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APPENDIX A 

TABLE A1 Summary of development Cohort (Emory dataset) Characteristics 

* Statistically significant difference between septic and non-septic patients within each 
cohort 

† Statistically significant difference between overall cohort and the development cohort 

 Overall Cohort Development Cohort 

Demographics 
All 

Patient
s 

Non-
Septic Septic 

All 
Patient

s 

Non-
Septic Septic 

Patients (#) 31179 23720 7459  
(23.9%) 27527 25152 2375 

(8.6%) 

Male (%) 52.8 52.4 54.4 * 52.7 52.4 56.2 * 

Age (year) 61 
[49 – 71] 

61 
[49 – 71] 

61 
[50 – 71] 

61 
[49 – 71] 

61 
[49 – 71] 

61 
[50 – 71] 

Race (%) 
Caucasian 

Black 
Asian 

Hispanic 

47.3 
44.6 
1.4 

0.04 

48.8 
43.2 
1.3 

0.02 

42.3 * 
48.9 * 

1.4 
0.09 * 

48.6 † 
43.3 † 

1.3 
0.03 

48.9 
43.1 
1.3 

0.02 

45.0 * 
45.4 * 

1.3 
0.08 

ICU  
LOS (hours) 

52 
[30 – 104] 

46 
[27 – 79] 

109 * 
[54 – 238] 

48 † 
[28 – 90] 

46 
[27 – 77] 

141 * 
[77 – 258] 

Inpatient 
Mortality (%) 

Inpatient  
Hospice (%) 

6.2% 
5.9% 

3.2% 
3.5% 

15.6 * 
13.7 * 

3.9 † 
4.2 † 

2.9 
3.5 

14.5 * 
12.5 * 

ICD-9 (%): 
995.92 or 

785.52 
13.2 4.3 41.4 * 6.1 † 4.2 26.7 * 

SOFA 2.5 
[0.8 – 4.7] 

1.7 
[0.5 – 3.6] 

5.0 * 
[3.1 – 7.4] 

1.9 † 
[0.6 – 4.0] 

1.7 
[0.5 – 3.6] 

5.0 * 
[3.1 – 7.4] 

CCI 3 
[1 – 5] 

2 
[1 – 4] 

4 * 
[2 – 6] 

2 † 
[1 – 4] 

2 
[1 – 4] 

4 * 
[2 – 6] 

ICU 
Admission 
to Sepsis 
(hours) 

–– –– 1.3 
[-3.1 – 13.8] –– –– 23.9 

[9.8 – 55.8] 
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APPENDIX B 

Features: All relevant static (demographic, historical, and contextual) data such as age, gender, 

and ethnicity, along with dynamic clinical and laboratory features commonly recorded by 

bedside nurses were included for analysis as stored in the clinical data warehouse. Dynamic 

clinical features included Mean Arterial Pressure (MAP), Heart Rate (HR), Peripheral capillary 

Oxygen Saturation (SpO2), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), 

Respiration Rate (RESP), Glasgow Coma Score (GCS), and Temperature (Temp). Some of the 

dynamic laboratory data included white blood cell count (WBC), and serum lactate among 

others. We also extracted a number of features that captured history, comorbidity, and the 

clinical context of the patients, including Charlson Comorbidity Index (CCI), Mechanical 

Ventilation, care unit (medical, surgical, cardiac care, or neuro-intensive care), as well as the 

surgical specialty (cardiovascular, neurosurgery, urology, etc.) and wound type (clean, 

contaminated, dirty, or infected) if the patient had a surgery in past 12 hours.  

All dynamic features were organized into 1-hour non-overlapping time series bins to 

accommodate for different sampling frequencies of available data. The 1-hour time bin interval 

was selected as a balance between having short windows with too many missing data points 

(low-frequency clinical data) and having time windows too long to make any meaningful 

prediction. Non-overlapping bins simplified the modeling schema by minimizing autocorrelation. 

EMR features with sampling frequencies higher than once every hour were uniformly resampled 

into 1-hour time bins, by taking the median values if multiple measurements were available. 

Features were updated hourly when new data became available; otherwise, the old values were 

kept (sample-and-hold interpolation). The renal component of the SOFA score was slightly 

modified to account for poor data quality of urine output, and only used serum creatinine. 

Otherwise, the SOFA score was calculated as outlined in the original manuscript. [1] Mean 

imputation was used to replace all remaining missing values (mainly at the start of each record). 

The bedside monitor data (HR and MAP with 0.5 Hz resolution) was matched and time 

synchronized to each patient’s EMR data. The following features from the HR and MAP time 

series were derived from the bedside monitor’s proprietary software using the ECG and blood 

pressure waveforms: standard Deviation of HR (HRSTD), Standard Deviation of MAP (MAPSTD), 

Multiscale Entropy [2] and Multiscale Conditional Entropy [3] of R-R intervals (60/HR) and MAP 

(HRV1, HRV2 and BPV1, BPV2, respectively). The time series-related features were updated 

every hour, using a 6-hour sliding window with five hours overlap. For each window, 17 different 

scales (scales 1, 4, 7, … 49) were considered for all variability measurements of heart rate and 

blood pressure, and the average value of multiscale entropy and conditional entropy over all 
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scales were included as features in our machine learning prediction model. A complete list of 

these features (total of 65) are provided here: 

High-resolution dynamical features (calculated using 6 hours sliding windows, with 5 hours 

overlap; 6 features): standard deviation of RR intervals and MAP (RRSTD and MAPSTD), 

average multiscale entropy 1  of RR and MAP (HRV1 and BPV1) and average multiscale 

conditional entropy of RR and MAP (HRV2 and BPV2). 

 

Clinical features (10 features): Mean Arterial Blood Pressure (MAP), Heart Rate (HR), Oxygen 

Saturation (O2Sat), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Respiratory 

Rate (RESP), Temperature (Temp), Glasgow Coma Scale (GCS), Partial Pressure of Arterial 

Oxygen (PaO2), Fraction of Inspired O2 (FIO2). 

 

Laboratory (General; 25 features): White Blood Count (WBC), Hemoglobin, Hematocrit, 

Creatinine, Bilirubin and Bilirubin direct, Platelets, International Normalized Ratio (INR), Partial 

Prothrombin Time (PTT), Aspartate Aminotransferase (AST), Alkaline Phosphatase, Lactate, 

Glucose, Potassium, Calcium, blood urea nitrogen (BUN), Phosphorus, Magnesium, Chloride, 

B-type Natriuretic Peptide (BNP), Troponin, Fibrinogen, CRP, Sedimentation Rate, Ammonia. 

Laboratory  (Arterial Blood Gas or ABG; 5 features): pH, pCO2, HCO3, Base Excess, SaO2. 

Demographics/History/Context (19 features): Care Unit (Surgical, Cardiac Care, or Neuro-

intensive care), Surgery in the past 12 hours, Wound Class (clean, contaminated, dirty, or 

infected), Surgical Specialty (Cardiovascular, Neuro, Ortho-Spine, Oncology, Urology, etc.), 

Number of antibiotics in the past 12, 24, and 48 hours, Age, Charleston Comorbidity Index 

(CCI), Mechanical Ventilation, maximum change in SOFA score over the past 6 hours. 

The reduced model excluded the less commonly measured clinical variables, such as ABG 

laboratory features, as well as Bilirubin direct, Glucose, B-type Natriuretic Peptide (BNP), 

Fibrinogen, CRP, Sedimentation Rate, Ammonia, resulting in a total of 53 features. As shown in 

Fig. B1, performance of the reduced model was comparable to the full model. 

 

																																								 																					
1	https://www.physionet.org/physiotools/mse/tutorial/tutorial.pdf  
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FIGURE B1. Summary of the 

training set (dashed lines) and 

testing set (solid lines) 

prediction performance of 

AISE on the Emory cohort, 

Area under the ROC curve 

(AUROC) as a function of 

prediction window shows a 

decreasing pattern, as 

expected. The reduced model 

shows similar performance to 

the full model (Fig. 2) across 

all windows and all prediction 

tasks, indicating robustness to 

uncommonly measured 

clinical laboratory values. 

 

APPENDIX C 

Machine Learning: The proposed Artificial Intelligence Sepsis Expert (AISE) algorithm is based 

on a modified Weibull-Cox proportional hazards model, designed to predict onset of sepsis in 

the proceeding T hours (where T = 12, 8, 6 or 4 hours). The Weilbull proportional hazards 

model is a robust parametric counterpart of the more familiar Cox time-to-event analysis. The 

Weibull-Cox model assumes a traditional Cox proportional hazards hazard rate but with a 

Weibull base hazard rate.   

We assume we have observed sepsis-related data D  = {(x1, 𝜏1, s1), (x2 ,𝜏2, s2), ..., (xN, 𝜏N, sN)} 

for N observation windows across the entire patient population, where xi is a set of features, 𝜏i>0 

is the time until a sepsis event, and si=0 indicates a sepsis event that occurred within the i-th 

observation window, which si=1 indicates right censoring (sepsis event did not occur within the 

observation window; but may have occurred outside the observation window). A rigorous 

mathematical treatment of the Weibull-COX proportional hazard model is beyond the scope of 

this article. Instead we make an attempt to provide an intuitive explanation of the model. First, 

let us define a few terms: 

4 6 8 12
prediction window (hours)
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• Survival function S(𝜏): Gives the probability of not getting sepsis up to time 𝜏. S(𝜏)=1-

F(𝜏), where F(𝜏) is the probability that a sepsis event occurred by time 𝜏. 

• Hazard function h(𝜏): Gives the conditional probability that the sepsis event will occur in 

the time bin (1hour width) 𝜏, given that it did not occur up to time 𝜏 and will occur 

sometime t >= 𝜏. In other words, h(𝜏) is the instantaneous risk of sepsis at time 𝜏. This 

risk is often characterized in terms of a baseline risk (or population level risk; denoted by 

h0) and a patient specific risk, which is a function of patient’s features (vitals, labs, etc.).  

The Weibull-Cox model chooses a Weibull base hazard function: ℎ! τ| λ, k = (𝑘 λ)(τ λ)!!!, 

where λ>0 is a scale parameter and k>0 is a shape parameter. The hazard rate for the i-th 

window is given by: ℎ!(τ|𝑥!, λ, k, β) = ℎ! τ| λ, k 𝑒β!!, which is the product of the baseline hazard 

and the patient specific risk as related to features xi . And the survival curve (probability of not 

getting sepsis up to time τ) is given by 𝑆 τ|𝑥!, λ, k, = 𝑒!!! !! !!!! , where Λ! τ = (τ λ)! is the 

cumulative base hazard rate.  

The data likelihood (how well the observed data is explained by the model) is given by: 

𝑃 𝐷 λ, k, β = [ℎ! τ!| λ, k 𝑒!!!  ]!!!!
!

!!!
𝑒!!! !! !!!!  

= [ℎ! τ!| λ, k 𝑒!!!  ]!!!!!
!!! 𝑆 τ!|𝑥!, λ, k, .    (1) 

 

Figure C1. Depiction of the proposed sliding window Weibull-COX proportional hazard based 
prediction. A sliding window (e.g., 6 hours duration) moves through the time series, hour-by-hour. If no 
sepsis event falls within the window (case (a)), we set si=1 indicating right censoring and 𝜏>6. If a 
sepsis event falls within the window time-to-sepsis is recorded (e.g., 𝜏=4 in case (b)) and we set si=0 
indicating a sepsis event. Finally, if the patient record was terminated within a given prediction window 
(due to death, transfer or discharge from the ICU) that window was also marked as censored.	
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Intuitively, maximizing the data likelihood corresponds to maximizing the probability that an 

event did not occur before time 𝜏I  (i.e., survival term S(𝜏I)) and maximizing the probability of 

actual sepsis events, when events are not censored (or 1-si is equal to1), i.e., the term inside 

the bracket. 

Parameters of this model (λ, k, β) are learned through a maximum likelihood approach, i.e., the 

model parameters are tweaked in an iterative fashion (using a mini-batch stochastic gradient 

descent approach) in order to maximize the log likelihood of the data (logarithm of Eq. (1)). In 

practice, a regularization term (we used L1-L2 regularization) is added to the log likelihood to 

minimize overfitting and optimize generalizability of the learned model. 

For a given prediction horizon T, the sepsis risk score is defined as:  

Prob(𝑡!"#!$! <=  T) = 1 − 𝑆 T|𝑥!, λ, k,    (2) 

This approach allowed us to make meaningful predictions, as opposed to predicting sepsis 

many days in advance. [5] However, using a T-hour sliding-window prediction approach resulted 

in over 1 million prediction windows within the development cohort training set, and roughly ¼ 

million prediction windows within the testing set, with only roughly 2% of these windows 

corresponding to a positive outcome (class imbalance). We used mini-batch stochastic gradient 

descent [6] with backpropagation to fit the model parameters. This approach made the learning 

algorithm scalable when dealing with millions of training examples, and provided a systematic 

way of handling class imbalance via oversampling the underrepresented class within each mini-

batch. Moreover, backpropagation allowed us to quantify the time-varying contribution of each 

input feature to changes in the risk score, [7] thus making the AISE algorithm transparent and 

interpretable. 

Visualization and Interpretability: Importance of each feature can be calculated using an 

approach similar to saliency maps in Deep Learning. [25] We simply take the derivative (or 

gradient) of the risk score in Eq. (2) with respect to all input features and multiply it by the input 

features. This is also known as the relevance score, which simply says that an input feature is 

relevant if it is both present in the data and if the model reacts to it (the derivative term). We 

calculate the Z-scored relevance score of all features and report any feature with a Z-score of 

larger than 1.96 (corresponding to 95% confidence interval). A similar technique has been 

previously applied in the context of Bayesian classification, [8] but to the best of our knowledge 

this is the first time such an approach has been applied in the context of survival analysis and its 

medical applications. Figures C2 and C3 show examples of such relevance scores for two 

subjects. 
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FIGURE C2. An illustrative example of the prediction performance of AISE. Hourly calculated Sequential 
Organ Failure Assessment (SOFA) Score, Sepsis-3 definition, and the AISE score are shown for one 
patient in Panel (A). Superimposed on the figure is the order-time of three blood cultures, and the 
administration-time of two antibiotics. In Panel (B), commonly recorded hourly vital signs of the patient, 
including heart rate (HR), Mean Arterial Blood Pressure (MAP), Respiratory Rate (RESP), Temperature 
(TEMP), Oxygen Saturation (O2Sat) and the Glascow Coma Score (GCS) are shown. Panel (C) shows 
the most significant features contributing to the AISE score (for clarity of presentation only selected time-
points are shown). 

 
FIGURE C3. Another illustrative example of the prediction performance of AISE.  
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APPENDIX D 

Distribution of Event Times: As shown in Fig. D1 (panel D), approximately 22% of the time 
clinical recognition of sepsis occurs before physiological manifestations of organ failure (as 
captured by 2 points change in SOFA), although the median difference between clinical 
suspicion of sepsis and a two-point change in SOFA was 10.3 [2.7, 19.4] hours. 

 

 
FIGURE D1. Distribution of elapsed times (in hours) from ICU admission to tsepsis (Panel A), tSOFA (Panel 
B), tonset (Panel C), and tsepsis -TSOFA (Panel D).  

 

 

APPENDIX E  

Validation Cohort Results 

Table E1. Summary of Validation Cohort (MIMIC-III) Characteristics 

 Overall Cohort Development Cohort 

Demographics All 
Patients 

Non 
Septic Septic All 

Patients 
Non 

Septic Septic 
 

Patients (#) 52098 39224 12874  
(25.0%) 42411 38566 3845 

(9.1%) 
 

Male (%) 56.4 56.3 56.6  56.5 56.3 58.8 * 
 

Age (year) 66 
[53 – 78] 

65 
[52 – 77] 

67 * 
[54 – 79] 

66 
[52 – 77] 

65 
[52 – 77] 

66 
[50 – 71] 

 

Race (%) 
Caucasian 

Black 
Asian 

Hispanic 

71.8 
9.5 
2.3 
3.4 

71.5 
9.2 
2.2 
3.4 

72.7 * 
10.3 * 
2.6 * 
3.4 

71.6 
9.2 
2.2 
3.4 

71.5 
9.2 
2.2 
3.4 

72.4   
8.6  
2.4 
3.4 

 

ICU  
LOS (hours) 

50 
[28 – 100] 

45 
[26 – 75] 

107 * 
[50 – 240] 

47 † 
[27 – 88] 

45 
[26 – 74] 

158 * 
[83 – 266] 
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* Statistically significant difference between septic and non-septic patients within each cohort 

† Statistically significant difference between overall cohort and the development cohort 

 

Table E2. Summary of algorithm performance on the MIMIC-III cohort 

 

Performance 
metric 4 hours 6 hours 8 hours 12 hours 

tsepsis Prediction Testing set (Training set) 
AUROC 0.84 (0.84) 0.82 (0.82) 0.82 (0.81) 0.79 (0.80) 

Specificity* 0.64 (0.66) 0.62 (0.63) 0.62 (0.60) 0.57 (0.58) 
Accuracy 0.64 (0.66) 0.62 (0.64) 0.62 (0.61) 0.58 (0.59) 

tsofa Prediction Testing set (Training set) 
AUROC 0.85 (0.86) 0.83 (0.84) 0.82 (0.83) 0.80 (0.82) 

Specificity* 0.66 (0.69) 0.61 (0.65) 0.60 (0.62) 0.56 (0.59) 
Accuracy 0.67 (0.69) 0.62 (0.65) 0.60 (0.63) 0.57 (0.60) 

tonset Prediction Testing set (Training set) 
AUROC 0.80 (0.81) 0.78 (0.80) 0.77 (0.79) 0.76 (0.78) 

Specificity* 0.57 (0.61) 0.54 (0.58) 0.52 (0.55) 0.51 (0.54) 
Accuracy 0.57 (0.61) 0.55 (0.58) 0.53 (0.56) 0.52 (0.55) 

 
* Sensitivity was fixed at 0.85 (catching 85% of sepsis cases) 

Mortality (%) 12.2 8.2 24.3 * 9.3 † 7.8 25.0 * 
 

ICD-9 (%): 
995.92 or 785.52 8.9 2.6 28.3 * 3.9 † 2.6 17.2 * 

 

SOFA 1.9 
[0.8 – 3.5] 

1.5 
[0.6 – 2.9] 

3.3 * 
[2.0 – 5.1] 

1.6 † 
[0.65 – 
3.1] 

1.5 
[0.6 – 2.9] 

3.3 * 
[2.0 – 5.1] 

 

CCI 2 
[1 – 3] 

2 
[1 – 3] 

2 * 
[1 – 4] 

2 † 
[1 – 3] 

2 
[1 – 3] 

2 * 
[1 – 4] 

 

ICU Admission 
to Sepsis (hours) –– –– 

-0.9 
[-9.3 – 
18.9] 

–– –– 31.2 
[13.3 – 70.2] 
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FIGURE E1. Summary of training set (dashed lines) and testing set (solid lines) prediction performance of 
AISE on the MIMIC cohort. Area under the ROC curve (AUROC) as a function of prediction window 
shows a decreasing pattern. Across all windows, the best performance is achieved for predicting tSOFA, 
followed by tSepsis, and finally tonset. A close agreement between the training set and testing set 
performance indicates good generalizability. 

 
APPENDIX F 
GLOSSARY OF MACHINE LEARNING TERMINOLOGY: 

• Backpropagation – An approach used in certain types of differentiable machine learning 
models to calculate the sensitivity of model output with respect to model parameters and 
model input (i.e., how model reacts to an input). Backpropagation utilizes the Chain rule 
from calculus to accomplish this. 

• Overfitting (aka, lack of generalizability) – When a model performs well on the training 
data (seen patients) and performs poorly on the testing data (unseen patients). 
Regularization is often used to minimize overfitting and optimize generalizability of 
machine leaning algorithms. 

• Bin – The interval of time over which data of different sampling frequencies are collected 
to facilitate time series analysis. 

• Blood pressure variability (BPV) – A group of metrics that measure variability in blood 
pressure over a period of time. They are calculated in short time intervals, or scales (e.g. 
20 seconds). Some examples include the average standard deviation between two 
arterial wave complexes, and entropy measurements. These changes are believed to 
represent the interaction between the cardiovascular and other organ systems (e.g. 
neuro-cardiac). Physiologic health correlates to more variability within a scale (more 
organ-organ interactions/cross-talk). 

• Class imbalance – The outcome, or “class” of interest (ICU sepsis) is not equally as 
likely as other outcomes (no ICU sepsis). It can introduce bias in machine learning, since 
the algorithm will preferentially choose the class/outcome which is more prevalent in the 
dataset from which it learns.  

• Entropy – A group of metrics (e.g. multiscale entropy, multiscale conditional entropy, 
sample entropy) used to measure the complexity of high-resolution physiologic dynamics 

4 6 8 12
prediction window (hours)
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0.76
0.77
0.78
0.79
0.8
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0.9
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tsofa- train
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tonset- train
tonset- test
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over time. Higher entropy values correspond to more complex dynamics in a system or 
organism.  

• Features – input variables used by machine learning algorithms. 
• Heart rate variability (HRV) – A group of metrics that measure changes in time intervals 

between successive heart beats (i.e. time between two QRS complexes). They are 
calculated in short time intervals, or scales (e.g. 20 seconds). Some examples include 
the average standard deviation between two QRS complexes, and entropy 
measurements. These changes are believed to represent the interaction between the 
cardiovascular and other organ systems (e.g. neuro-cardiac). Physiologic health 
correlates to more variability within a scale (more organ-organ interactions/cross-talk). 

• High-resolution/high-frequency – Data collection at frequencies over 1 Hz (once per 
second). Used to describe data derived directly from physiologic waveforms using 
automated methods. 

• Low-resolution/low-frequency – Data collection at frequencies of less than once per 
hour. Used to describe data collected from the electronic medical record (laboratory 
data, manually-derived vitals). 

• Non-overlapping (time series) bins – Consecutive intervals of time with no common time 
segments or datapoints. 

• Overfitting – A statistical model incorporates noise or random error into prediction, 
usually because there are too many features compared to the number of observations 

• Overlapping (time series) bins - Consecutive intervals of time which share some 
common time segments or datapoints. 

• Prediction horizon/time window – The time interval (lead time) over which prediction 
occurs. 

• Sampling frequency – Number times a measurement (e.g., HR) is measured per second 
(in units of 1/sec or Hz). A sampling frequency of 2Hz means the measurement was 
done twice every second. Conversely, a sampling frequency of 0.5Hz mean the 
measurement was done once every 2 seconds. 

• Scale – The interval of time from which variability measurements such as sample 
entropy are derived. 

• Stochastic – When values in a time series include a random component, not completely 
predetermined from prior values. 
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