Prediction of impending septic shock in children with sepsis

Supplementary Materials

Authors: Ran Liu, BS^{1,2}, Joseph L. Greenstein, PhD^{1,2}, James C. Fackler, MD³, Jules Bergmann, MD³, Melania M. Bembea, MD, MPH, PhD^{3,4}, Raimond L. Winslow, PhD^{1,2}

Affiliations:

¹Institute for Computational Medicine, The Johns Hopkins University

²Department of Biomedical Engineering, The Johns Hopkins University School of Medicine & Whiting School of Engineering

³Department of Anesthesiology and Critical Care Medicine, and ⁴Department of Pediatrics, The Johns Hopkins University School of Medicine

Materials and Methods:

Labeling Clinical States

We applied four sets of criteria for determining sepsis and septic shock in pediatric patients: the Sepsis-2-based Goldstein criteria¹, and three sets of Sepsis-3 criteria adapted for sepsis patients. The Goldstein criteria define sepsis as the presence of suspected infection with concurrent fulfillment of 2 or more SIRS criteria¹. A full list of age-adjusted criteria for variables used in determining SIRS is given in Table S5. For SIRS, septic shock is defined as sepsis occurring with cardiovascular dysfunction. Cardiovascular dysfunction is defined as hypotension, which is determined as a mean arterial pressure (MAP) below the 5th percentile for age, computed as $1.5 \times (age in years) + 40 \text{ mmHg}^2$, or the administration of vasopressors, or a lactate concentration of 2.5 mmol/L and urine output <0.5 mL/kg/hr¹.

Sepsis-3³ defines sepsis as organ dysfunction consequent to suspected infection. Our three sets of Sepsis-3 criteria are defined by the different methods by which we determine the presence of organ dysfunction. The first is using age-adjusted SOFA score^{4,5}, where organ dysfunction is determined by a 2-point increase in age-adjusted SOFA score. Age-adjusted SOFA score, as suggested by Matics et al., uses the PELOD-2 age cutoffs for MAP and creatinine⁵. A full list of age cutoffs for variables used in calculating age-adjusted SOFA score is given in Table S6. The second and third Sepsis-3 criteria determine organ dysfunction using PELOD-2 score, where either a 2-point increase or a 6-point increase in PELOD-2 score indicates organ dysfunction^{6,7}. Septic shock patients are those that have sepsis, have received adequate fluid resuscitation, require vasopressors to maintain MAP of at least the 5th percentile by age, and have a serum lactate concentration >2 mmol/L. Adequate fluid resuscitation was determined using the 2020 Pediatric SSC guidelines^{8,9}: adequate fluid resuscitation is defined as having received 40 mL/kg of fluids, or having attained fluid resuscitation targets of MAP of at least the 5th percentile by age.

Results in an Independent Cohort

We applied the same methodology for data extraction and applied the same criteria for generating clinical state labels to EHR data from PIC¹⁰. Mean blood pressure values were computed from systolic and diastolic blood pressure values as 1/3 systolic BP + 2/3 diastolic BP. Items ids corresponding to each queried clinical feature are given in Table S12. For external testing of our septic shock risk models and methodology for early prediction, models for risk score, structural timeseries models, and mean values for imputation were fitted on data from the Johns Hopkins PICU, and then evaluated on data from PIC.

Discussion:

Spectral Clustering

In the spectral clustering approach to patient stratification used in this analysis, the eigengap heuristic is used to determine the optimal number of clusters. This procedure selects k (i.e. the number of clusters) such that the gap between the k-th and (k+1)-th eigenvalues of the graph Laplacian is relatively large compared with gaps between all other consecutive pairs of eigenvalues. Geometrically, by the Davis-Kahan theorem, this guarantees that the eigenvectors of the graph Laplacian are robust to small perturbations in the data¹¹. Intuitively, this means that the results of spectral clustering for a selected value of k will be robust to small changes in the data, which is one common measure of goodness of fit for clustering algorithms¹².

Using this method, we infer that the optimal number of clusters in our dataset is 2, as the gap between the 2nd and 3rd eigenvalues of the graph Laplacian is largest (Figure S2). We find that higher risk clusters have higher mortality, prevalence of septic shock, and fewer patients who are adequately fluid resuscitated at time of early prediction, trends that are consistent with our previous observations in adult patients¹³. However, we did not find a statistically significant difference in median EWT or in the proportion of patients receiving vasopressors.

The separation between the two clusters, either for risk score or any individual physiological variable, can be quantified by the Kullback-Leibler divergence¹⁴ (Figure S3) between their distributions. We find that clusters are more separable by risk score than by any single physiological variable, and that clusters are indistinguishable prior to time of early prediction (time of threshold crossing). The evolution of physiological variable clusters is similar to that of risk score clusters (Figure S4), as distributions of lactate and GCS are indistinguishable between the two clusters prior to entry into pre-shock, but diverge after time of threshold crossing. Cluster 1 has a higher risk score than cluster 2, and has correspondingly higher values of lactate, and lower values of GCS, reflecting the more severe state of the patients.

Supplementary Figures:

Figure S1: Average ROC curves for early prediction using different clinical criteria for labeling of sepsis and septic shock patients.

Figure S2: Eigenvalues of Graph Laplacian of risk trajectories following time of early prediction.

Figure S3: Kullback-Leibler divergences of risk score, heart rate, lactate, and MAP in the pediatric dataset.

Figure S4: Trajectories of lactate (A) and GCS (B) for the 2 clusters of patients illustrated in Figure 3. Solid lines indicate the mean value of each feature within each cluster. Shaded areas indicate an interval of 1 standard deviation from the mean.

Figure S5: ROC curves for prediction of mortality using most severe value of PELOD-2, ageadjusted SOFA, and SIRS.

Figure S6: Calibration curves for (A) XGBoost and (B) GLM models, giving average risk score (which is equivalent to the expected probability of septic shock) vs observed fraction of septic shock in each decile of risk. The line y = x is indicated in red.

Supplementary Tables:

Comorbidity	Non-sepsis	Sepsis without shock	Shock	Overall
Neurological/neuromuscular	20.72%	31.92%	34.08%	22.77%
Cardiovascular	20.16%	39.07%	60.51%	24.26%
Respiratory	9.39%	18.70%	23.57%	11.21%
Renal and urologic	6.28%	13.72%	17.83%	7.74%
Gastrointestinal	18.63%	38.65%	39.49%	22.18%
Hematological/immunological	4.18%	13.05%	19.11%	5.96%
Metabolic	11.60%	23.77%	39.81%	14.32%
Congenital/genetic	9.67%	16.13%	19.43%	10.93%
Malignancy	3.78%	8.56%	7.64%	4.59%
Premature and neonatal	5.75%	23.44%	37.26%	9.36%
Technology dependence	24.01%	43.64%	48.73%	27.65%
Transplant	0.90%	2.66%	7.01%	1.37%

Table S1: Pediatric Complex Chronic Conditions

 Table S2: Age-adjusted SIRS criteria.

Age Range	Temperature	Heart Rate	Respiratory Rate	WBC Count
	(°C)	(beats/min)	(breaths/min)	(k/mm ³)
0-1 week	<36 or >38.5	>180 or <100	>50	>34
1 week-1 month	<36 or >38.5	>180 or <100	>40	>19.5 or <5
1 month-1 year	<36 or >38.5	>180 or <90	>34	>17.5 or <5
2-5 years	<36 or >38.5	>140	>22	>15.5 or <6
6-12 years	<36 or >38.5	>130	>18	>13.5 or <4.5
13-17 years	<36 or >38.5	>110	>14	>11 or <4.5

Table S3: Age-adjusted SOFA Score

Age \ Cardiovascular SOFA Score	0	1
<1 month	MAP <46 mmHg	MAP ≥46 mmHg
1 - <12 months	MAP <55 mmHg	MAP ≥55 mmHg
12 - <24 months	MAP <60 mmHg	MAP ≥60 mmHg
24 - <60 months	MAP <62 mmHg	MAP ≥62 mmHg
60 - <144 months	MAP <65 mmHg	MAP ≥65 mmHg
≥144 months	MAP <67 mmHg	MAP ≥67 mmHg

A. Mean Arterial Pressure Age Cutoffs for Cardiovascular SOFA Score

B. Creatinine Age Cutoffs for Kidney SOFA Score

Age \ Kidney SOFA Score	0	2
<1 month	Creatinine ≤69 µmol/L	Creatinine >69 µmol/L
1 - <12 months	Creatinine ≤22 µmol/L	Creatinine >22 µmol/L
12 - <24 months	Creatinine ≤34 µmol/L	Creatinine >34 µmol/L
24 - <60 months	Creatinine ≤50 µmol/L	Creatinine >50 µmol/L
60 - <144 months	Creatinine ≤58 µmol/L	Creatinine >58 µmol/L
\geq 144 months	Creatinine ≤92 µmol/L	Creatinine >92 µmol/L

Feature	% of Patients	Average time (hrs)	Observations per
	with at least 1	between observations	admission
	entry	(mean/median)	(mean/median)
Risk Score	100.00	1.83/1.00	190.50/53
Heart Rate	100.00	1.20/1.00	132.50/34
Systolic Blood Pressure	99.85	2.36/2.00	67.17/20
Diastolic Blood	99.85	2.36/2.00	67.17/20
Pressure			
Mean Arterial Pressure	99.92	1.63/1.00	95.99/19
Respiratory Rate	99.98	1.28/1.00	123.87/33
Temperature	99.98	2.34/2.00	68.06/13
Central Venous	11.11	0.99/0.50	14.42/0
Pressure			
PaO ₂	27.24	10.63/3.53	6.58/0
FiO ₂	73.59	1.62/1.00	61.04/0
GCS	50.15	2.45/2.00	20.66/0
Bilirubin	51.36	43.96/23.83	3.98/1
Platelets	67.44	33.02/22.18	6.35/1
Lactate	36.77	18.18/4.28	5.07/0
BUN	74.65	28.28/22.32	7.91/2
Arterial pH	24.84	8.28/3.63	5.77/0
WBC	28.52	131.33/27.43	0.66/0
PaCO ₂	27.24	10.58/3.53	6.59/0
Hemoglobin	32.98	25.44/4.10	3.20/0
Hematocrit	68.24	33.21/22.43	6.41/2
Potassium	71.68	29.10/22.53	7.60/2

Table S4: Availability of EHR data

Feature	Mean	Median
Heart Rate (bpm)	124.52	126.00
Systolic BP (mmHg)	97.30	97.00
Diastolic BP (mmHg)	55.46	54.00
MAP (mmHg)	69.74	68.00
Respiratory Rate (bpm)	35.68	33.00
Temperature (°F)	98.18	98.20
CVP (mmHg)	13.37	11.00
PaO ₂ (mmHg)	119.87	97.00
FiO ₂ (%)	53.21	40.00
GCS	12.08	14.00
Bilirubin (mg/dL)	2.34	0.60
Platelets (1000/µL)	219.78	182.00
Lactate (mmol/L)	2.10	1.50
BUN (mg/dL)	17.16	12.00
Arterial pH	7.36	7.37
WBC (1000/µL)	72.15	6.00
PaCO ₂ (mmHg)	47.49	45.00
Hemoglobin (g/dL)	11.27	11.10
Hematocrit (%)	31.51	30.70
Potassium (mmol/L)	4.18	4.10

 Table S5: Central Tendency Measures of Patient Physiological Data

Feature	Table	Items
Heart Rate	Flowsheet	8
Systolic/Diastolic BP	Flowsheet	5
Mean Arterial Pressure	Flowsheet	301250,301360
Respiratory Rate	Flowsheet	9
Temperature	Flowsheet	6
CVP	Flowsheet	301370
PaO ₂	Labs	2000000122
FiO2	Flowsheet	301550,1601063025,3040019917,304064870
GCS	Flowsheet	30440104971,30440104966
Bilirubin	Labs	200000107
Platelets	Labs	200000008
Lactate	Labs	200000900
BUN	Labs	200000100
рН	Labs	2000000120
WBC	Labs	2000000722
PaCO ₂	Labs	2000000121
Hemoglobin	Labs	200000897
Hematocrit	Labs	200000003
Potassium	Labs	200000096

Table S6: Queried items in the pediatric dataset

Table S7: Performance metrics

Model	AUC	Sensitivity	Specificity	PPV	Median EWT (hrs)
XGBoost	0.90	0.84	0.82	0.43	8.9
GLM	0.87	0.83	0.75	0.35	12.0
Cox	0.82	0.76	0.76	0.34	14.9
SOFA	0.72	0.61	0.67	0.24	29.2

Table S8: Feature importance using (A) XGBoost and (B) GLM for top 10 selected features, sorted in descending order of relative importance.

Feature	Gain	Cover	Frequency
Lactate	0.451	0.243	0.156
Respiratory SOFA	0.133	0.083	0.052
GCS	0.095	0.129	0.089
FiO ₂	0.037	0.066	0.083
Liver SOFA	0.036	0.044	0.026
Heart Rate	0.028	0.057	0.057
Platelets	0.027	0.038	0.057
Temperature	0.020	0.031	0.036
Urine Output	0.019	0.034	0.042
BUN	0.016	0.033	0.031

A. XGBoost

B. GLM

Feature	Coefficient	SE	Odds Ratio
Lactate	1.758	0.012	5.799
GCS	-1.350	0.018	0.259
Respiratory SOFA	0.684	0.021	1.983
HR	0.675	0.009	1.963
Urine Output	-0.672	0.012	0.511
MAP	0.583	0.020	1.791
DBP	-0.512	0.029	0.600
Normalized MBP	-0.482	0.013	0.618
Platelets	-0.415	0.023	0.660
Nervous SOFA	-0.333	0.014	0.717

Table S9: Stratification of patients by first post-threshold crossing value of risk score.

Percentiles	False Positives (1-PPV)	True Positives (PPV)
0-20	66 (58.41%)	47 (41.59%)
21-40	70 (61.40%)	44 (38.60%)
41-60	58 (51.33%)	55 (48.67%)
61-80	61 (53.98%)	52 (46.02%)
81-100	43 (38.05%)	70 (61.95%)

Table S10: Outcome characteristics of clusters in Figure 3. An asterisk denotes a statistic which is significantly different between the clusters at the p<0.01 confidence level (Fisher's exact test for binary variables (shock prevalence, mortality, fluid resuscitation, vasopressor administration), Wilcoxon rank-sum test for continuous variables (median EWT)).

Cluster	Size	Shock	Mortality*	Median	% Patients	% Patients
		Prevalence*		EWT	Adequately	Treated with
					Fluid	Vasopressors
					Resuscitated *	
1	385	200 (51.95%)	79 (20.52%)	7.49 hrs	76.88%	54.81%
2	179	67 (37.43%)	18 (10.06%)	5.37 hrs	87.15%	50.28%

Table S11: Baseline statistics in the PIC database. Sepsis cohorts are determined using ageadjusted SOFA scores⁶.

Most severe clinical state	No sepsis	Sepsis without septic shock	Sepsis leading to septic shock	Overall
reached		septie shoen		
Admissions	11,415 (84.88%)	1,682 (12.51%)	352 (2.62%)	13,449 (100%)
Patients	10,887 (84.52%)	1,643 (12.76%)	351 (2.72%)	12,881 (100%)
PICU Stays	11,692 (83.87%)	1,805 (12.95%)	444 (3.18%)	13,941 (100%)
In-hospital	885 (7.75%)	29 (1.72%)	57 (16.19%)	971 (7.22%)
mortality				
Gender	57.65% Male,	54.53% Male,	55.27% Male,	57.19% Male,
	42.35% Female	45.47% Female	44.73% Female	42.81% Female
Median ICU stay	2.91 (1.46, 9.41)	4.40 (1.48,	7.57 (3.61,	3.44 (1.46, 9.64)
length, days		12.65)	21.53)	
(IQR)				
Mean age, years	2.53 (3.63)	2.26 (3.45)	2.40 (3.84)	2.49 (3.61)
(SD)				

Feature	% of Patients	Average time (hrs)	Observations per
	with at least 1	between observations	admission
	entry	(mean/median)	(mean/median)
Risk Score	96.37	51.44/24	11.37/7
Heart Rate	76.46	43.77/24	7.43/4
Systolic Blood Pressure	68.54	74.18/24	3.10/2
Diastolic Blood	68.54	74.18/24	3.10/2
Pressure			
Respiratory Rate	78.22	37.78/24	9.93/7
Temperature	78.24	36.86/24	10.26/7
PaO ₂	92.70	47.33/24	6.72/4
FiO ₂	17.12	40.29/24	1.37/0
Bilirubin	91.29	86.63/48	4.30/3
Platelets	93.02	67.68/24	8.04/5
Lactate	92.65	47.17/24	6.66/4
BUN	92.11	116.51/72	3.41/3
Arterial pH	92.70	47.36/24	6.71/4
WBC	93.02	67.70/24	8.04/5
PaCO ₂	92.70	47.33/24	6.72/4
Hemoglobin	93.38	59.63/24	9.15/6
Hematocrit	93.38	59.61/24	9.15/6
Potassium	92.71	47.61/24	6.73/4

Table S12: Availability of EHR data in the PIC database.

Feature	Table	Items	
Heart Rate	Chartevents	1003	
Systolic BP	Chartevents	1016	
Diastolic BP	Chartevents	1015	
Respiratory Rate	Chartevents	1004	
Temperature	Chartevents	1001	
Weight	Chartevents	1014	
Bilirubin	Labevents	5225, 5075	
PaO ₂	Labevents	5239, 5244	
FiO ₂	Labevents	5222	
Creatinine	Labevents	5032, 5041, 6954	
Lactate	Labevents	5227	
White Blood Cell Count	Labevents	5141	
Platelets	Labevents	5129	
Arterial pH	Labevents	5237, 5374	
BUN	Labevents	6477, 5033	
PaCO ₂	Labevents	5235	
Hemoglobin	Labevents	5099, 5257	
Hematocrit	Labevents	5097, 5225	
Potassium	Labevents	5226	

Table S13: Queried items in the PIC database

 Table S14: Performance metrics in the PIC database

Model	AUC	Sensitivity	Specificity	PPV	Median EWT (hrs)
XGBoost	0.82	0.79	0.71	0.22	48
GLM	0.72	0.64	0.71	0.19	108
Cox	0.63	0.67	0.55	0.13	231
SOFA	0.66	0.47	0.77	0.17	248

References:

- 1. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics*. *Pediatric Critical Care Medicine*. 2005;6(1):2-8.
- 2. Haque IU, Zaritsky AL. Analysis of the evidence for the lower limit of systolic and mean arterial pressure in children. *Pediatric Critical Care Medicine*. 2007;8(2):138-144.
- 3. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). *Jama*. 2016;315(8):801.
- 4. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. *Intensive Care Med.* 1996;22(7):707-710.
- 5. Matics TJ, Sanchez-Pinto LN. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. *JAMA Pediatrics*. 2017;171(10):e172352.
- 6. Schlapbach LJ, Straney L, Bellomo R, MacLaren G, Pilcher D. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. *Intensive Care Medicine*. 2017;44(2):179-188.
- 7. Leteurtre S, Duhamel A, Salleron J, Grandbastien B, Lacroix J, Leclerc F. Pelod-2. *Critical Care Medicine*. 2013;41(7):1761-1773.
- 8. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. *Pediatric Critical Care Medicine*. 2020;21(2):e52-e106.
- 9. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. *Intensive Care Medicine*. 2017;43(3):304-377.
- 10. Zeng X, Yu G, Lu Y, et al. PIC, a paediatric-specific intensive care database. *Scientific Data*. 2020;7(1).
- 11. Davis C, Kahan WM. The Rotation of Eigenvectors by a Perturbation. III. *SIAM Journal on Numerical Analysis.* 1970;7(1):1-46.
- 12. Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. Paper presented at: Advances in neural information processing systems2002.
- 13. Liu R, Greenstein JL, Fackler JC, Bembea MM, Winslow RL. Spectral clustering of risk score trajectories stratifies sepsis patients by clinical outcome and interventions received. *eLife*. 2020;9.
- 14. Kullback S, Leibler RA. On Information and Sufficiency. *The Annals of Mathematical Statistics*. 1951;22(1):79-86.