1.93]	2009	
Andrews	84	251	84	251	18.7%	1.00 [0.78, 1.28]	2011	-
Valenta	19	75	24	75	4.4%	0.79 [0.48, 1.32]	2011	
Manzanares 2011	3	15	5	16	0.7%	0.64 [0.18, 2.22]	2011	
Subtotal (95% CI)		589		599	50.9%	0.86 [0.74, 1.00]		◆
Total events	193		237					
Heterogeneity: Tau ² =	0.00; Chi	² = 8.70	D, df = 9 (P = 0.4	7); I ² = 09	ó		
Test for overall effect:	Z = 1.98 ((P = 0.0	15)					
4.3.2 PN Selenium Co	mbined							
Berger 1998	1	10	0	10	0.1%	3.00 [0.14, 65.90]	1998	
Porter	0	9	0	9		Not estimable	1999	
Berger 2001b	0	11	1	12	0.1%	0.36 [0.02, 8.04]	2001	←
Berger 2001 a	2	9	1	12	0.2%	2.67 [0.28, 25.04]	2001	
Berger 2007	1	11	1	10	0.2%	0.91 [0.07, 12.69]	2007	← →
Berger 2008	14	102	9	98	1.8%	1.49 [0.68, 3.29]	2008	
El-Attar	2	40	1	40	0.2%	2.00 [0.19, 21.18]	2009	
Heyland	216	617	199	601	46.4%	1.06 [0.90, 1.24]	2013	+
Subtotal (95% CI)		809		792	49.1%	1.08 [0.93, 1.25]		◆
Total events	236		212					
Heterogeneity: Tau ² =	0.00; Chi	² = 2.53	3, df = 6 (P = 0.8	6); I ^z = 09	6		
Test for overall effect: .	Z = 0.96 ((P = 0.3	(3)					
Total (95% CI)		1398		1391	100.0%	0.96 [0.86, 1.07]		•
Total events	429		449					1
Heterogeneity: Tau ² =		Z- 16 °		6 (P - 1	0.60\12-	0%		
Test for overall effect: 3	•		•	0(1-1	0.00/,1 -	0.0		0.1 0.2 0.5 1 2 5 10
Test for subgroup diffe		•	·	1 (P -	0.04) 12-	76.9%		Favors Selenium Favors Control
restion subgroup diffe	siences.	Unit = 1	+.30, ul =	i (F =	0.04), 1-=	70.070		

Selenium vs Control: Outcome Infectious Complications

	Seleni	um	Contr	ol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Porter	5	9	8	9	3.5%	0.63 [0.33, 1.17]	1999	
Berger 2001a	5	9	5	12	1.7%	1.33 [0.55, 3.24]	2001	
Berger 2001b	3	11	5	12	1.0%	0.65 [0.20, 2.12]	2001	
Angstwurm 2007	10	116	10	122	2.0%	1.05 [0.45, 2.43]	2007	_
Berger 2008	36	102	34	98	9.6%	1.02 [0.70, 1.48]	2008	_ + _
El-Attar	5	36	7	34	1.3%	0.67 [0.24, 1.92]	2009	
Manzanares 2011	3	15	7	16	1.0%	0.46 [0.14, 1.45]	2011	
Andrews	104	251	121	251	36.2%	0.86 [0.71, 1.04]	2011	
Heyland	168	617	181	601	43.7%	0.90 [0.76, 1.08]	2013	-
Total (95% CI)		1166		1155	100.0%	0.88 [0.78, 0.99]		•
Total events	339		378					
Heterogeneity: Tau ² =	: 0.00; Chi	i ^z = 4.6I	0, df = 8 (P = 0.8	0); I ² = 0%	6		
Test for overall effect:	Z= 2.08 ((P = 0.0)4)	•				0.1 0.2 0.5 1 2 5 10 Favors selenium Favors control

Selenium vs Control: Outcome ICU LOS

	Se	leniun	ı	C	ontrol			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Berger 1998	30	12	10	39	13	10	1.1%	-9.00 [-19.97, 1.97]	1998	•
Porter	22	25.2	9	35.8	21.9	9	0.3%	-13.80 [-35.61, 8.01]	1999	←
Berger 2001b	5.8	4.4	11	8.6	8.1	12	4.8%	-2.80 [-8.07, 2.47]	2001	
Berger 2001a	8	4	9	8.6	8.1	12	4.8%	-0.60 [-5.88, 4.68]	2001	
Mishra	21.3	16.2	18	20.8	21.8	22	1.0%	0.50 [-11.29, 12.29]	2007	← →
Angstwurm 2007	15.1	10	116	12.7	9	122	20.9%	2.40 [-0.02, 4.82]	2007	
Berger 2007	35	27	11	47	37	10	0.2%	-12.00 [-39.94, 15.94]	2007	← →
Berger 2008	5.8	5.4	102	5.4	5.7	98	44.9%	0.40 [-1.14, 1.94]	2008	
Manzanares 2011	14	11	15	13	6	16	3.4%	1.00 [-5.30, 7.30]	2011	
Heyland	14.2	22.7	617	13.8	23.1	601	18.7%	0.40 [-2.17, 2.97]	2013	
Total (95% CI)			918			912	100.0%	0.47 [-0.70, 1.64]		•
Heterogeneity: Tau ² =	0.17; C	hi² = 9	.39, df=	= 9 (P =	0.40);	l² = 4 %				
Test for overall effect:	Z = 0.79) (P = ().43)							Favors selenium Favors control


Selenium vs Control: Outcome Hospital LOS

	Se	leniun	n	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Berger 1998	54	27	10	66	31	10	2.1%	-12.00 [-37.48, 13.48]	← →
Porter	31.3	23.4	9	49	30	9	2.3%	-17.70 [-42.56, 7.16]	←
Berger 2001a	82	78	9	64	39	12	0.5%	18.00 [-37.53, 73.53]	← →
Berger 2001b	60	48	11	64	39	12	1.1%	-4.00 [-39.94, 31.94]	← →
Berger 2008	23	20	102	26	20	98	45.3%	-3.00 [-8.54, 2.54]	
Heyland	31.2	50.2	617	29.5	44.8	601	48.8%	1.70 [-3.64, 7.04]	
Total (95% CI)			758			742	100.0%	-1.15 [-4.88, 2.58]	
Heterogeneity: Tau ² =	= 0.00; C	hi² = 4.	.40, df=	= 5 (P =	0.49);	l ² = 0%			
Test for overall effect	Z = 0.60) (P = 0	0.55)						-10 -5 Ó Ś 10 Favors selenium Favors control

Selenium vs Control, Outcome Ventilator Days

	Se	leniun	n	С	ontrol			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Berger '98	9	10	10	12	9	10	8.3%	-3.00 [-11.34, 5.34]	1998	· · · ·
Berger '01a	6.2	3.5	9	4.2	5.2	11	15.3%	2.00 [-1.83, 5.83]	2001a	
Berger '01b	4.1	3.6	11	4.2	5.2	11	15.4%	-0.10 [-3.84, 3.64]	2001b	
Berger 2007	7.6	6	11	12.6	6	10	12.9%	-5.00 [-10.14, 0.14]	2007	← ■
El-Attar	9.4	7.3	40	17.8	7.6	40	16.3%	-8.40 [-11.67, -5.13]	2009	←−
Manzanares 2011	10	8	15	9	4	16	14.0%	1.00 [-3.50, 5.50]	2011	-
Heyland	10.9	21.4	617	10.5	19.7	601	17.8%	0.40 [-1.91, 2.71]	2013	
Total (95% CI)			713			699	100.0%	-1.76 [-4.90, 1.38]		
Heterogeneity: Tau ² =	13.00; (Chi ⁼=	26.59, (df = 6 (F	° = 0.0	002); I ^z	= 77%			
Test for overall effect:	Z=1.10) (P = (0.27)						F	-10 -5 0 5 10 avors experimental Favors control

Selenium Dose, Outcome: Mortality

_		_	_	_					_		
		(Quality asses	sment				Su	nmary of	Findings	
	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study event ra	ates (%)	Relative effect	Anticipated abs	solute effects
Follow up							With STD EN made isonitrogenous	With EN with added glutamine	(95% CI)	Risk with STD EN made isonitrogenous	Risk difference with EN with added glutamine (95% Cl)
Mortality	(CRITICA	L OUTCOME)	I	L		l				I	
558 subjects (5 studies)	no serious risk of bias ¹	no serious inconsistency ²	no serious indirectness	serious ^{3,4}	undetected	MODERATE ^{1,2,3,4} due to imprecision	56/281 (19.9%)	43/277 (15.5%)	RR 0.8 (0.45 to 1.43)	199 per 1000	40 fewer per 1000 (from 110 fewer to 86 more)
Infection	S (CRITIC	AL OUTCOME)				1					
476 subjects (3 studies)	no serious risk of bias⁵	no serious inconsistency ⁶	no serious indirectness	serious ⁴	undetected	LOW ^{4,5,6} due to inconsistency, imprecision	79/243 (32.5%)	65/233 (27.9%)	RR 0.85 (0.66 to 1.09)	325 per 1000	49 fewer per 1000 (from 111 fewer to 29 more)
Hospital	stay in	days (CRITICA	L OUTCOME; I	Better indicated	d by lower val	ues)			I	I	
25 subjects 2 studies)	no serious risk of	no serious inconsistency	no serious indirectness	serious ⁴	undetected	MODERATE ^{4,5} due to imprecision	63	62	-		The mean hospital stay in davs in the

bias ⁵						grou 1.66 (5.0	rvention ups was 5 higher 16 lower to 9 higher)
¹ Major bias is two stud ² Heterogeneity was d ³ As expected, smaller ⁴ The estimate of effec ⁵ A major bias is Houc	esirable, the I2 statis studies have wider t crosses the line of	stic + 37%. Less th confidence interva no effect.	nan 50% is de als.	Otherwise, methods	s were good.		

⁶ One study used positive blood cultures as the indicator of infection versus severe sepsis as defined by ACCP and SCCM

EN Glutamine vs Standard, Outcome: Hospital LOS

	En ۱	with G	LN	STD	with P	RO		Mean Difference			Mear	n Diffe	rence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV, Ra	ndom,	95% CI	
Houdijk 1998	32.7	17.1	41	33	23.8	39	49.9%	-0.30 [-9.42, 8.82]	1998					
Garrell 2003	33	17	21	29	17	24	41.9%	4.00 [-5.96, 13.96]	2003					
McQuiggan 2008	32	13.6	10	39.3	33.6	10	8.2%	-7.30 [-29.77, 15.17]	2008	←				
Total (95% CI)			72			73	100.0%	0.93 [-5.52, 7.37]						
Heterogeneity: Tau ² =	-			= 2 (P =	0.62);	l² = 0%				⊢ -10	-5	0	5	10
Test for overall effect:	Z = 0.20	5 (F = (5.76)							F	Favors G	LN Fa	avors STD	

	En with	GLN	STD with	PRO		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Y	ear M-H, Random, 95% Cl
Houdijk 1998	20	35	26	37	48.1%	0.81 [0.57, 1.16] 19	998
Hall 2003	38	179	43	184	41.0%	0.91 [0.62, 1.33] 20	003
Garrell 2003	7	19	10	22	10.9%	0.81 [0.38, 1.71] 20	003
Total (95% CI)		233		243	100.0%	0.85 [0.66, 1.09]	•
Total events	65		79				
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.21,	df = 2 (P =	0.90); l ²	= 0%		
Test for overall effect:	Z = 1.29 (F	P = 0.20)				0.1 0.2 0.5 1 2 5 10 Favors GLN Favors STD

EN Glutamine vs Standard, Outcome: Infections

¹Garrell 2003 defined infection as positive blood culture.

EN Glutamine vs Standard, Outcome: Mortality

	En with	GLN	STD with	PRO		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI
1.1.1 Mixed ICUNew	Subgroup							
Jones 1999	10	26	9	24	30.3%	1.03 [0.50, 2.08]	1999	+
Hall 2003	27	179	30	184	41.1%	0.93 [0.57, 1.49]	2003	
Subtotal (95% CI)		205		208	71.3%	0.96 [0.64, 1.42]		\bullet
Total events	37		39					
Heterogeneity: Tau ² =	0.00; Chi ² :	= 0.06, (df = 1 (P =	0.81); l²	= 0%			
Test for overall effect:	Z = 0.23 (P	9 = 0.82))					
1.1.2 Trauma								
Houdijk 1998	4	41	3	39	12.2%	1.27 [0.30, 5.31]	1998	
McQuiggan 2008	0	10	2	10	3.5%	0.20 [0.01, 3.70]	2008	←
Subtotal (95% CI)		51		49	15.7%	0.79 [0.16, 3.92]		
Total events	4		5					
Heterogeneity: Tau ² =	0.37; Chi ²	= 1.27, (df = 1 (P =	0.26); l²	= 21%			
Test for overall effect:	Z = 0.29 (P	9 = 0.77))					
1.1.3 Burns								
Garrell 2003	2	21	12	24	13.0%	0.19 [0.05, 0.76]	2003	←
Subtotal (95% CI)		21		24	13.0%	0.19 [0.05, 0.76]		
Total events	2		12					
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 2.36 (P	9 = 0.02))					
Total (95% CI)		277		281	100.0%	0.77 [0.44, 1.34]		
Total events	43		56					
Heterogeneity: Tau ² =	0.14; Chi ² :	= 6.36, 0	df = 4 (P =	0.17); l²	= 37%			0.1 0.2 0.5 1 2 5
Test for overall effect:	Z = 0.93 (P	e = 0.35))					0.1 0.2 0.5 1 2 5 Favors GLN Favors STD
Test for subgroup diffe	~			0.00	10 50 00			

When should Parenteral Nutrition be initiated in the adult critically ill patient?

l	В					EN vs EN alone 1996; Dunham 1994; H			-	don 1989	
			Quality asses	ssment				Su	immary of	Findin	gs
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study ev	vent rates (%)	Relative effect	Anticip	ated absolute effects
Follow up							With EN alone	With Combination PN and EN	(95% CI)	Risk with EN alone	Risk difference with Combination PN and EN (95% Cl)
Mortality	1										
656	no serious	serious ²	no serious	serious ³	undetected	LOW ^{1,2,3}	77/333	66/323	RR 1.01	Study	population
(8 studies)	risk of bias ¹		indirectness			due to inconsistency, imprecision	(23.1%)	(20.4%)	(0.65 to 1.56)	231 per 1000	2 more per 1000 (from 81 fewer to 129 more)
Mortality	- Non-is	ocaloric tria	ls	1	1					1	1
610	no serious	serious ²	no serious	serious ³	undetected	LOW ^{1,2,3}	72/309	60/301	RR 0.98	Study	population
(6 studies)	risk of bias ¹		indirectness			due to inconsistency, imprecision	(23.3%)	(19.9%)	(0.6 to 1.6)	233 per 1000	5 fewer per 1000 (from 93 fewer to 140 more)
Mortality	- Isocalo	oric trials		•					-	4	
46	no serious	no serious	no serious	serious ³			5/24	6/22	RR 1.31	Study	population
(2 studies)	risk of bias	inconsistency	indirectness				(20.8%)	(27.3%)	(0.29 to 5.82)	208 per 1000	65 more per 1000 (from 148 fewer to 1000 more)

Infectiou	is Compli	ications									
547	no serious		no serious	serious ³	undetected	MODERATE ³		128/274	RR 0.96	Study	population
(4 studies)	risk of bias	inconsistency	indirectness			due to imprecision	(48.4%)	(46.7%)	(0.81 to 1.13)	484 per 1000	19 fewer per 1000 (from 92 fewer to 63 more)
Hospital	length of	f stay (Better ir	dicated by lower	values)	-		-	-		•	
547 (4 studies)	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	undetected	MODERATE ¹ due to risk of bias	273	274	-		The mean hospital length of stay in the intervention groups was 4.59 lower (7.27 to 1.91 lower)
ICU leng	th of stay	(Better indicated	d by lower values)							
523 (3 studies)	serious ¹	no serious inconsistency	no serious indirectness	serious ³	undetected	LOW ^{1,3} due to risk of bias, imprecision	261	262	-		The mean icu length of stay in the intervention groups was 1.39 lower (3.13 lower to 0.36 higher)
Ventilato	or days (Be	etter indicated by	lower values)	1							
547 (4 studies)	serious ¹	serious ²	no serious indirectness	serious ³	undetected	VERY LOW ^{1,2,3} due to risk of bias, inconsistency, imprecision	273	274	-		The mean ventilator days in the intervention groups was 0.74 lower (2.29 lower to 0.82 higher)

Supplemental PN vs EN Alone, Outcome: Mortality

	EN + F	N	EN			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
1.1.1 Non-isocaloric t	trials							
Herndon 1987	8	13	8	15	18.4%	1.15 [0.61, 2.19]	1987	
Herndon 1989	10	16	6	23	15.3%	2.40 [1.09, 5.26]	1989	
Bauer 2000	17	60	18	60	20.4%	0.94 [0.54, 1.65]	2000	
Abrishami 2010	2	10	1	10	3.4%	2.00 [0.21, 18.69]	2010	
Chen 2011	3	49	11	49	9.1%	0.27 [0.08, 0.92]	2011	·
Heidegger 2013	20	153	28	152	21.1%	0.71 [0.42, 1.20]	2013	
Subtotal (95% CI)		301		309	87.7%	0.98 [0.60, 1.60]		-
Total events	60		72					
		P = 0.9	3)					
Test for overall effect: 1.1.2 Isocaloric trials	Z=0.09(·					
Test for overall effect: 1.1.2 Isocaloric trials Dunham 1994	Z=0.09(10	1	12	3.8%	3.60 [0.44, 29.45]		
Test for overall effect: 1.1.2 Isocaloric trials Dunham 1994 Chiarelli 1996	Z=0.09(10 12	·	12	8.6%	0.75 [0.21, 2.66]		•
Dunham 1994 Chiarelli 1996 Subtotal (95% CI)	Z = 0.09 (3 3 3	10	1			• • •		
Test for overall effect: 1.1.2 Isocaloric trials Dunham 1994 Chiarelli 1996 Subtotal (95% CI) Total events	Z = 0.09 (3 3 3 6	10 12 22	1 4 5	12 24	8.6% <mark>12.3%</mark>	0.75 [0.21, 2.66] 1.31 [0.29, 5.82]		
Test for overall effect: 1.1.2 Isocaloric trials Dunham 1994 Chiarelli 1996	Z = 0.09 (3 3 3 6 : 0.48; Chi	10 12 22 ²= 1.6′	1 4 5 1, df= 1 (12 24	8.6% <mark>12.3%</mark>	0.75 [0.21, 2.66] 1.31 [0.29, 5.82]		
Test for overall effect: 1.1.2 Isocaloric trials Dunham 1994 Chiarelli 1996 Subtotal (95% CI) Total events Heterogeneity: Tau ² =	Z = 0.09 (3 3 3 6 : 0.48; Chi	10 12 22 ²= 1.6′	1 4 5 1, df= 1 (12 24 P = 0.2	8.6% <mark>12.3%</mark>	0.75 [0.21, 2.66] 1.31 [0.29, 5.82]		
Test for overall effect: 1.1.2 Isocaloric trials Dunham 1994 Chiarelli 1996 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	Z = 0.09 (3 3 3 6 : 0.48; Chi	10 12 22 ² = 1.6 ⁷ P = 0.7	1 4 5 1, df= 1 (12 24 P = 0.2	8.6% 12.3% 0); I ² = 38	0.75 [0.21, 2.66] 1.31 [0.29, 5.82] %		
Test for overall effect: 1.1.2 Isocaloric trials Dunham 1994 Chiarelli 1996 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	Z = 0.09 (3 3 6 0.48; Chi Z = 0.35 (66	10 12 22 ² = 1.6' P = 0.7 323	1 4 1, df = 1 (2) 77	12 24 P = 0.2 333	8.6% 12.3% 0); I² = 38 100.0%	0.75 [0.21, 2.66] 1.31 [0.29, 5.82] % 1.01 [0.65, 1.56]		
Test for overall effect: 1.1.2 Isocaloric trials Dunham 1994 Chiarelli 1996 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events	Z = 0.09 (3 3 6 0.48; Chi Z = 0.35 (66 : 0.16; Chi	10 12 22 ² = 1.6 ² P = 0.7 323 ² = 13.2	1 4 5 1, df = 1 (2) 77 23, df = 7	12 24 P = 0.2 333	8.6% 12.3% 0); I² = 38 100.0%	0.75 [0.21, 2.66] 1.31 [0.29, 5.82] % 1.01 [0.65, 1.56]		0.1 0.2 0.5 1 2 5 10 Favors EN + PN Favors EN alone

Supplemental PN vs EN Alone, Outcome: Infectious Complications

	EN + F	PN	EN			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Chiarelli 1996	6	12	3	12	2.0%	2.00 [0.65, 6.20]	1996	
Bauer 2000	39	60	39	60	37.7%	1.00 [0.77, 1.30]	2000	+
Chen 2011	6	49	5	49	2.1%	1.20 [0.39, 3.67]	2011	
Heidegger 2013	77	153	85	152	58.2%	0.90 [0.73, 1.11]	2013	
Total (95% CI)		274		273	100.0%	0.96 [0.81, 1.13]		•
Total events	128		132					
Heterogeneity: Tau ² =	: 0.00; Chi	= 2.2	3, df = 3 (P = 0.5	3); I^z = 0%	6		
Test for overall effect:	Z = 0.53 ((P = 0.6	60)					Favors EN + PN Favors EN alone

Supplemental PN vs EN Alone, Outcome: ICU Length of Stay

	E	I + PN			EN			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Bauer 2000	16.9	11.8	60	17.3	12.8	60	12.7%	-0.40 [-4.81, 4.01]	2000	
Chen 2011	6.75	1.75	49	9.09	2.75	49	57.1%	-2.34 [-3.25, -1.43]	2011	
Heidegger 2013	13	10	153	13	11	152	30.2%	0.00 [-2.36, 2.36]	2013	
Total (95% CI)			262			261	100.0%	-1.39 [-3.13, 0.36]		•
Heterogeneity: Tau² = Test for overall effect:				= 2 (P =	0.15);	l² = 47°	%			-10 -5 0 5 10 Favors EN + PN Favors EN alone

Supplemental PN vs EN Alone, Outcome: Hospital Length of Stay

	E	I + PN			EN			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI	
Chiarelli 1996	37	13	12	41	23	12	3.1%	-4.00 [-18.95, 10.95]	1996	4	
Bauer 2000	31.2	18.5	60	33.7	27.7	60	9.1%	-2.50 [-10.93, 5.93]	2000	←	
Chen 2011	17.3	2.47	49	23.32	5.6	49	66.9%	-6.02 [-7.73, -4.31]	2011		
Heidegger 2013	31	23	153	32	23	152	20.9%	-1.00 [-6.16, 4.16]	2013		
Total (95% CI)			274			273	100.0%	-4.59 [-7.27, -1.91]		•	
Heterogeneity: Tau ² =	= 2.03; C	hi ² = 3	.78, df=	= 3 (P =	0.29);	l ^z = 21°	%				10
Test for overall effect	Z = 3.35	i (P = (0.0008)							Favors EN + PN Favors EN a	

Supplemental PN vs EN Alone, Outcome: Ventilator Days

	E	N + PN			EN			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl
Chiarelli 1996	19	6	12	19	2	12	12.8%	0.00 [-3.58, 3.58]	1996	
Bauer 2000	11	9	60	10	8	60	15.8%	1.00 [-2.05, 4.05]	2000	
Chen 2011	5.76	1.56	49	7.95	2.11	49	36.8%	-2.19 [-2.92, -1.46]	2011	+
Heidegger 2013	2.5	4.625	153	2.75	4.21	152	34.5%	-0.25 [-1.24, 0.74]	2013	
Total (95% CI)			274			273	100.0%	-0.74 [-2.29, 0.82]		-
Heterogeneity: Tau ² = Test for overall effect			-	= 3 (P =	0.006)); I² = 76	3%			-10 -5 0 5 10 Favors EN + PN Favors EN alone

Should low dose of PN vs Standard be used initially?

		Quest	tion H2: Lov	v dose PN	-	kcal/kg/d) vs., s ibliography:	Standard ((18-37 kcal	/kg/d) fo	or	
				Battistella 19	997, Choban ⁻	1997, McCowen 2000) & Ahrens 20	05			
			Quality asses	ssment				Sur	nmary of	Findings	
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study event	rates (%)	Relative effect	Anticipated	absolute effects
Follow up							With Standard (18-37 kcal/kg/d)	With Low dose PN (14-28.5 kcal/kg/d)	(95% CI)	Risk with Standard (18- 37 kcal/kg/d)	Risk difference with Low dose PN (14- 28.5 kcal/kg/d) (95% Cl)
Mortality	(CRITICAL	OUTCOME)									
150 (4 studies) 1-3 months	serious ^{1,2}	serious ³	no serious indirectness	serious	undetected	VERY LOW ^{1,2,3} due to risk of bias, inconsistency, imprecision	8/76 (10.5%)	5/74 (6.8%)	RR 0.61 (0.2 to 1.85)	105 per 1000	41 fewer per 1000 (from 84 fewer to 89 more)
Infection	S (CRITICA	L OUTCOME)	<u> </u>	<u> </u>	<u> </u>				1	1	
137 (3 studies) 1-3 months	serious ^{1,2}	serious ³	no serious indirectness	serious	undetected	VERY LOW ^{1,2,3} due to risk of bias, inconsistency, imprecision	25/69 (36.2%)	16/68 (23.5%)	RR 0.68 (0.3 to 1.57)	362 per 1000	116 fewer per 1000 (from 254 fewer to 207 more)

LOS da	ays (CRIT	TICAL OUTCOME; E	Better indicated by	lower values)					
110 (3	serious ^{1,2}	serious ³	no serious	serious	VERY LOW ^{1,2,3} due to risk of bias,	56	54	-	The mean los days in the intervention groups was

studies) 1-3 months			indirectness		inconsistency, imprecision				3.94 lower (14.51 lower to 6.64 higher)
Patient	ts with I	hyperglycemi	а						
40 (1 study) 1-3 months		no serious inconsistency	no serious indirectness	no serious imprecision	MODERATE ^{1,2} due to risk of bias	14/20 5/20 (70%) (25%)	RR 0.36 (0.16 to 0.8)	-	448 fewer per 1000 (from 140 fewer to 588 fewer)

¹ Subjects and or outcome assessors were not blinded in all studies.
 ² Not all subjects randomized are included in the analysis.
 ³ Wide range across studies for the following definitions (a) low dose and (b) standard PN.
 ⁴ Sample sizes are very small and there are very wide confidence intervals that cross the line of no effect for all studies.

PN Energy Dose, Outcome: Mortality

	Low do	ose	Standa	ard		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Y	ear M-H, Random, 95% Cl
Battistella 1997	2	27	0	30	14.0%	5.54 [0.28, 110.42] 1	997
Choban 1997	0	6	2	7	15.3%	0.23 [0.01, 4.00] 1	997 🕇 🔳 🚽
MccCowen 2000	2	21	3	19	44.4%	0.60 [0.11, 3.23] 2	000 000
Ahrens 2005	1	20	3	20	26.4%	0.33 [0.04, 2.94] 2	005
Total (95% CI)		74		76	100.0%	0.61 [0.20, 1.85]	
Total events	5		8				
Heterogeneity: Tau ² =	0.00; Chi ²	= 2.87	, df = 3 (F	9 = 0.41); l ² = 0%		
Test for overall effect: 2	Z = 0.88 (I	P = 0.3	8)				0.1 0.2 0.5 1 2 5 10 Favors low dose Favors standard

PN Energy Dose, Outcome: Infectious Complication

	Low do	ose	Standa	ard		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Yea	r M-H, Random, 95% Cl
Battistella 1997	5	27	13	30	37.9%	0.43 [0.18, 1.04] 199	7 -
MccCowen 2000	6	21	10	19	41.3%	0.54 [0.24, 1.21] 200	o —
Ahrens 2005	5	20	2	20	20.8%	2.50 [0.55, 11.41] 200	5
Total (95% CI)		68		69	100.0%	0.68 [0.30, 1.57]	•
Total events	16		25				
Heterogeneity: Tau ² =	0.27; Chi ²	= 4.05	, df = 2 (F	P = 0.13	8); l² = 51%	, D	
Test for overall effect:	Z = 0.90 (P = 0.3	7)				0.01 0.1 1 10 100 Favors low dose Favors standard

PN Energy Dose, Outcome: Subjects with hyperglycemia

	Low do	ose	Standa	ard		Risk Ratio		Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Year	N	/I-H, Rand	lom, 95%	CI	
Ahrens 2005	5	20	14	20	100.0%	0.36 [0.16, 0.80] 2005					
Total (95% CI)		20		20	100.0%	0.36 [0.16, 0.80]		\blacklozenge			
Total events	5		14								
Heterogeneity: Not ap	plicable									<u> </u>	100
Test for overall effect:	Z = 2.49 (P = 0.0	1)					0.1 Iow dose	Favors :	0 stan	100 dard

Should Lipid be used with PN?

			Que			trition With an oste;;a 1997 & McCov		Lipids			
			Quality asses	sment				:	Summary	of Findings	
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study event	rates (%)	Relative effect	Anticipated at	osolute effects
Follow up							With Without lipids in PN in Critically III Patients	With With lipids	(95% CI)	Risk with Without lipids in PN in Critically III Patients	Risk difference with With lipids (95% Cl)
Mortality	(CRITICA	L OUTCOME)					1				
97 (2 studies)	serious ¹	serious ²	no serious indirectness	serious ³	undetected	VERY LOW ^{1,2,3} due to risk of bias, inconsistency, imprecision	4/48 (8.3%)	3/49 (6.1%)	RR 0.77 (0.09 to 6.37)	83 per 1000	19 fewer per 1000 (from 76 fewer to 447 more)
Infection		L CAL OUTCOME)		1	<u></u>	I			ļ	1	
97 (2 attudiae)	serious ¹	serious ⁴	no serious	serious ³	undetected	VERY LOW ^{1,3,4}	11/48	23/49	RR 2.05	Study populat	ion
(2 studies)			indirectness			due to risk of bias, inconsistency, imprecision	(22.9%)	(46.9%)	(1.13 to 3.72)	229 per 1000	241 more per 1000 (from 30 more to 623 more)
										Moderate	ł
										235 per 1000	247 more per 1000 (from 31 more to 639 more)
Hospital	Length	of Stay (CRIT	ICAL OUTCOM	: E; Better indica	ited by lower v	alues)	1	- -	1	,	1

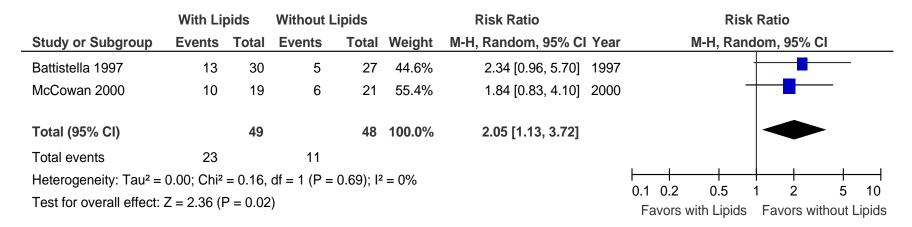
97 (2 studies)			no serious indirectness	very serious ^{5,6}	undetected	VERY LOW ^{1,5,6} due to risk of bias, imprecision	48	49	-		The mean hospital length of stay in the intervention groups was 3.95 higher (2.89 lower to 10.79 higher)
-------------------	--	--	----------------------------	--------------------------------	------------	--	----	----	---	--	---

¹ The included studies did not blind interventions, nor did they use all subjects randomized in the data analysis.

² The RR of one study favors PN without lipids (Battistella 1997) while the the other favors McCowan 2000.

³ Small number of subjects with small number of events.

⁴ Infection type is not defined. Beattistella (1997) reported pneumonia and line sepsis. Line sepsis is included in this analysis. McCowen (2000) did not denote specific infections; only reported "infections".


⁵ The studies were not powered to detect a difference on this variable.

⁶ Uncertain if early deaths decreased LOS in any group. Cannot tell if reported effect is from the intervention or if early death affected the outcome.

PN Lipids, Outcome: Mortality

	With Li	oids	Without I	_ipids		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Year	r	M-H, Ranc	dom, 95% (
Battistella 1997	0	30	2	27	34.4%	0.18 [0.01, 3.60] 1997	-			_
McCowan 2000	3	19	2	21	65.6%	1.66 [0.31, 8.88] 2000)		╞╌┛	
Total (95% CI)		49		48	100.0%	0.77 [0.09, 6.37]				
Total events	3		4							
Heterogeneity: Tau ² =	1.03; Chi ²	= 1.67,	df = 1 (P =	: 0.20); l ²	² = 40%		0.1 0.2	0.5		 5 10
Test for overall effect:	Z = 0.24 (F	P = 0.81)					0.5 with Lipids	1 2 Favors wi	ithout Lipids

PN Lipids, Outcome: Infectious Complication

PN Lipids, Outcome: Hospital Length of Stay

	With	n Lipi	ds	Witho	out Lip	ids		Mean Difference		Mea	n Differe	ence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, F	ixed, 95	5% CI	
Battistella 1997	39	24	30	27	16	27	42.5%	12.00 [1.50, 22.50]					
McCowan 2000	17	15	19	19	14	21	57.5%	-2.00 [-11.02, 7.02]			╼┼─		
Total (95% CI)			49			48	100.0%	3.95 [-2.89, 10.79]					
Heterogeneity: Chi ² = Test for overall effect:	-	,); l² = 75	%				-20 Favor	-10 s with Lipi	0 ids Fav	10 /ors with	20 20 Dut Lipids

What is the appropriate target BG range in the ICU?

-	phy: Van de ackenzie 200	on: Using ins en Berghe 200 08; Iapichino 2 lotta 2009; Fin	1; Grey 2004 008; De La I	4; Henderso Rosa 2008;	n 2005; Bla Brunkhorst	nd 2005; Mitcl 2008; Arabi 20	hell 2006; Wa 008; Finfer 20	ang 2006; Mc 009; Savioli 20	Mullin 20 009; Anna	07; Farah 200 ane 2010; Ara	-
		Qua	lity assessn	nent				Summa	ary of Fin	dings	
	Risk of bias	Inconsisten cy	Indirectne ss	Imprecisi on	Publicati on bias	Overall quality of	Study even	t rates (%)	e effect	Anticipated effects	absolute
(studies) Follow up						evidence	With conventio nal blood sugar manageme nt	With Using insulin to maintain blood sugar in a tight range	(95% C I)	Risk with convention al blood sugar manageme nt	e with Using
Mortality (c	overall) (CR	ITICAL OUTC	OME)	•	•	•	•		•	•	
13861 (25 studies)	serious ^{1,2}	no serious inconsistenc y		no serious imprecisio n	undetecte d	MODERAT E ^{1,2} due to risk of bias	1233/6907 (17.9%)	1165/6954 (16.8%)	RR 0.91 (0.82 to 1.02)	179 per 1000	16 fewer per 1000 (from 32 fewer to 4 more)
Infections	(CRITICAL	OUTCOME)	<u> </u>								
2745 (6 studies)	no serious risk of bias ³	serious ⁴	no serious indirectnes s	no serious imprecisio n	undetecte d	MODERAT E ^{3,4} due to inconsistenc y	294/1374 (21.4%)	268/1371 (19.5%)	RR 0.89 (0.73 to 1.09)	214 per 1000	24 fewer per 1000 (from 58 fewer to 19 more)

٦

LOS ICU d	ays (CR		TCOME; Bet	ter indicated	l by lower va	alues)						
3777 (7 studies)	seriou s ²	no serious inconsister		no serious indirectnes s	no serious imprecisio n	undetected	MODERAT E ² due to risk of bias	1898	1879	-	The mean los ICL days in the control groups was 17	intervention groups was 1.78 lower
Ventilator	days (C	RITICAL O	UTCOME; ra	nge of score	s: 5-12.1; B	etter indicate	d by lower va	alues)				
	s ⁵	serious ^{4,5}		no serious indirectnes s		undetected	LOW ^{4,5} due to risk of bias, inconsisten cy	4835	4814	-	The mean ventilat or days in the control groups was 8.7 days	intervention groups was 1.41 lower
Hypoglyc	emia (C	RITICAL OUT	COME)									
11606 (18 studies)	2	serious ⁶	no serious indirectness blinded. It is a dif	serious ⁷	undetected	due to risk of bias, (5.2%) 86 (1.8		RR 3.19 (1.81 to 5.6)		5 more per 1000 om 42 more to 241 re)		

In only 2/25 studies were personnel blinded. It is a difficult study to blind.

² In approximately one third of the studies, all subjects randomized were not included in the analysis (per protocol analysis) Intention to treat analysis is the stronger method of analysis.

³ Issues with blinding, but this is difficult to blind.

⁴ Homogeneity is marginal, RRs are on both sides of the line of no effect. Larger studies have conflicting results.

⁵ Findings from small studies and large studies differ.

 6 I2 statistic is 94%, desired is < 50%. Wide variability in the study findings.

⁷ CIs are wide

Glycemic	Control,	Outcome	Mortality	y
----------	----------	---------	-----------	---

	Intensive c	ontrol	Conventional	control		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Yea	m M-H, Random, 95% Cl
Van den Berghe 2001	55	765	85	783	5.9%	0.66 [0.48, 0.92] 200	1
Grey 2004	4	34	6	27	0.8%	0.53 [0.17, 1.69] 200	4
Yu 2005	4	28	4	27	0.6%	0.96 [0.27, 3.47] 200	5
Bland 2005	1	5	2	5	0.3%	0.50 [0.06, 3.91] 200	5 +
Henderson 2005	4	32	5	35	0.7%	0.88 [0.26, 2.98] 200	5
Van den Berghe 2006	222	595	242	605	10.7%	0.93 [0.81, 1.08] 200	6 -
Mitchell 2006	9	35	3	35	0.7%	3.00 [0.89, 10.16] 200	6
Wang 2006	7	58	26	58	1.7%	0.27 [0.13, 0.57] 200	6
McMullin 2007	6	11	4	9	1.2%	1.23 [0.49, 3.04] 200	7
Oksanen 2007	12	39	18	51	2.5%	0.87 [0.48, 1.59] 200	7
He 2007	7	150	6	38	1.0%	0.30 [0.11, 0.83] 200	7
De Azevedo 2007	8	31	6	17	1.3%	0.73 [0.30, 1.76] 200	7
Devos 2007	107	550	89	551	7.5%	1.20 [0.93, 1.55] 200	7 +
Farah 2007	19	41	26	48	4.3%	0.86 [0.56, 1.30] 200	7
Mackenzie 2008	39	121	47	119	5.6%	0.82 [0.58, 1.15] 200	8
Zhang 2008	4	168	6	170	0.7%	0.67 [0.19, 2.35] 200	8
Arabi 2008	72	266	83	257	7.2%	0.84 [0.64, 1.09] 200	8
Brunkhorst 2008	61	247	75	289	6.6%	0.95 [0.71, 1.27] 200	8 -
De La Rosa 2008	102	254	96	250	8.5%	1.05 [0.84, 1.30] 200	8 -
He 2008	16	58	29	64	3.4%	0.61 [0.37, 1.00] 200	8
lapichino 2008	13	36	11	36	2.2%	1.18 [0.61, 2.28] 200	8
Savioli 2009	14	45	13	45	2.3%	1.08 [0.57, 2.03] 200	9
Finfer 2009	220	3010	197	3014	9.4%	1.12 [0.93, 1.35] 200	9 +
Annane 2010	117	255	109	254	9.2%	1.07 [0.88, 1.30] 201	o -
Arabi 2011	42	120	45	120	5.7%	0.93 [0.67, 1.31] 201	1
Total (95% CI)		6954		6907	100.0%	0.91 [0.82, 1.02]	
Total events	1165		1233				
Heterogeneity: Tau ² = 0	0.02; Chi² = 40	.37, df =	24 (P = 0.02); l ²	= 41%			
Test for overall effect: Z	2 = 1.65 (P = 0	.10)					0.1 0.2 0.5 1 2 5 10 Favor intensive Favors conventional

Glycemic Control, Outcome: Infectious Complication

١

Glycemic Control, Outcome: ICU LOS

	Intens	ive cor	ntrol	Conven	tional co	ontrol		Mean Difference		Mea	n Diffe	rence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI Yea	r	IV, Ra	andom	, 95% CI	
Van den Berghe 2001	7	11	765	9	15	783	27.6%	-2.00 [-3.31, -0.69] 200	1	_			
Grey 2004	33.4	68.3	34	24.5	19.4	27	0.1%	8.90 [-15.20, 33.00] 200	4 ←				→
Van den Berghe 2006	8	9	595	10	12	605	32.9%	-2.00 [-3.20, -0.80] 200	6		-		
Wang 2006	9.14	5.45	58	12.88	8.29	58	7.2%	-3.74 [-6.29, -1.19] 200	6		-		
Farah 2007	7	4.9	41	8	4.85	48	11.4%	-1.00 [-3.03, 1.03] 200	7	_			
Arabi 2008	9.6	8.5	266	10.8	11.3	257	16.0%	-1.20 [-2.92, 0.52] 200	8	_			
Arabi 2011	13.1	9.8	120	13.1	14.7	120	4.7%	0.00 [-3.16, 3.16] 201	1	—			
Total (95% CI)			1879			1898	100.0%	-1.78 [-2.47, -1.09]			•		
Heterogeneity: Tau ² = 0	0.00; Chi ²	= 5.48,	df = 6 (P	= 0.48); l	² = 0%								
Test for overall effect: Z	2 = 5.08 (F	° < 0.00	001)						-10 Fa	-5 avor intens	o sive F	5 avors con	10 ventional

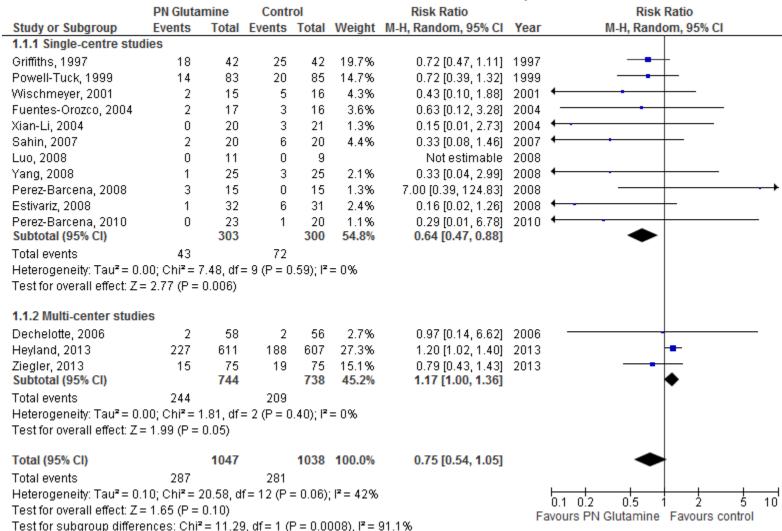
Glycemic Control, Outcome: Subjects with hypoglycemia

	Intensive c	ontrol	Conventional	control		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Van den Berghe 2001	39	765	6	783	6.0%	6.65 [2.83, 15.62]	2001	
Grey 2004	11	34	20	27	6.6%	0.44 [0.26, 0.75]	2004	
Henderson 2005	8	32	1	35	3.7%	8.75 [1.16, 66.15]	2005	· · · · · · · · · · · · · · · · · · ·
Yu 2005	3	28	0	27	2.4%	6.76 [0.37, 124.98]	2005	
Bland 2005	5	5	4	5	6.6%	1.22 [0.73, 2.06]	2005	
Mitchell 2006	6	58	2	58	4.5%	3.00 [0.63, 14.25]	2006	
Wang 2006	5	35	0	35	2.5%	11.00 [0.63, 191.69]	2006	
McMullin 2007	4	11	1	9	3.7%	3.27 [0.44, 24.34]	2007	
Farah 2007	80	550	21	551	6.6%	3.82 [2.40, 6.08]	2007	
Devos 2007	23	41	23	48	6.7%	1.17 [0.78, 1.75]	2007	- -
Mackenzie 2008	58	121	10	119	6.4%	5.70 [3.06, 10.62]	2008	
Iapichino 2008	8	36	3	36	5.2%	2.67 [0.77, 9.25]	2008	
De La Rosa 2008	21	254	20	250	6.5%	1.03 [0.57, 1.86]	2008	
Brunkhorst 2008	42	247	12	280	6.4%	3.97 [2.14, 7.36]	2008	
Arabi 2008	76	266	8	257	6.3%	9.18 [4.52, 18.63]	2008	
Finfer 2009	206	3016	15	3014	6.6%	13.72 [8.15, 23.12]	2009	
Savioli 2009	45	45	7	45	6.4%	6.07 [3.15, 11.68]	2009	
Bilotta 2009	226	242	152	241	6.9%	1.48 [1.34, 1.64]	2009	-
Total (95% CI)		5786		5820	100.0%	3.19 [1.81, 5.60]		•
Total events	866		305					
Heterogeneity: Tau ² = 1	I.19; Chi² = 30	5.40, df =	= 17 (P < 0.0000	1); l² = 949	%			
Test for overall effect: Z	7 - 4.03 (P - 0)	0001)						0.1 0.2 0.5 1 2 5

Test for overall effect: Z = 4.03 (P < 0.0001)

Favor intensive Favors conventional

When should parenteral glutamine be utilized in the adult ICU patient?


Ozgulteki	n 2008;	vell-Tuck 1999 Estivariz 2008); Wischmeye ; Yang 2008;	er 2001; Fuei Cai 2008; Fi	Bibliograph ntes-Orozco uentes-Oroz	2004; Xian-Li zco 2008; Erog 2002; Ziegler	2004; Pal lu 2009; P	mese 200 Perez-Barc	ena 2010); Cekma	an 2011;
		C	uality assess	ment				Summ	ary of Fin	idings	
Participant s (studies)	Risk of biasInconsistenc yIndirectnes sImprecisio nPublicatio n biasOverall quality of evidenceStudy (%)						Study eve (%)	Relativ e effect (95%	Anticipated absolute effects		
Follow up							With Control	With PN GLN	CI)	Risk with Contro I	Risk differenc e with PN GLN (95% CI)
Hospital Mo	rtality						•	-	•		
2216	no .	no serious	no serious	serious ¹	undetecte		295/111	296/110	RR	Study p	opulation
(16studies)	seriou s risk of bias	inconsistenc y	indirectnes s		d	due to imprecision	2 (26.5%)	4 (26.8%)	0.73 (0.53 to 1.0)	271 per 1000	68 fewer per 1000 (from 125 fewer to 14 more)

Infectious C	Complica	tions									
1264 (12 studies)	no seriou s risk of bias	no serious inconsistenc y	no serious indirectnes s	serious ¹	undetecte d	MODERATE 1 due to imprecision	328/637 (51.5%)	297/627 (47.4%)	RR 0.86 (0.73 to 1.03)	515	72 fewer per 1000 (from 139 fewer to 15 more)
VAP											1
490	no	no serious	no serious	serious ¹	undetecte	MODERATE	62/242	46/248	RR	Study p	opulation
(6 studies)	seriou s risk of bias	inconsistenc y	indirectnes s		d	due to imprecision	(25.6%)	(18.5%)	0.75 (0.55 to 1.03)	256 per 1000	64 fewer per 1000 (from 115 fewer to 8 more)

¹Wide confidence intervals

PN Glutamine vs Control, Outcome: Hospital Mortality

	PN Glutar	mine	Contr	ol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
1.1.1 Single-centre studi	ies							
Griffiths, 1997	18	42	25	42	17.4%	0.72 [0.47, 1.11]	1997	
Powell-Tuck, 1999	14	83	20	85	13.1%	0.72 [0.39, 1.32]	1999	
Wischmeyer, 2001	2	15	5	16	3.9%	0.43 [0.10, 1.88]	2001	•
Goeters, 2002	7	33	10	35	9.1%	0.74 [0.32, 1.72]	2002	
Ziegler, 2004	1	32	5	31	2.1%	0.19 [0.02, 1.57]	2004	<
Xian-Li, 2004	0	20	3	21	1.1%	0.15 [0.01, 2.73]	2004	←
Fuentes-Orozco, 2004	2	17	3	16	3.2%	0.63 [0.12, 3.28]	2004	
Sahin, 2007	2	20	6	20	3.9%	0.33 [0.08, 1.46]	2007	<
Yang, 2008	1	25	3	25	1.9%	0.33 [0.04, 2.99]	2008	· · · · · · · · · · · · · · · · · · ·
Luo, 2008	0	11	0	9		Not estimable	2008	
Perez-Barcena, 2008	3	15	0	15	1.2%	7.00 [0.39, 124.83]	2008	
Estivariz, 2008	1	32	6	31	2.2%	0.16 [0.02, 1.26]	2008	<
Perez-Barcena, 2010	0	23	1	20	1.0%	0.29 [0.01, 6.78]	2010	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)		368		366	60.0%	0.64 [0.48, 0.85]		•
Total events	51		87					
Heterogeneity: Tau ² = 0.0	•	•	: 11 (P =	0.63);1	≃ =0%			
Test for overall effect: Z =	3.03 (P = I	0.002)						
1.1.2 Multi-center studie	s							
Dechelotte, 2006	2	58	2	56	2.4%	0.97 [0.14, 6.62]	2006	
Ziegler, 2013	15	75	19	75	13.4%	0.79 [0.43, 1.43]	2013	
Heyland, 2013	227	611	188	607	24.1%	1.20 [1.02, 1.40]	2013	-
Subtotal (95% CI)		744		738	40.0%	1.17 [1.00, 1.36]		◆
Total events	244		209					
Heterogeneity: Tau ² = 0.0)0; Chi ² = 1	.81, df=	: 2 (P = 0	.40); I²	= 0%			
Test for overall effect: Z =	1.99 (P = I	0.05)						
Total (95% CI)		1112		1104	100.0%	0.73 [0.53, 1.00]		•
			200					
Total events	295		296					
Total events Heterogeneity: Tau ² = 0.1		:3.72, df		= 0.05);	; I² = 41%			
	0; Chi² = 2			= 0.05);	; I² = 41%		-	0.1 0.2 0.5 1 2 5 10 avours PN Glutamine Favours control

Parenteral Glutamine vs PN No Glutamine, Outcome: Infectious Complications

Parenteral Glutamine vs No Glutamine, Outcome: VAP

	PN Glutar	nine	Contr	ol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
1.10.1 Single-centre st	udies							
Palmese, 2006	2	42	6	42	4.2%	0.33 [0.07, 1.56]	2006	· · · · · · · · · · · · · · · · · · ·
Estivariz, 2008	13	30	16	29	36.0%	0.79 [0.46, 1.33]	2008	
Eroglu, 2009	1	20	1	20	1.4%	1.00 [0.07, 14.90]	2009	← →
Perez-Barcena, 2010	11	23	8	20	21.1%	1.20 [0.60, 2.37]	2010	
Subtotal (95% CI)		115		111	62.7%	0.86 [0.58, 1.28]		-
Total events	27		31					
Heterogeneity: Tau ² = 0	.00; Chi ² = :	2.53, df	f= 3 (P =	0.47); P	²=0%			
Test for overall effect: Z	= 0.75 (P =	0.45)						
1.10.2 Multi-centre stu	dies							
Dechelotte, 2006	10	58	19	56	22.0%	0.51 [0.26, 1.00]	2006	
Ziegler, 2013	9	75	12	75	15.4%	0.75 [0.34, 1.67]	2013	
Subtotal (95% CI)		133		131	37.3%	0.60 [0.36, 1.00]		-
Total events	19		31					
Heterogeneity: Tau ² = 0	.00; Chi ² = I	0.53, df	f=1 (P=	0.47); F	²=0%			
Test for overall effect: Z	= 1.96 (P =	0.05)						
Total (95% CI)		248		242	100.0%	0.75 [0.55, 1.03]		◆
Total events	46		62					
Heterogeneity: Tau ² = 0	.00; Chi ² =	4.32, df	í= 5 (P =	0.50); ľ	²=0%			
Test for overall effect: Z	= 1.79 (P =	0.07)					E	0.1 0.2 0.5 1 2 5 10 avours PN glutamine Favours control
Test for subgroup differ	ences: Chi	² = 1.21	. df = 1 (F	² = 0.27	7), I ² = 17.	.0%		avours i regiutarinine l'avours control

Parenteral Glutamine vs No Parenteral Glutamine, Outcome: Ventilator Days

	PN G	ilutami	ine	С	ontrol			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Fuentes-Orozco, 2004	4.88	8.2	17	4.47	4.4	16	1.3%	0.41 [-4.04, 4.86]	2004	
Palmese, 2006	6	1.7	42	5	2.5	42	30.8%	1.00 [0.09, 1.91]	2006	
Zhang, 2007	5.27	1.78	22	7.18	2.76	22	13.7%	-1.91 [-3.28, -0.54]	2007	
Cai, 2008	15.6	5.7	55	17.2	5.9	55	5.5%	-1.60 [-3.77, 0.57]	2008	
Ozgultekin, 2008	10.1	4.4	20	14.4	14	20	0.6%	-4.30 [-10.73, 2.13]	2008	←
Luo, 2008	5	1	14	6	1	9	36.7%	-1.00 [-1.84, -0.16]	2008	
Estivariz, 2008	9	2	15	21	5	12	2.8%	-12.00 [-15.00, -9.00]	2008	←
Perez-Barcena, 2008	14	10	15	14	10	15	0.5%	0.00 [-7.16, 7.16]	2008	
Eroglu, 2009	8	3	20	9	3	20	7.4%	-1.00 [-2.86, 0.86]	2009	- _+
Perez-Barcena, 2010	15.2	8.2	23	18.9	11.1	20	0.7%	-3.70 [-9.61, 2.21]	2010	
Total (95% CI)			243			231	100.0%	-0.87 [-1.38, -0.37]		•
Heterogeneity: Chi ² = 73	.88, df =	9 (P <	0.0000)1); I² = I	88%					
Test for overall effect: Z =	= 3.37 (P	= 0.00	007)						F	-10 -5 0 5 10 avours PN glutamine Favours control

PN GIn vs PN No GIn; Outcome ICU LOS

		N GLN		_	ontrol			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl
2.4.1 Patients on PN										
Goeters, 2002	21.3	13.5	33	20.8	9.1	35	6.8%	0.50 [-5.00, 6.00]	2002	
Ziegler, 2004	12	2	30	23	6	29	9.4%	-11.00 [-13.30, -8.70]	2004	←
Fuentes-Orozco, 2004	7.2	9.2	17	7.3	4.5	16	7.3%	-0.10 [-5.00, 4.80]	2004	
Zhang, 2007	11.73	6.57	22	13.39	5.08	22	8.5%	-1.66 [-5.13, 1.81]	2007	
Cai, 2008	22.1	4.9	55	23.8	5.1	55	9.6%	-1.70 [-3.57, 0.17]	2008	
Luo, 2008	7.6	0.7	11	6.9	0.9	9	10.1%	0.70 [-0.02, 1.42]	2008	
Fuentes-Orozco, 2008	11	11.7	22	11.14	7.41	22	6.6%	-0.14 [-5.93, 5.65]	2008	
Estivariz, 2008	12	2	32	23	6	31	9.4%	-11.00 [-13.22, -8.78]	2008	←
Perez-Barcena, 2008	22.9	20.6	15	20.5	16	15	2.7%	2.40 [-10.80, 15.60]	2008	← →
Cekman, 2011	19.2	12	15	27.4	12	15	4.6%	-8.20 [-16.79, 0.39]	2011	←
Subtotal (95% CI)			252			249	75.1%	-3.34 [-7.10, 0.42]		
Test for overall effect: Z =	= 1.74 (P	= 0.08	3)	`						
2.4.2 Patients on EN										
	12	46	47	13	34	47	9.7%	-1 00 62 73 0 731	2006	
Palmese, 2006	12 11 8	4.6 5 9	42	13 173		42		-1.00 [-2.73, 0.73] -5 50 [-13 14 -2 14]	2006	<u> </u>
Palmese, 2006 Ozgultekin, 2008	11.8	5.9	20	17.3	16.4	20	5.2%	-5.50 [-13.14, 2.14]	2008	
2.4.2 Patients on EN Palmese, 2006 Ozgultekin, 2008 Eroglu, 2009 Subtotal (95% CI)			. –					• • •	2008	← <u>−</u> + − + − + − + − + − + − + − + − + − +
Palmese, 2006 Ozgultekin, 2008 Eroglu, 2009	11.8 14 .00; Chiᢪ:	5.9 2 = 1.31	20 20 82 df = 2	17.3 15	16.4 2	20 20 <mark>82</mark>	5.2% 9.9%	-5.50 [-13.14, 2.14] -1.00 [-2.24, 0.24]	2008	
Palmese, 2006 Ozgultekin, 2008 Eroglu, 2009 Subtotal (95% CI) Heterogeneity: Tau ² = 0.	11.8 14 .00; Chiᢪ:	5.9 2 = 1.31	20 20 82 df = 2	17.3 15	16.4 2	20 20 <mark>82</mark> : 0%	5.2% 9.9%	-5.50 [-13.14, 2.14] -1.00 [-2.24, 0.24]	2008	•
Palmese, 2006 Ozgultekin, 2008 Eroglu, 2009 Subtotal (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z = Total (95% CI)	11.8 14 .00; Chi ² : = 2.11 (P	5.9 2 = 1.31 = 0.03	20 20 82 , df = 2 3) 334	17.3 15 (P = 0.5	16.4 2 52); I²=	20 20 82 : 0% 331	5.2% 9.9% 24.9% 100.0%	-5.50 [-13.14, 2.14] -1.00 [-2.24, 0.24] -1.08 [-2.08, -0.08]	2008	
Palmese, 2006 Ozgultekin, 2008 Eroglu, 2009 Subtotal (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z =	11.8 14 .00; Chi [≆] : = 2.11 (P 6.12; Chi	5.9 2 = 1.31 = 0.03 ² = 178	20 20 82 , df = 2)) 334).57, df	17.3 15 (P = 0.5	16.4 2 52); I²=	20 20 82 : 0% 331	5.2% 9.9% 24.9% 100.0%	-5.50 [-13.14, 2.14] -1.00 [-2.24, 0.24] -1.08 [-2.08, -0.08]	2008	+ + + + + + + + + + + + + + + + + + +

PN GIn vs PN No GIn; VAP rates

	PN GL	N	Contr	ol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
2.6.1 Patients on PN								
Dechelotte, 2006	10	58	19	56	22.0%	0.51 [0.26, 1.00]	2006	
Estivariz, 2008	13	30	16	29	36.0%	0.79 [0.46, 1.33]	2008	
Perez-Barcena, 2010	11	23	8	20	21.1%	1.20 [0.60, 2.37]	2010	
Ziegler, 2013	9	75	12	75	15.4%	0.75 [0.34, 1.67]	2013	
Subtotal (95% CI)		186		180	94.5%	0.77 [0.56, 1.08]		◆
Total events	43		55					
Heterogeneity: Tau² = 0	.00; Chi ² :	= 3.11,	df = 3 (P :	= 0.37)	; l² = 4%			
Test for overall effect: Z	= 1.52 (P	= 0.13))					
2.6.2 Patients on EN								
Palmese, 2006	2	42	6	42	4.2%	0.33 [0.07, 1.56]	2006	<
Eroglu, 2009	1	20	1	20	1.4%	1.00 [0.07, 14.90]	2009	<→
Subtotal (95% CI)		62		62	5.5%	0.44 [0.11, 1.67]		
Total events	3		7					
Heterogeneity: Tau² = 0	.00; Chi ² :	= 0.48,	df = 1 (P :	= 0.49)	; I² = 0%			
Test for overall effect: Z	= 1.21 (P	= 0.23))					
Total (95% CI)		248		242	100.0%	0.75 [0.55, 1.03]		•
Total events	46		62					
Heterogeneity: Tau² = 0	.00; Chi ² :	= 4.32,	df = 5 (P :	= 0.50)	; I² = 0%			
Test for overall effect: Z	= 1.79 (P	= 0.07))					Favours PN GLN Favours control
Test for subgroup differ	ences: Cl	ni² = 0.8	66. df = 1	(P = 0.	42), I ^z = 09	%		

PN GIn vs No PN GIn; Outcome Mortality

	PN GI	N	Cont	ol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
2.3.1 Patients on PN								
Griffiths, 1997	18	42	25	42	12.6%	0.72 [0.47, 1.11]	1997	_ - +
Powell-Tuck, 1999	14	83	20	85	6.2%	0.72 [0.39, 1.32]	1999	
Wischmeyer, 2001	2	15	5	16	1.1%	0.43 [0.10, 1.88]	2001	
Fuentes-Orozco, 2004	2	17	3	16	0.8%	0.63 [0.12, 3.28]		
Xian-Li, 2004	0	20	3	21	0.3%	0.15 [0.01, 2.73]		←
Dechelotte, 2006	2	58	2	56	0.6%	0.97 [0.14, 6.62]		
Tian, 2006	2	20	5	20	1.0%	0.40 [0.09, 1.83]	2006	
Sahin, 2007	2	20	6	20	1.1%	0.33 [0.08, 1.46]	2007	
Luo, 2008	0	11	0	9		Not estimable	2008	
Yang, 2008	1	25	3	25	0.5%	0.33 [0.04, 2.99]	2008	←
Duska, 2008	2	10	0	10	0.3%	5.00 [0.27, 92.62]	2008	
Estivariz, 2008	1	32	6	31	0.5%	0.16 [0.02, 1.26]	2008	←
Fuentes-Orozco, 2008	2	22	5	22	1.0%	0.40 [0.09, 1.85]	2008	
Cai, 2008	17	55	20	55	8.3%	0.85 [0.50, 1.44]	2008	
Perez-Barcena, 2008	3	15	0	15	0.3%	7.00 [0.39, 124.83]	2008	
Perez-Barcena, 2010	4	23	2	20	0.9%	1.74 [0.36, 8.51]	2010	
Grau, 2011	9	59	13	68	3.9%	0.80 [0.37, 1.73]	2011	
Cekman, 2011	3	15	6	15	1.6%	0.50 [0.15, 1.64]	2011	
Andrews, 2011	88	250	80	252	37.9%	1.11 [0.87, 1.42]	2011	
Wernerman, 2011	8	205	11	208	2.9%	0.74 [0.30, 1.80]	2011	
Ziegler, 2013	15	75	19	75	6.5%	0.79 [0.43, 1.43]	2013	
Subtotal (95% CI)		1072		1081	88.2%	0.84 [0.71, 1.00]		•
Total events	195		234					
Heterogeneity: Tau ² = 0.0			df = 19 (l	P = 0.43	2); I ² = 3%			
Test for overall effect: Z =	= 1.93 (P =	= 0.05)						
2.3.2 Patients on EN								
Palmese, 2006	6	42	8	42	2.5%	0.75 [0.28, 1.97]	2006	
Ozgultekin, 2008	12	20	12	20	9.0%	1.00 [0.60, 1.66]		
Eroglu, 2009	1	20	1	20	0.3%	1.00 [0.07, 14.90]		
Subtotal (95% CI)	1	82		82	11.8%	0.94 [0.61, 1.47]	2003	•
Total events	19		21					Ť
Heterogeneity: Tau ² = 0.0		0.30 d		· (ag n ·	I≊ – ∩%			
Test for overall effect: Z =			n - 2 (r -	. 0.00),	1 - 0 /0			
		,						
Total (95% CI)		1154		1163	100.0%	0.87 [0.75, 1.02]		•
Total events	214		255					
Heterogeneity: Tau ² = 0.0			df = 22 (l	P = 0.5	B); I ^z = 0%			
Test for overall effect: Z =								Favours PN GLN Favours control
Test for subgroup differe	ences: Ch	i ^z = 0.2	1. df = 1 ((P = 0.6	5), I ^z = 09	б		

PN GIn vs PN No GIn; Outcome Infectious Complications

	PN Gluta	mine	Conti	rol		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year M-H, Random, 95% Cl	
2.1.1 Patients on PN								
Griffiths, 1997	28	42	26	42	12.5%	1.08 [0.78, 1.48]	1997 -	
Wischmeyer, 2001	7	12	9	14	5.7%	0.91 [0.49, 1.68]	2001	
Zhou, 2004	3	15	4	15	1.6%	0.75 [0.20, 2.79]	2004	
Fuentes-Orozco, 2004	4	17	12	16	3.1%	0.31 [0.13, 0.77]	2004	
Dechelotte, 2006	23	58	32	56	10.3%	0.69 [0.47, 1.03]	2006	
Fuentes-Orozco, 2008	9	22	16	22	6.5%	0.56 [0.32, 0.99]	2008	
Perez-Barcena, 2008	11	15	13	15	11.1%	0.85 [0.59, 1.22]	2008	
Andrews, 2011	134	250	131	252	18.2%	1.03 [0.87, 1.22]	2011 +	
Grau, 2011	24	59	31	68	9.9%	0.89 [0.60, 1.34]	2011	
Ziegler, 2013	33	75	23	75	9.4%	1.43 [0.94, 2.20]	2013	
Subtotal (95% CI)		565		575	88.3%	0.89 [0.74, 1.07]	•	
Total events	276		297					
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =			f=9(P=	0.04);1	² = 48%			
2.1.2 Patients on EN								
Palmese, 2006	13	42	21	42	6.9%	0.62 [0.36, 1.07]	2006	
Eroglu, 2009	8	20	10	20	4.8%	0.80 [0.40, 1.60]		
Subtotal (95% CI)		62		62	11.7%	0.68 [0.45, 1.05]	-	
Total events	21		31					
Heterogeneity: Tau ² = 0.0	00: Chi ² = 0).33. df:	= 1 (P = 0).57); l²	= 0%			
Test for overall effect: Z =	•	•						
Total (95% CI)		627		637	100.0%	0.86 [0.73, 1.03]	•	
Total events	297		328					
Heterogeneity: Tau ² = 0.0	03; Chi ² = 1	9.86, d	f = 11 (P :	= 0.05)	; I² = 45%			5 10
		-	f= 11 (P :	= 0.05);	; I² = 45%		0.1 0.2 0.5 1 2 Favours PN glutamine Favours cont	5 10

High fat, low carbohydrate to manipulate respiratory quotient?

				•		vs. Standard 94; Al Saady, et al.		• •	ents		
		(Quality assess	ment				Si	ummary o	f Finding	S
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study eve	nt rates (%)	Relative effect	Anticipat	ted absolute effects
Follow up							With STD (29-30% fat)	With High fat formula (40% to 55% fat)	(95% CI)	Risk with STD (29- 30% fat)	Risk difference with High fat formula (40% to 55% fat) (95% Cl)
Mortality	(CRITICA	L OUTCOME)		1	1					I	·
70 (2 studies)	serious ¹	no serious inconsistency	no serious indirectness	serious ²	undetected	LOW ^{1,2} due to risk of bias, imprecision	10/35 (28.6%)	11/35 (31.4%)	RR 1.1 (0.54 to 2.25)	286 per 1000	29 more per 1000 (from 131 fewer to 357 more)
Infection	S (CRITIC	AL OUTCOME)	_	1	Į	1			<u> </u>	1	
50 (1 study)	serious ¹	no serious inconsistency	no serious indirectness	serious ²	undetected	LOW ^{1,2} due to risk of bias, imprecision	8/24 (33.3%)	10/26 (38.5%)	RR 1.15 (0.55 to 2.43)	333 per 1000	50 more per 1000 (from 150 fewer to 477 more)
LOS (Bette	r indicated	by lower values)		1			1				
50 (1 study)	serious ¹	no serious inconsistency	no serious indirectness	serious ²	undetected	⊕⊕⊖⊖ LOW ^{1,2} due to risk of bias, imprecision	24	26	-		The mean LOS in the intervention groups was 0 higher (5.04 lower to 5.04 higher)

Ventilat	Ventilator Days (Better indicated by lower values)													
70 (2)	serious ¹	no serious inconsistency	no serious indirectness	serious ²	undetected	LOW ^{1,2} due to risk of bias, imprecision	35	35	-	The mean ventilator days in the intervention groups was 2.37 lower (3.59 to 1.14 lower)				

High Fat, Low Carb, Outcome: Mortality

	High fat/Low	сно	STD	•		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Al Saady 1994	3	11	3	9	28.8%	0.82 [0.22, 3.11]		
Mesejo 2003	8	26	7	24	71.2%	1.05 [0.45, 2.47]		
Total (95% CI)		37		33	100.0%	0.98 [0.48, 2.01]		
Total events	11		10					
Heterogeneity: Tau ² =	0.00; Chi ² = 0.1	0, df = 1	1 (P = 0.7)	5); I² =	0%	H	.1 0.2 0.5 1 2 5 1	
Test for overall effect:	Z = 0.05 (P = 0	.96)					High fat/Low CHO Favors STD	0

High Fat, Low Carb, Outcome: Ventilator days

	High F						Mean Difference			Mea	n Differ	ence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl		IV, Ra	andom,	95% CI	
al Saady 1994	3.6	0.7	9	6.2	1.5	11	87.7%	-2.60 [-3.60, -1.60]		-			
Mesejo 2003	8.7	6.2	26	9.4	6	24	12.3%	-0.70 [-4.08, 2.68]				—	
Total (95% CI)			35			35	100.0%	-2.37 [-3.59, -1.14]					
Heterogeneity: Tau ² =	= 0.19; Cl	1i² = ′	1.12, df	f = 1 (P	= 0.2	9); l² =	10%		⊢ -10			 5	10
Test for overall effect	: Z = 3.79) (P =	0.0002	2)					-	•	•	avors STD	-

Do patients with mild acute pancreatitis need specialized nutrition therapy?

Volitional feeding vs. NPO or NJ feeding, Outcome: Complication (pain recurrence or pleural effusion, atelectasis, or fluid collection

Should an oral soft diet, per patient's tolerance vs. clear liquid diet be used for mild acute pancreatitis?

Bibliograp	ohy: Li JY	′, Yu T, Chen G(C, et al. Enteral	nutrition withir udes 11 studie	pan h 48 hours of a h s including W	creatitis? admission improves	s clinical out 6; Eckerwa	r liquid diet be us comes of acute pancreati Il 2006 Gupta 2003; Olah 010	tis by redu	cing complica	ations: A
		(Quality asses	ssment				Summary o	f Finding	IS	
Participants (studies) Follow up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study eve	ent rates (%)	Relative effect (95% CI)	Anticipated effects	absolute
							With Clear liquid diet	With An oral soft diet, per patient's tolerance		Risk with Clear liquid diet	Risk difference with An oral soft diet, per patient's tolerance (95% CI)
Infection	Comp	lications (CF	RITICAL OUTC	OME; assesse	d with: numb	er of all infections (I	RCT only))				
282 (8 studies)	serious ¹	no serious inconsistency ²	no serious indirectness	no serious imprecision	undetected	MODERATE ^{1,2} due to risk of bias	37/147 (25.2%)	17/135 (12.6%)	OR 0.38 (0.21 to 0.77)	252 per 1000	138fewerper1000(from 46fewer to186fewer)
Infectious	s comj	plications s	ubjects wi	th pSAP c	or SAP (CR	RITICAL OUTCOME	; assessed	with: number of all infecti	ons (RCT o	only)	
278 (4 studies)	serious ¹	no serious inconsistency ³	no serious indirectness	no serious imprecision	undetected	MODERATE ^{1,3} due to risk of bias	62/142 (43.7%)	30/136 (22.1%)	HR 0.32 (0.17 to 0.53)	437 per 1000	269 fewer per 1000

											(from 174 fewer to 344 fewer)
Catheter	related	d septic cor	nplication	S (CRITICAL	OUTCOME; a	ssessed with: numb	per of cathe	eter related complica	tions (RCT only))	
230 (5 studies)	serious	no serious inconsistency ²	no serious indirectness	no serious imprecision	undetected	MODERATE ² due to risk of bias	13/117 (11.1%)	5/113 (4.4%)	OR 0.23 (0.09 to 0.57)	111 per 1000	83 fewer per 1000 (from 45 fewer to 100 fewer)
Catheter	related	d septic cor	nplication	(assessed wit	h: number of	catheter related con	nplications	in pSAP or SAP (RO	CT only))	L	1
214 (4 studies)	serious	no serious inconsistency	no serious indirectness	serious ⁴	undetected	LOW ⁴ due to risk of bias, imprecision	21/101 (20.8%)	5/113 (4.4%)	OR 0.23 (0.09 to 0.61)	208 per 1000	151 fewer per 1000 (from 70 fewer to 185 fewer)
Organ fa	ilure ra	te (IMPORTAN	IT OUTCOME;	assessed with	: Count of org	gan failure (RCT onl	y))				
225 (5 studies)	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	undetected	MODERATE ¹ due to risk of bias	49/116 (42.2%)	20/109 (18.3%)	OR 0.28 (0.14 to 0.54)	422 per 1000	252 fewer per 1000 (from 139 fewer to 330 fewer)

¹ Blinding of participants, personnel or outcome assessors was not done in 7/8 (87%)studies. ² Heterogeneity is zero, but all infections are included, CLABSI, VAP, and UTI.

³ I2 statistic for heterogeneity is 50%
 ⁴ Low number of events in included studies

No Forest Plots: Meta-analyses only were synthesized.

Should immune enhancing formula vs. standard enteral formula be used in acute pancreatitis?

	Questi	on: Should	immune en	hancing f		s. standard ente (raphy: Petrov 2011	eral form	ula be used	l in acute	pancrea	titis?
			Quality asse	essment		Su	Immary of	Findings			
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study eve	nt rates (%)	Relative effect	Anticipated	d absolute effects
Follow up							With Standard enteral formula	With Immune enhancing formula	(95% CI)	Risk with Standard enteral formula	Risk difference with Immune enhancing formula (95% Cl)
Infectiou	s comp	lication (CRI	TICAL OUTCOM	IE; assessed v	vith: count)					1	
78 (3 studies)	serious ¹	serious ²	no serious indirectness	serious ³	undetected	VERY LOW ^{1,2,3} due to risk of bias, inconsistency, imprecision	14/38 (36.8%)	12/40 (30%)	RR 0.818 (0.436 to 1.533)	368 per 1000	67 fewer per 1000 (from 208 fewer to 196 more)
						Imprecision					
Mortality	(CRITICA	L OUTCOME; as	ssessed with: Co	unt)							

¹ Poor methods across studies, No blinding, allocation concealment poorly reported. ² Used outcome measures we are recommending practitioners not use in another section of the guideline

³ Very low number of subjects

No Forest Plots; a synthesis of a MA.

Should PN vs EN be used for pancreatitis?

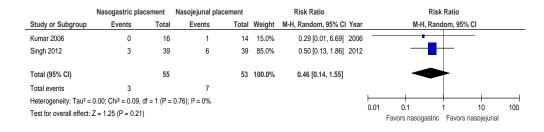
		Bibliograph	iy: WAbou- Assi			De used for pan htzos 1997; McClave *			etrov 2006;	Windsor 1998	
			Quality ass	essment					Summ	ary of Findings	
•	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study eve (%)	ent rates	Relative effect (95% CI)	Anticipated absolu	ute effects
							With Post pyloric EN	With PN		Risk with Post pyloric EN	Risk difference with PN (95% CI)
Mortality	(CRITICA	L OUTCOME)								1	
342 (9 studies)	very serious ¹	serious ^{2,3}	no serious indirectness	serious ⁴	undetected	VERY LOW ^{1,2,3,4} due to risk of bias, inconsistency, imprecision	10/165 (6.1%)		RR 2.17 (1.13 to 4.17)	61 per 1000	71 more per 1000 (from 8 more to 192 more)
Hosptial	L OS (CF	I RITICAL OUTCO	ME; Better indica	ated by lower va	lues)	<u> </u>	1			<u> </u>	<u> </u>
85 (2 studies)	serious ¹	serious ^{2,3}	no serious indirectness ⁵	serious ⁶	undetected	VERY LOW ^{1,2,3,5,6} due to risk of bias, inconsistency, imprecision	43	42	-	The mean hosptial los ranged across control groups from 79.7-14.2 days	The mean hosptial los in the intervention groups was 3.26 higher (1.31 to 5.22 higher)
Complica	tions (C	CRITICAL OUTC	OME)								
128 (4 studies)	serious ¹	serious ^{2,3}	no serious indirectness	serious ⁴	undetected	VERY LOW ^{1.2,3,4} due to risk of bias, inconsistency, imprecision	32/68 (47.1%)	27/60 (45%)	RR 1.02 (0.39 to 2.69)	471 per 1000	9 more per 1000 (from 287 fewer to 795 more)

Infection	S (CRITIC	AL OUTCOME)							
246 (7 studies)	serious ⁷	serious ^{2,3}	 no serious imprecision	LOW ^{2.3,7} due to risk of bias, inconsistency	20/124 (16.1%)	(42.6%)	RR 2.45 (1.61 to 3.74)	161290 per 1000000	233871 more per 1,000,000 (from 98387 more to 441935 more)

¹ None of the studies were blinded ² Most studies fed into the jejunum, but some fed into the duodenum ³ Formula types varied ⁴ Small number of subjects and small number of events

⁵ Older studies, uncertain if deaths in any group decreased LOS. Better outcome to report is days to discharge alive.
 ⁶ Various definitions of complications were used
 ⁷ No explanation was provided

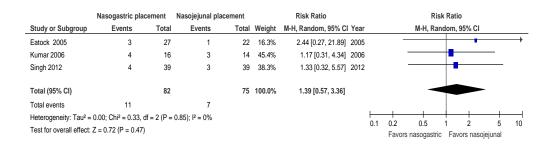
Should nasogastric feeding tube placement vs. nasojejunal tube placement be used for acute pancreatitis?


		Bibliogr	r aphy: Meta-ar	alysis by Cha	•	reatitis? uded studies	Eatock 2005; K	umar 2006 and Sing	gh 2012		
		Qua	lity assessm	nent				Summar	y of Findir	ngs	
Participants (studies) Follow up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study event ra	ates (%)	Relative effect (95% CI)	Anticipated ab effects	osolute
							With Nasojejunal tube placement	With Nasogastric feeding tube placement	_	Risk with Nasojejunal tube placement	Risk difference with Nasogastric feeding tube placement (95% CI)
Mortality	(CRITICAI	L OUTCOME)	I	I		I	ł		I		
157 (3 studies)	very serious ¹	no serious inconsistency	no serious indirectness	serious ²	undetected	VERY LOW ^{1,2} due to risk of bias, imprecision	18/75 (24%)	14/82 (17.1%)	RR 0.71 (0.38 to 1.32)	240 per 1000	70 fewer per 1000 (from 149 fewer to 77 more)
Tracheal	aspirat	ion (CRITICAL	OUTCOME)						-		1
108 (2 studies)	very serious ^{1,3}	no serious inconsistency	no serious indirectness	serious ²	undetected	VERY LOW ^{1,2,3} due to risk of bias, imprecision	7/53 (13.2%)	3/55 (5.5%)	RR 0.46 (0.14 to 1.55)	132 per 1000	71 fewer per 1000 (from 114 fewer to 73 more)

Exacerba	ation of	pain (CRITIC/	AL OUTCOME;)							
66 (3 studies) Diarrhea		no serious inconsistency ⁴	no serious indirectness	serious ^{2,4,5}	undetected	VERY LOW ^{1,2,3,4,5} due to risk of bias, imprecision		2/27 (7.4%)	RR 0.84 (0.27 to 2.59)	128 per 1000	21 fewer per 1000 (from 94 fewer to 204 more)
157 (3 studies)	very serious ^{1,3}	no serious inconsistency	no serious indirectness	serious ²	undetected	VERY LOW ^{1,2,3} due to risk of bias, imprecision	7/75 (9.3%)	11/82 (13.4%)	RR 1.39 (0.57 to 3.36)	93 per 1000	36 more per 1000 (from 40 fewer to 220 more)

Nasogastric vs. Nasojejunal placement; Outcome Mortality

	Nasogastric pla	cement	Nasojejunal pla	cement		Risk Ratio			Ri	sk Rati	io		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Y	'ear		M-H, Ra	ndom,	95% CI		
Eatock 2005	5	27	7	22	38.7%	0.58 [0.21, 1.58] 2	005		-	_	_		
Kumar 2006	5	16	4	14	31.9%	1.09 [0.36, 3.29] 2	006			-		-	
Singh 2012	4	39	7	39	29.5%	0.57 [0.18, 1.80] 2	012						
Total (95% CI)		82		75	100.0%	0.71 [0.38, 1.32]							
Total events	14		18										
Heterogeneity: Tau ² =	0.00; Chi ² = 0.88, o	lf = 2 (P =	0.64); l ² = 0%				H-			+		<u> </u>	
Test for overall effect:	Z = 1.09 (P = 0.28)						0.1	0.2 Favors	0.5 s nasogastr	ic Fav	2 /ors nasoj	5 jejunal	10


Nasogastric vs. Naso-jejunal placement; Outcome Tracheal aspiration

Nasogastric vs. Naso-jejunal placement; Outcome Exacerbation of pain

	Nasogastric place	ement	Nasojejunal pla	cement		Risk Ratio			Ris	Ratio	b		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Year			M-H, Ran	dom,	95% CI		
Eatock 2005	2	27	0	22	14.2%	4.11 [0.21, 81.33] 2005				+		-	\rightarrow
Kumar 2006	1	16	1	14	17.6%	0.88 [0.06, 12.73] 2006	+			+			\rightarrow
Singh 2012	3	39	5	39	68.2%	0.60 [0.15, 2.34] 2012							
Total (95% CI)		82		75	100.0%	0.84 [0.27, 2.59]		-					
Total events	6		6										
Heterogeneity: Tau ² =	0.00; Chi ² = 1.35, d	lf = 2 (P =	0.51); l ² = 0%				-		0.5	+		<u> </u>	
Test for overall effect:	Z = 0.30 (P = 0.76)						0.1	0.2 Favors	0.5 nasogastric	Fav	2 ors nasoj	5 ejunal	10

Nasogastric vs. Naso-jejunal placement; Outcome Diarrhea

Should probiotics be used in pancreatitis?

I	Bibliograph	y: Zhang 2010 (•		used in pa h 2007; Karaka			Besselink	2008; Li 2007 & Wu 2009					
		Qua	ality assessn	nent					Summ	ary of Findings					
Participants (studies) Follow up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study er rates (%		Relative effect (95% CI)	Anticipated absolute eff	ects				
							With Control	With Probiotics		Risk with Control	Risk difference with Probiotics (95% CI)				
Infectiou	rectious morbidity (CRITICAL OUTCOME)														
507 (4 studies)	no serious risk of bias ¹	serious ²	no serious indirectness	serious ³	undetected ⁴	⊕⊕⊖⊖ LOW ^{1,2,3,4} due to inconsistency, imprecision	107/249 (43%)	73/258 (28.3%)	OR 0.3 (0.09 to 1.02)	430 per 1000	245 fewer per 1000 (from 366 fewer to 5 more)				
Mortality	(CRITICAL (OUTCOME)					<u> </u>	•							
507 (5 studies)	no serious risk of bias ¹	serious ⁵	no serious indirectness	serious ³	undetected	⊕⊕⊖⊖ LOW ^{1.3.5} due to inconsistency, imprecision	21/249 (8.4%)	29/258 (11.2%)	RR 0.73 (0.18 to 2.98)	84 per 1000	23 fewer per 1000 (from 69 fewer to 167 more)				
LOS Hos	pital (CRIT	ICAL OUTCOM	E; range of sco	ores: 10-45; Be	etter indicated	by lower values	;)			I					
378 (4 studies)	serious ⁶	serious ^{7,8}	no serious indirectness	no serious imprecision	undetected	⊕⊕⊝⊝ LOW ^{6,7,8} due to risk of	183	195	-	The mean los hospital in the control groups was 24.7 d	The mean los hospital in the				

			bias, inconsistency		intervention groups was 3.87 lower (6.2 to 1.54
					(6.2 to 1.54
					lower)

¹ Jadad scores are > 3 but allocation was not concealed, and it is unclear if randomization occured or if all subjects randomized were inlcuded in the analysis ² I2 Statistic is 84% (the range of values is 0-100; < 50% is desirable) ³ Small sample sizes in the included studies

No forest plots; meta analysis synthesis only.

Should early EN vs STD nutrition be used for trauma patients?

			-			enteral nutr udies: Kompan 1			-		
		C	Quality assessi		S	ummary o	f Findings				
Participants Risk of studies) bias Follow up		Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study event	rates (%)	Relative effect	Anticipated a	bsolute effects
						With Standard enteral nutrition	With Early enteral nutrition	(95% CI)	Risk with Standard enteral nutrition	Risk difference with Early enteral nutrition (95% CI)	
-		L OUTCOME; asse	Т			1	• •				
126 (2. studies)	very	no serious	no serious	serious ²	undetected ²	VERY LOW ^{1,2}	6/61	1/65	RR 0.2	Study popula	
(3 studies)	serious'	inconsistency	indirectness			due to risk of bias,	(9.8%)	(1.5%)	(0.04 to 0.91)	98 per 1000	79 fewer per 1000 (from 9 fewer to 94 fewer)
						imprecision				Moderate	
											-

¹ Low number of subjects and low number of events ² To few included studies to assess a funnel plot

Should immunonutrition vs STD be used in trauma patients?

Bil	oliograph	y: Marik 2008 (m				standard be us 4; Engel 1997; Moor		-		Weiman 1998; ⁻	Tsuei 2005
			Quality asse	ssment				S	ummary	of Findings	
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study ev	vent rates (%)	Relative effect	Anticipated a	bsolute effects
Follow up							With Standard	With Immunonutrition	(95% CI)	Risk with Standard	Risk difference with Immunonutrition (95% CI)
Mortality	(CRITICA	L OUTCOME)		<u> </u>						<u>I</u>	
300 (7 studies)	serious ¹	no serious inconsistency	no serious indirectness	serious ²	undetected ³	LOW ^{1,2,3} due to risk of bias, imprecision	13/145 (9%)	13/155 (8.4%)	RR 1.03 (0.4 to 2.65)	90 per 1000	3 more per 1000 (from 54 fewer to 148 more)
Infection	S (CRITIC	AL OUTCOME)	1	<u> </u>	<u> </u>	I				<u> </u>	
372 (8 studies)	serious ¹	serious ⁴	no serious indirectness	serious ⁵	undetected ³	VERY LOW ^{1,3,4,5} due to risk of bias, inconsistency, imprecision	81/182 (44.5%)	68/190 (35.8%)	RR 0.72 (0.27 to 1.91)	445 per 1000	125 fewer per 1000 (from 325 fewer to 405 more)
LOS Hos	pital (CF		/IE; range of sco	res: 14.6-70.2	; Better indicat	ed by lower values)			1	1	
227 (5 studies)	serious ¹	serious ⁶	serious ⁷	serious ⁵	undetected ³	VERY LOW ^{1.3,5,6,7} due to risk of bias, inconsistency, indirectness, imprecision	109	118	-	The mean los hospital in the control groups was 31 days	The mean los hospital in the intervention groups was 3.07 lower (6.64 lower to 0.51 higher)

¹ Blinding of participants, providers and or outcome assessors is not reported ² Small sample sizes and small number of events

 3 Too few studies to assess a funnel plot for publication bias 4 I2 statistic is 70% (range 0-100, less than 50% is desired) 5 Confidence intervals of the included studies are wide

⁶ I2 statistic is 78% (range 0-100%, less than 50% is desirable)
 ⁷ It is not certain how mortality affects the LOS outcome

Should PN vs. EN be used for head injured patients?

			Quality assess			Summary o	of Finding	s			
Participants (studies) Follow up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study ev (%)	vent rates	Relative effect (95% CI)	Anticipat	ed absolute effects
•							With Enteral	With Parenteral		Risk with Enteral	Risk difference with Parenteral (95% CI)
Mortality	at the e	end of follow-	UP (CRITICAL OUT	COME)	1				-		
229 (6 studies)	serious ¹	no serious inconsistency ²	no serious indirectness	serious ³	undetected	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{LOW}^{1,2,3} \\ \text{due to risk of bias,} \\ \text{imprecision} \end{array}$	32/119 (26.9%)	20/110 (18.2%)	RR 0.71 (0.41 to 1.25)	269 per 1000	78 fewer per 1000 (from 159 fewer to 67 more)
Poor out	come at	t the end of fo	ollow-up (Critic	AL OUTCOME	E)	1	<u> </u>		1		
83 (2 studies)	serious ¹	no serious inconsistency	no serious indirectness	serious ³	undetected	⊕⊕⊝⊝ LOW ^{1,3} due to risk of bias, imprecision	18/39 (46.2%)	14/44 (31.8%)	RR 0.69 (0.4 to 1.19)	462 per 1000	143 fewer per 100 (from 277 fewer to 88 more)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

EN vs PN in Sepsis

						tients with \$ 2008; Elke 20136	•				
			Quality assess	ment				Su	mmary of	Finding	5
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of	Study ev	vent rates (%)	Relative effect	Anticipat	ted absolute effects
Follow up	v up				evidence	With Control	With Mortality in Patients with Sepsis	(95% CI)	Risk with Control	Risk difference with Mortality in Patients with Sepsis (95% Cl)	
Mortality		<u> </u>								1	
313	serious ¹	no serious	no serious	no serious	undetected	VERY LOW ¹	89/155	51/158	RR 0.66	Study po	pulation
(2 studies)		inconsistency	indirectness	imprecision		due to risk of bias	of (57.4%) (32.3%)		(0.5 to 0.88)	574 per 1000	195 fewer per 1000 (from 69 fewer to 287 fewer)

¹ Studies were not set up to address septic patients only, these are post hoc analyses.

Figure. EN vs. PN in Patients with Sepsis, Outcome: Mortality

	EN		PN			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Elke, 2008	28	72	81	130	82.3%	0.62 [0.45, 0.86]	
Elke, 2013	23	86	8	25	17.7%	0.84 [0.43, 1.63]	
Total (95% CI)		158		155	100.0%	0.66 [0.50, 0.88]	•
Total events	51		89				
Heterogeneity: Chi ² =	0.60, df =	1 (P =	0.44); I ^z =	= 0%			
Test for overall effect:	Z = 2.82 (P = 0.0	105)				0.01 0.1 1 10 100 Favors EN Favors PN

Selenium and Antioxidants in Sepsis

Bibl	iography: A							rtality and Inf ares 2011; Mishra 2		a 2011; Zi	mmerman 1997
		Q	uality assessr	nent				Sun	nmary of	Findings	i.
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study ev	vent rates (%)	Relative effect	Anticipa	ted absolute effects
Follow up							With Control	With Parenteral Selenium in Sepsis, Outcome Mortality	(95% CI)	Risk with Control	Risk difference with Parenteral Selenium in Sepsis, Outcome Mortality (95% Cl)
Mortality	1			1	I	1				1	
1888 (9 studies)	no serious risk of bias	no serious inconsistency	no serious indirectness	serious	undetected	MODERATE due to imprecision	344/940 (36.6%)		RR 0.94 (0.83 to 1.06)	Study po 366 per 1000	22 fewer per 1000 (from 62 fewer to 22 more)
1249 (2 studies)	no serious risk of bias	no serious inconsistency	no serious indirectness	serious	undetected	MODERATE due to imprecision			RR 0.85 (0.66 to 1.08)		

¹ The finding is imprecise because the combined effect is not statistically significant.

	Parenteral Sele	enium	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Angstwurm 1999	7	21	11	21	3.2%	0.64 [0.31, 1.32]	
Angstwurm 2007	46	116	61	122	17.3%	0.79 [0.60, 1.06]	
Forceville 2007	14	31	13	29	3.9%	1.01 [0.58, 1.76]	
González 2009	6	34	8	34	2.3%	0.75 [0.29, 1.93]	
Heyland 2013	216	617	199	601	58.6%	1.06 [0.90, 1.24]	#
Manzanares 2011	3	15	5	16	1.4%	0.64 [0.18, 2.22]	
Mishra 2007	11	19	15	22	4.0%	0.85 [0.53, 1.37]	
Valenta 2011	19	75	24	75	7.0%	0.79 [0.48, 1.32]	
Zimmerman 1997	3	20	8	20	2.3%	0.38 [0.12, 1.21]	
Total (95% CI)		948		940	100.0%	0.94 [0.83, 1.06]	•
Total events	325		344				
Heterogeneity: Chi ² =	8.23, df = 8 (P = 0).41); l ² =	: 3%				
Test for overall effect:	Z = 0.99 (P = 0.3)	2)					0.1 0.2 0.5 1 2 5 10 Favors Selenium Favors Control

PN Selenium in Patients with Sepsis, Outcome Mortality

PN Selenium vs Control in Patients with Sepsis

	Selenium	AOX	Contr	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
Heyland 2013	3	15	7	16	3.9%	0.32 [0.06, 1.60]	<
Manzanares 2011	168	617	181	601	96.1%	0.87 [0.68, 1.11]	
Total (95% CI)		632		617	100.0%	0.85 [0.66, 1.08]	•
Total events	171		188				
Heterogeneity: Chi² = 1	1.44, df = 1	(P = 0.2)	23); I² = 3	0%			
Test for overall effect: 3	Z = 1.33 (P	= 0.18)				E	avors AOX/Selenium Favors Control

Should early EN vs. STD be used for elective gastrointestinal surgery?

There are **no forest plots** as this is a GRADE of a completed meta-analysis.

			Quality as	sessment			Summary of Findings						
Participants (studies) Follow up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study ev rates (%		Relative effect (95% CI)	Anticipated at	osolute effects		
							With STD	With Early EN		Risk with STD	Risk difference with Early EN (95% CI)		
Complica	itions (excluding m	ortality and	l nausea a	and vomitin	g) All years C (CRIT	ICAL OUT	COME)		·			
1238 (15 studies) 5.2-24.5 days	serious ¹	serious ²	serious ³	serious ^{4,5}	reporting bias strongly suspected ⁶	VERY LOW ^{1,2,3,4,5,6} due to risk of bias, inconsistency, indirectness, imprecision, publication bias	191/616 (31%)	113/622 (18.2%)	OR 0.53 (0.33 to 0.86)	310 per 1000	118 fewer per 1000 (from 31 fewer to 181 fewer)		
Complica	itions (excluding m	ortality, na	usea, vom	niting) Pre 2	2000 Osland (CRITIC)	AL OUTCO	OME)	<u> </u>	ļ			
607 (10 studies) 5.2-24.5 days	serious ¹	serious ²	serious ³	serious ^{4,5}	reporting bias strongly suspected ⁶	VERY LOW ^{1,2,3,4,5,6} due to risk of bias, inconsistency, indirectness, imprecision, publication bias	78/304 (25.7%)		OR 0.53 (0.32 to 0.89)	257 per 1000	102 fewer per 1000 (from 22 fewer to 157 fewer)		

1240 (5 studies) 5.2-24.5 days	serious ¹	serious ²	serious ³	serious ^{4,5}	reporting bias strongly suspected ⁶	VERY LOW ^{1,2,3,4,5,6} due to risk of bias, inconsistency, indirectness, imprecision, publication bias		114/623 (18.3%)	OR 0.53 (0.33 to 0.86)	311 per 1000	118 fewer per 1000 (from 31 fewer to 181 fewer)
Mortality	All Yea	ars Osland (C		OME)					1	1	1
1240 (15 studies) 5.2-24.5 days	serious ¹	no serious inconsistency ⁷	no serious indirectness	very serious ⁸	undetected	VERY LOW ^{1,7,8} due to risk of bias, imprecision	11/617 (1.8%)	5/623 (0.8%)	OR 0.71 (0.32 to 1.56)	18 per 1000	5 fewer per 1000 (from 12 fewer to 10 more)
Anastom	otic lea	IK Osland (CR	RITICAL OUTCO	ME)			1	•	1	1	Į
1075 (13 studies) 5-24 days	serious ¹	no serious inconsistency	no serious indirectness	very serious⁵	undetected	VERY LOW ^{1,5} due to risk of bias, imprecision	17/533 (3.2%)	12/542 (2.2%)	OR 0.75 (0.39 to 1.45)	32 per 1000	8 fewer per 1000 (from 19 fewer to 14 more)
LOS Hos	pital Os	sland (Critica	L OUTCOME; ra	ange of scores	s: 5.2-24.5; Better	r indicated by lower values	·)		1	ļ	<u></u>
872 (10 studies) 5-24 days	serious ¹	very serious ^{9,10}	no serious indirectness	serious ⁵	undetected	VERY LOW ^{1,5,9,10} due to risk of bias, inconsistency, imprecision	432	440	-	The mean los hospital osland in the control groups was 22.7 days	The mean los hospital osland in the intervention groups was 1.28 lower (2.95 lower to 0.38 higher)
 ² The heterog between the ³ The term "a ⁴ Small numb ⁵ Confidence ⁶ The authors 	geneity in t two sub gr Ill complica per of even intervals a s included t	he studies reporte oups (pre 2000 vs ttions" is not define ts and small numb tre wide.	d prior to the yea . post 2000) is n ed. The MA auth per of subjects. the funnel plot fo	ar 2000 is low noderate (l ² =5 lors only note	(l ² =16%), while 2%). it is not mortality,	edian 2) on a scale of 0-5, the heterogeneity in the st nausea and vomiting). tions" suggests publicatior	udies repo	orted after	2000 is hig		

funnel plots is inadequate to sensitively detect a study bias." ⁷ For this outcome, heterogeneity is low. I^2 statistic = 0. ⁸ 9 of 15 studies reported no deaths in either group; low number of events. The confidence intervals are very wide.

⁹ Uncertain if ICU death shortened LOS for either group. ¹⁰ Heterogeneity for the pre 2000 group is moderate I² statistic is 51%, while heterogeneity for the post 2000 group is high 85%.

Arginine vs. Standard for Elective Surgery

There are no forest plots as this is a GRADE of a completed meta analysis.

		(Quality asses	sment			Summary of Findings						
Participants (studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study eve	ent rates (%)	Relative effect	Anticipated ab	solute effects		
Follow up							With Standard	With Arginine supplemented diets	(95% CI)	Risk with Standard	Risk difference with Arginine supplemented diets (95% Cl)		
nfection	s Drov	ER (CRITICAL OU	TCOME; assess	ed with: numbe	r of patients wit	h at least one infe	ction)						
2780	serious ¹	no serious inconsistency ^{2,3}	no serious indirectness	serious ⁴	undetected ⁵	LOW ^{1,2,3,4,5} due to risk of bias,	346/1248 (27.7%)	253/1532 (16.5%)	RR 0.59 (0.5 to 0.7)	277 per 1000	114 fewer per 10 (from 83 fewer to 139 fewer)		
28 studies)						imprecision							
28 studies) 10-35 days	LOS D	rover (Critical	_ OUTCOME; ra	nge of scores: 4	1-43; Better ind		lues)						

|--|

¹ Over half the studies were not blinded, but it is difficult to blind this type of study. It would be stronger if the outcome assessors had been reported to have been blinded.

² The studies pretty much line up to favor the treatment with supplemental arginine in diets. Seven of the 28 studies (one third of total studies) reported a significant decrease in infections. The I2 statistic is 26%, acceptable heterogeneity.

³ Two of the studies also treated with additional glycine. The authors did a sub analysis with the studies removed and the estimate of effect was similar, and the heterogeneity remained low.

⁴ Low number of subjects in many studies included.

⁵ The authors of the metaanalysis reported there was no asymmetry noted on the funnel plot.

⁶ I2 statisitic is 87%.

⁷ Length of stay is difficult to interpret, since it is unknown if early deaths decreased LOS.

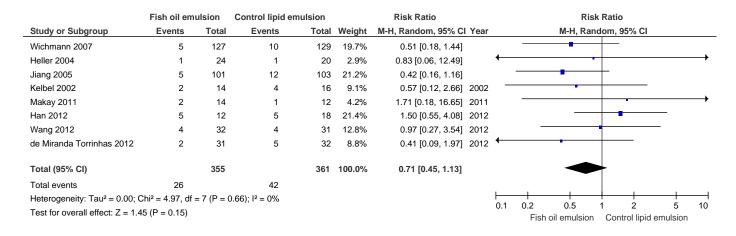
⁸ Low number of subjects in the included studies, and low number of deaths are reported in many (zero or one death).

Enteral Fish Oil vs Control for Elective Surgery

Question: Should Fish oil vs. control (MCT/LCT) be used for elective surgery? (Including studies from Wei 2005)

Bibliography: De Miranda Torrinhas 2013, Grecu 2003, Han 2012, Heller 2004, Hubner 2012, Jiang 2004, Ma 2012, Kelbel 2002, Makay 2011, Wang 2012, Wichmann 2007

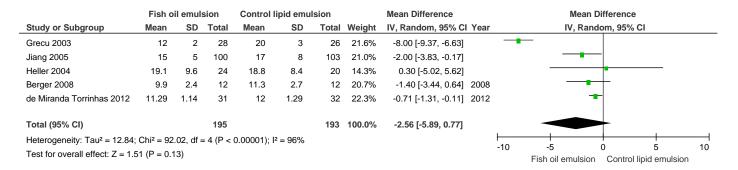
		C	uality assessn	nent				Summ	ary of Findings		
Participants (studies) Follow up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study event (%)	t rates	Relative effect (95% Cl)	Anticipated absolu	ute effects
							With Control (MCT/LCT,	With Fish oil		Risk with Control (MCT/LCT,	Risk difference with Fish oil (95% Cl)
Mortality	(CRITICA	L OUTCOME; asse	essed with: numb	er of deaths)	<u> </u>	<u> </u>	<u> </u>		<u> </u>	1	
598 (6 studies) 9.9-20 days	serious ¹	no serious inconsistency	no serious indirectness	serious ^{2,3}	undetected	LOW ^{1,2,3} due to risk of bias, imprecision	8/296 (2.7%)	10/302 (3.3%)	RR 1.22 (0.52 to 2.85)	27 per 1000	6 more per 1000 (from 13 fewer to 50 more)
Infectious	s comp	lications (CRI	TICAL OUTCOME	Ξ)					1		
716 (8 studies) 9.9-20 days	serious ¹	no serious inconsistency ⁴	no serious indirectness	serious ^{2,3,5}	undetected	LOW ^{1,2,3,4,5} due to risk of bias, imprecision	42/361 (11.6%)	26/355 (7.3%)	RR 0.71 (0.45 to 1.13)	116 per 1000	34 fewer per 1000 (from 64 fewer to 15 more)
LOS Hos	pital (CF	RITICAL OUTCOM	E; Better indicated	d by lower valu	ies)	1	L		I	1	1
388 (5 studies) 9.9-20 days	serious ¹	no serious inconsistency	no serious indirectness	serious ²	undetected	LOW ^{1,2} due to risk of bias,	193	195	-	The mean LOS Hospital in the control groups was 15.8 days	The mean LOS Hospital in the intervention groups was 2.56 lower


						imprecision				(5.89 lower to 0.77 higher)
LOS ICU	(CRITICAL	. OUTCOME; Bette	er indicated by lov	ver values)						
185 (4 studies) 1.1-4.6 days		no serious inconsistency	no serious indirectness	serious ²	undetected	LOW ^{1,2} due to risk of bias, imprecision	90	95	ICU in the control groups was 4.4 days	The mean LOS ICU in the intervention groups was 1.41 lower (2.18 to 0.65 lower)

¹ Intention to treat analysis is not common in the included studies.
 ² Small sample sizes
 ³ Small number of events
 ⁴ Although the I2 statistic show low heterogeneity, the type of infection included among studies varied greatly. However did not decrease quality for this factor
 ⁵ Most studies were not powered to detect a difference in number of infections

Fish oil vs. control (MCT/LCT mix) lipid emulsion, Outcome: Mortality

	ulsion	Control lipid en	nulsion	Risk Ratio				Risk Ratio						
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	l Year			M-H, Fix	ed, 95	% CI		
Wichmann 2007	6	127	2	129	21.9%	3.05 [0.63, 14.82]					+	-		\rightarrow
Grecu 2003	2	28	3	26	34.3%	0.62 [0.11, 3.41]					+		-	
Jiang 2005	1	101	0	103	5.5%	3.06 [0.13, 74.21]		-			+			\rightarrow
Kelbel 2002	1	14	2	16	20.6%	0.57 [0.06, 5.65]	2002	←			+			
Makay 2011	0	14	1	12	17.7%	0.29 [0.01, 6.50]	2011	+	•		+			-
Han 2012	0	18	0	12		Not estimable	2012							
Total (95% CI)		302		298	100.0%	1.22 [0.52, 2.85]								
Total events	10		8											
Heterogeneity: Chi ² =	3.45, df = 4 (P	= 0.48);	l ² = 0%					H-			+		<u> </u>	
Test for overall effect:	Z = 0.45 (P =	0.65)						0.1	0.2 Fish o	0.5 pil emulsion	Cont	2	5 emulsior	10 n


Fish oil vs. control (MCT/LCT mix) lipid emulsion, Outcome: Infectious Complications

Fish oil vs. control (MCT/LCT mix) lipid emulsion, Outcome: LOS ICU

	Fish oil emulsion Control lipid emul				lipid emu	Ision		Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI Year	IV, Random, 95% CI		
Heller 2004	4.3	0.29	24	4.6	0.36	20	28.1%	-0.30 [-0.50, -0.10]	-		
Grecu 2003	3	1	28	9	3	26	16.6%	-6.00 [-7.21, -4.79]			
Berger 2008	1.6	0.4	12	2.3	0.4	12	27.2%	-0.70 [-1.02, -0.38] 2008			
de Miranda Torrinhas 2012	1.1	0.23	31	1.6	0.5	32	28.1%	-0.50 [-0.69, -0.31] 2012	-		
Total (95% CI)			95			90	100.0%	-1.41 [-2.18, -0.65]			
Heterogeneity: Tau ² = 0.53; (Chi² = 84.	-2 -1 0 1 2									
Test for overall effect: Z = 3.63 (P = 0.0003)											

Fish oil vs. control (MCT/LCT mix) lipid emulsion, Outcome: LOS Hospital

Immunonutrition vs Standard EN in Postoperative Patients

There are **no forest plots** as this is a GRADE of a completed meta-analysis.

	Question: Should two or more immuno-nutrition components vs. iso-caloric, isonitrogenous STD EN be used for post- operative outcomes in subjects undergoing elective major open gastrointestinal surgery? Bibliography: Marimuthu, K., Varadhan, K. K., Ljungqvist, O., & Lobo D. (2012). A meta-analysis of hte effect of combinations of immune modulation nutrients on outcome in patients undergoing major open gastrointestinal surgery. Ann Surg, 255, 1060-1068.											
			Quality asses	ssment	Summary of Findings							
	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study event rates (%)		Relative	Anticipated absolute effects		
Follow up							With Iso-caloric, isonitrogenous STD EN	With Two or more immuno- nutrition components		Risk with Iso- caloric, isonitrogenous STD EN	Risk difference with Two or more immuno-nutrition components (95% Cl)	
Post op i	nfectio	ous complica	ations (CRIT		1 1E)		1			1		
2496 (26 studies) 9-31 days	serious ¹	no serious inconsistency ²	no serious indirectness	no serious imprecision	undetected	MODERATE ^{1,2} due to risk of bias	336/1244 (27%)	215/1252 (17.2%)	RR 0.64 (0.55 to 0.74)	270 per 1000	97 fewer per 1000 (from 70 fewer to 122 fewer)	
Non-infe	ctious	complicatio	NS (CRITICAL	OUTCOME)	<u> </u>		ļ		1	<u> </u>	ļ	
1941 (20 studies) 9-31 days	serious ¹	no serious inconsistency ³	no serious indirectness	no serious imprecision	reporting bias strongly suspected ⁴	LOW ^{1,3,4} due to risk of bias, publication bias	257/968 (26.5%)	210/973 (21.6%)	RR 0.82 (0.71 to 0.95)	265 per 1000	48 fewer per 1000 (from 13 fewer to 77 fewer)	
LOS Hos	pital (C	RITICAL OUTCO	I ME; range of so	i ores: 9-19; Bet	I Iter indicated by	lower values)	1			1		
2097 (20 studies)	serious ¹	serious⁵	no serious indirectness	no serious imprecision	undetected	LOW ^{1,5} due to risk of bias,	1045	1052	-	The mean los hospital in the control groups	The mean los hospital in the intervention	

9-31 days						inconsistency			was 17.4 days	groups was 1.88 lower (2.91 to 0.84 lower)
Post-ope	rative	mortality (CR	ITICAL OUTCC	ME)						
2380 (25 studies) 9-31 days	serious ⁶	no serious inconsistency	no serious indirectness	serious ⁷	undetected	LOW ⁶ due to risk of bias, imprecision	29/1189 (2.4%)	 RR 0.83 (0.49 to 1.41)	24 per 1000	4 fewer per 1000 (from 12 fewer to 10 more)