
1 
 

Consensus on clinical management of tumor-induced osteomalacia 1 
 2 
Introduction 3 

Tumor-induced osteomalacia (TIO), also known as oncogenic osteomalacia, is a rare 4 
paraneoplastic syndrome caused by excessive production of fibroblast growth factor 23 (FGF23) 5 
by a tumor, which often arises from a mesenchymal origin.[1, 2] FGF23 plays a key role in the 6 
regulation of phosphate homeostasis. Its classic effects are inhibition of the expression of 7 
sodium-phosphate cotransporters 2a and 2c on proximal renal tubules, which results in reducing 8 
phosphate reabsorption and hypophosphatemia. In addition, FGF23 inhibits the production, 9 
increases the degradation of 1,25-dihydroxyvitamin D [1,25(OH)2D],[1, 2] and subsequently 10 
decreases intestinal phosphate absorption. Most clinical symptoms of TIO are the consequences of 11 
prolonged FGF23-mediated hypophosphatemia as muscle weakness, bone pain, impaired mobility, 12 
and fractures.[3, 4] 13 

The first case of TIO was described in 1947 by McCance,[5] but it is not until 1959 that the 14 
relationship between tumors and osteomalacia was unveiled.[6] After that, a series of studies of 15 
TIO were conducted.[7–9] Due to their small sizes, slow-growing, unexpected locations, and 16 
unapparent focal symptoms by TIO tumors, the causative tumors are difficult to detect by 17 
conventional imaging modalities. After the applications of somatostatin receptor (SSTR) 18 
imaging,[10–13] a large number of TIO cases have been reported. 19 

However, TIO is still a rare disease because about 500–1000 cases have been reported in the 20 
literature.[14, 15] TIO most commonly affects middle-aged adults,[3, 4, 16, 17] but cases have also been 21 
reported in children and the elderly.[18–22] Men and women are equally affected.[3, 4, 16, 17] The exact 22 
prevalence or incidence from a population-based study is absent. To date, there is only one 23 
nationwide epidemiological survey of FGF23-related hypophosphatemic diseases conducted in 24 
Japan, which included not only TIO but also other FGF23-related rickets. The numbers of patients 25 
with TIO and X-linked hypophosphatemic rickets (XLH) were similar indicating that there are 26 
about 50 new TIO patients in Japan annually.[23] 27 

Clinical diagnosis and management of TIO are challenging. Given the rarity of this condition, 28 
many medical practitioners would overlook the clinical and biochemical manifestations, and 29 
perhaps therefore the initial misdiagnosis rate was 95.1%.[24] In addition, accurate localization and 30 
successful surgical removal of the responsible tumor are the definitive treatment. With the 31 
development of imaging and surgical techniques, more and more TIO patients recovered from 32 
hypophosphatemia and its related symptoms after tumor excision. However, a recent retrospective 33 
study revealed that nearly 20% of TIO persisted or recurred after primary surgery.[25] Under such 34 
circumstances, an evidence-based consensus and recommendation for the diagnosis and 35 
management of TIO are in urgent need. The scope of the present report is to review and update the 36 
assessment and treatment of TIO. Evidence-based recommendations are provided in this expert 37 
consensus. 38 
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Methods 39 
The writing committee consists of experts representing endocrinology, pathology, radiology, 40 

nuclear medicine orthopedics, stomatology, and rhinology departments. Experts in the writing 41 
committee were invited to develop this consensus based on their publication record and the 42 
number of TIO patients they have participated in the diagnosis and treatment. From the evidence, 43 
especially high-quality evidence is limited or even nonexistent for this rare disease; we provide 44 
recommendations based on an expert’s review on the limited data, as well as their experiences and 45 
opinions when data are unavailable. This process may be less systemic than the GRADE 46 
methodological framework; however, it is unrealistic to gather more reliable evidence without an 47 
international consensus to promote standard management of TIO. 48 

A comprehensive literature search was conducted on PubMed before 16 August 2020. 49 
Publications in English were only considered. The search strategy was developed based on the 50 
Mesh terms and text word of “tumor-induced osteomalacia,” “tumour-induced osteomalacia,” 51 
“TIO,” “Oncogenic osteomalacia,” “OO,” “OOM,” “phosphaturic mesenchymal tumor,” 52 
“phosphaturic mesenchymal tumor mixed connective tissue variant,” “PMT,” and “PMTMCT.” 53 
Additional relevant articles on clinical manifestations, histopathological features, tumor 54 
localization, and treatments were also searched in PubMed when supplementary information was 55 
necessary. More than 600 articles were comprehensively reviewed and 197 of them were 56 
referenced here. 57 

All participants signed a conflict of interest declaration, and the consensus was strictly 58 
supported by funding from academic or professional societies only, with no sponsorship from the 59 
pharmaceutical industry. 60 
Pathophysiology 61 

As an important phosphatonin, FGF23 has been demonstrated to be overexpressed in tumors 62 
of TIO at both RNA and protein levels.[26] The action of FGF23 is mediated by binding to its 63 
receptor complex, fibroblast growth factor receptor 1 (FGFR1), and the co-receptor α-Klotho.[27] It 64 
downregulates sodium-phosphate cotransporters protein 2a and 2c, resulting in reduced phosphate 65 
reabsorption at the proximal renal tubules.[28, 29] In addition, it suppresses 1-alpha-hydroxylation 66 
and promotes 24-hydroxylation of 25-hydroxy vitamin D, and 1,25(OH)2D, leading to decreased 67 
1,25(OH)2D which reduces the phosphate absorption in the intestine.[28] Besides FGF23, 68 
expression of several matrix-associated proteins, such as secreted frizzled-related protein 4 69 
(SFRP4), matrix extracellular phosphoglycoprotein (MEPE), and FGF7 was found to be elevated 70 
in tumors,[30, 31] which has been proved to promote phosphate wasting in animal experiment.[31–33] 71 
However, the elevation of these proteins has not been reported in the serum of TIO patients. Given 72 
the above, overproduced FGF23 from tumors leading to hypophosphatemia is regarded as the key 73 
factor in the pathogenesis of TIO. 74 

Identification of fusion genes shed new sights into tumorigenesis of TIO. The first identified 75 
fusion gene was FN1 (encoding gene of fibronectin)–FGFR1 (encoding gene of FGFR1), which 76 
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was found in 42% (21/50) of tumors in the largest studied cohort to date.[34] The FN1–FGFR1 77 
fusion gene preserves a large part of the extracellular domain of fibronectin, the ligand binding, 78 
and transmembrane and intracellular signaling domains of FGFR1.[35] Fibronectin, a highly 79 
expressed extracellular protein, probably provides its strong promotor to stimulate the 80 
overproduction of fusion gene, including the 3′ portion of FGFR1 which is a known oncogene in 81 
various malignant tumors.[36, 37] Fibronectin can also polymerize and bind to other extracellular 82 
matrix proteins, which may facilitate the auto-dimerization of the fusion protein and lead to 83 
ligand-independent activation of FGFR1 signaling.[34] The ligand-binding domain of FGFR1 is 84 
predicted to be preserved, which might imply a ligand-dependent manner (including FGF23). 85 
Overproduced FGF23 partially caused by activation of FGFR1 signaling further activates the 86 
fusion protein, potentially leading to an autocrine or paracrine feed-forward signaling. 87 
Interestingly, α-Klotho, the obligatory co-receptor for FGF23–FGFR1 binding, was found to be 88 
lowly expressed in fusion-positive tumors.[35] It might be explained by enhanced binding affinity 89 
of the fusion protein to FGF23 due to loss of the first Ig-like domain of FGFR1.[34, 35] However, 90 
recent studies revealed that overexpression of α-Klotho (or β-Klotho),[38] especially in 91 
fusion-negative tumors,[39] might result in an FGF23–FGFR1 autocrine loop that in turn drives the 92 
overexpression of FGF23 and tumorigenesis through activated FGFR1 signaling. 93 

The second fusion gene FN1–FGF1 was demonstrated in 6% (3/50) of tumors.[34] The fusion 94 
protein retains nearly the entirety of FGF1 and might function like normal FGF1, which is a 95 
crucial ligand for all FGFRs.[40] The fusion protein also retains the auto-dimerization domain of 96 
fibronectin to dimerize and was speculated to bind the membranous FGFR1 in a 2:2 ternary 97 
fashion to activate FGFR1 signaling.[34] 98 

Hypoxia-inducible factor-1α (HIF-1α) is another new finding, which was shown to be 99 
overexpressed and co-localized with FGF23 in tumors resected from two TIO patients.[41] HIF-1α 100 
inhibitors decreased HIF-1α and FGF23 protein as well as HIF-1α-induced luciferase reporter 101 
activity in vitro. These results suggest that HIF-1α is a transcriptional activator of FGF23 and 102 
upregulated HIF-1α might partially explain the overproduced FGF23 in TIO. 103 
Diagnosis 104 
General approach 105 

The diagnosis of TIO is based on the association of clinical manifestations, biochemical 106 
findings, and the identification of the tumor (most importantly). Patients with clinical and/or 107 
radiological signs of rickets/osteomalacia, especially those with chronic hypophosphatemia, 108 
should be suspected.[3, 4, 42] Besides, other causes of hypophosphatemic rickets/osteomalacia 109 
should be excluded at the very beginning of the diagnosis.[15] 110 
Clinical features 111 

Clinical manifestations can vary widely in patients, but some typical symptoms generally 112 
occurred in the vast majority of patients with TIO. These typical symptoms are actually similar to 113 
those described in the first case of TIO,[5] which including pain and muscle 114 
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weakness.[3,4,16,24,25,43–47] In children with TIO, decreased growth velocity can also be found.[18] 115 
The pain is usually described as a widespread bone pain developed from weight-bearing sites, 116 
such as feet or lower limbs, and gradually progressed upward to bones of the whole body except 117 
the head. Muscle weakness, generally proximal muscle weakness, occurs in almost 100% of 118 
reported cases but it is not specific enough to make a diagnosis. Impaired mobility, or described as 119 
gait abnormality or trouble walking in different studies, is a result of bone pain and muscle 120 
weakness. With the progression of untreated disease, the severity of impaired mobility aggravates, 121 
resulting in the loss of self-care ability, and being bedridden. Other common symptoms have been 122 
summarized in retrospective studies with at least five cases including height loss, fractures, and 123 
bone deformities.[4, 16, 24, 44–47] The prevalence of fractures is 40–100% according to previous 124 
studies.[4, 16, 24, 42, 43, 45–47] Fractures mainly happen in ribs, vertebral bodies, pelvis, and femurs; and 125 
the sites of fractures are not related to the sites of causative tumors. Of note is that these fractures 126 
were often described as pathological fractures in previous studies, while the risk of traumatic 127 
fracture may also increase in these patients since their impaired mobilities. 128 

Symptoms related to tumor masses themselves are observed in tumors located in oral, nasal, 129 
or aural regions occasionally. These symptoms can be obstructive symptoms, such as breathing or 130 
swallowing difficulties, epistaxis, deafness, facial nerve palsy, or just a palpable mass by the 131 
tongue,,[48–50] and therefore should be covered in the questioning. Tumors of the jawbone are 132 
usually solitary mass involving mandibular and/or maxillary gingiva. Tumors originated from the 133 
gingiva show localized thickening and swelling of the gingiva, or a mass like an epulis.[51] The 134 
affected teeth often become loose and eventually fall off because of the soft alveolar bone. 135 
Occasionally the lesions would extend to the inferior alveolar nerve canal, however, generally 136 
there is a little symptom, such as numbness of the lower lip. Metastatic disease is even rarer[52–61] 137 
and the lungs seem to be a vulnerable organ.[43, 55–58, 62] 138 

The problems of psychiatric symptoms are largely invisible. However, these symptoms do 139 
exist[63] and may evolve into a suicide attempt in severe cases.[64] The psychiatric symptoms in 140 
TIO patients may provoke by pain or decreased social capability. 141 

Physical examinations (PEs) can find signs associated with typical symptoms. Typically, the 142 
patients present gait abnormalities, pressing pain of a wide range of bones, and decreased distance 143 
between costal margin crista iliaca, which indicate the compression of lumbar vertebral bodies. In 144 
severe patients with bone deformities, barrel chest, kyphosis, and varus/valgus deformities of 145 
lower limbs may emerge. Besides, PEs can discover local lumps that responsible for the disease in 146 
some cases. In a retrospective study, local lumps that turned out to be causative tumors were found 147 
in 14.6% of patients.[24] Thus, any local lumps, especially those are new-found in recent years, 148 
should not be neglected. 149 

Most cases of TIO develop in an adult with an average age of diagnosis of 150 
40–45 years,[3,4,16,17,25,44] while there are also case reports of underage patients,[18–22] and the 151 
youngest patient was diagnosis at 2-year-old.[65] Patients with TIO always coexist with responsible 152 
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tumors for years and even decades. It is hard to answer how long it takes from TIO tumorigenesis 153 
to occurrence of related symptoms, and the duration from the onset of symptoms to correct 154 
diagnosis may range from 1 year to as long as >20 years.[25] During this period, these tumors do 155 
not cause death but devastate patients’ independence and quality of life progressively until 156 
effective intervention. 157 
Biochemical characteristics 158 

Biochemical findings play an important role in the diagnosis of TIO. Except for the high 159 
level of FGF23 secreted by the tumor, the main biochemical characteristics of TIO are low serum 160 
phosphate due to the reduction of tubular maximum reabsorption of phosphate (TmP)/glomerular 161 
filtration rate (GFR), increased serum alkaline phosphatase (ALP), and inappropriately normal or 162 
reduced concentration of 1,25(OH)2D. 163 
Serum phosphate 164 

The normal reference range of serum phosphate for an adult is 0.81–1.45 mmol/L. It is worth 165 
noting that serum phosphate levels vary according to age in childhood, which needs to be carefully 166 
considered when assessing whether hypophosphatemia is present or not.[66] Serum phosphate in 167 
TIO patients is far below the normal range in a retrospective analysis,[67] serum phosphate level 168 
was 0.48 ± 0.13 mmol/L, with a range of 0.17–0.80 mmol/L. 169 
Serum alkaline phosphatase 170 

Serum ALP, especially bone alkaline phosphatase (BAP) concentrations are increased in TIO 171 
patients.[4, 46] They are important biochemical markers to differentiate osteomalacia from 172 
hypophosphatasia, which is also characterized by impaired mineralization but with low ALP and 173 
BAP levels on the contrary. 174 
TmP/GFR 175 

In healthy people, when the serum phosphate level falls <0.65 mmol/L, urine phosphate 176 
decreases to trace or undetectable.[68] However, in TIO patients, the situation is different because 177 
of the decrease in TmP. The evaluation of renal tubular reabsorption of phosphate (TRP), which is 178 
estimated by calculating TmP, is crucial for the diagnosis of renal phosphate wasting. Patients 179 
suspected of TIO should under a drug-eluting for at least 1 day from phosphate supplementation 180 
and fast overnight. Phosphate and creatinine levels in the urine were collected over 2 h from the 181 
patient and in the blood sampled at the midpoint of the urine collection. TmP/GFR minimizes 182 
variation, which is due to differences in lean body mass. The percentage of TRP is calculated 183 
using the following equation: 100 × (1 − urine phosphate × serum creatinine/serum 184 
phosphate × urine creatinine) with a normal range of 85–95%. TmP/GFR is read on the 185 
Walton-Bijvoet chart [Supplementary Figure 1] by drawing a line of serum phosphate (left 186 
coordinate axis) and TRP to the right coordinate axis (normal range: 0.80–1.35 mmol/L).[69] 187 
Serum FGF23 188 

The levels of FGF23 are a unique and essential indicator for the diagnosis and surveillance of 189 
TIO. Both intact molecule formats (iFGF23) and carboxy-terminal fragments of the molecule 190 

http://dict.youdao.com/w/coordinate%20axis/#keyfrom=E2Ctranslation
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(cFGF23) are available.[70] Elevated levels of serum iFGF23 or cFGF23 could be observed in the 191 
majority of TIO patients, while the iFGF23 levels ranged from 44.1 pg/mL to 14922.3 pg/mL are 192 
reported. A high circulating level of FGF23 is an indicator of malignant tumors and a predictor of 193 
the surgery outcome.[25] It should be noted that completely normal FGF23 levels reveal successful 194 
surgery and clearance of the lesion. On the contrary, failure of normalization is sensitive in 195 
prompting residual lesion or rare multifocality.[71, 72] During the follow-up, if the high level of 196 
FGF23 persists or recurs, it warns that an incomplete resection or a relapse exists. 197 
Serum 1,25(OH)2D and 25-hydroxyvitamin D 198 

Since excessive FGF23 suppresses renal 1,25(OH)2D production by downregulating renal 199 
1α-hydroxylase gene expression as well as upregulating 24-hydroxylase gene expression.[73] 200 
Reducing or inappropriately normal concentration of 1,25(OH)2D is observed in TIO patients. 201 

Although 25-hydroxyvitamin D deficiency can be seen in TIO patients, it is not due to the 202 
tumor itself.[24, 45] If the patient shows high FGF23, even with the presence of vitamin D 203 
deficiency, FGF23-related hypophosphatemia can be diagnosed.[74] 204 
Serum parathyroid hormone (PTH) 205 

Serum PTH levels can be normal or elevated.[75] Elevation of PTH levels reflects secondary 206 
hyperparathyroidism caused by low levels of 1,25(OH)2D and worsens renal phosphate wasting. 207 
Prolonged secondary hyperparathyroidism in TIO can lead to tertiary hyperparathyroidism,[76] 208 
especially those who have received phosphate supplementation with inadequate activated vitamin 209 
D for a prolonged period.[77] 210 
 211 
Imaging 212 
Bone features on radiography 213 

TIO adult patients demonstrated features of osteomalacia with obscur bone structure, concave 214 
changes of vertebrae, inward bending of the pelvic sidewall, as well as pseudofracture (Looser 215 
zone) on the radiography. TIO child patients presented features of rickets with frayed or cupping 216 
metaphysis. Since most tumors of TIO are eccentric and located in the epiphysis,[78] any such 217 
lesion in the long bones with osteomalacia on radiography should raise a suspicion of the tumor. 218 
Dual-energy X-ray absorptiometry (DXA) 219 

DXA measurements can be helpful to understand the low bone mineral status and predict 220 
fracture risk for TIO patients who are prone to fractures.[79] As known that surgical complete 221 
tumor resection may lead to resolution of symptoms as well as the improvement of bone mineral 222 
density.[80, 81] Increasing in bone density may be faster in spine and hip compared with radius in 223 
TIO patients after tumor resection.[80, 82] 224 
Tumor localization 225 

Tumor localization is the most challenging and important part of the diagnosis process of TIO. 226 
A stepwise approach to locating the causative tumor is widely recommended since tumors are 227 
usually small and slow-growing with unexpected locations over the whole body [Supplementary 228 
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Figure 2]. 229 
Physical examination 230 
The first step is to screen the whole body for suspected lesions. This step comprises a thorough 231 
inquiry and PE. It is important to emphasize the value of general PE. Careful questioning of the 232 
patient asking whether any “lumps and bumps” has been felt and then on PE carefully and 233 
completely feeling for tumors in areas such as the soles of the feet and the popliteal area can be 234 
very revealing.[48, 49] 235 
Functional imaging 236 

Functional imaging approaches,[83–100] including SSTR imaging, 18F-FDG PET/CT, and bone 237 
scan, have played a significant role in the detection of suspicious lesions of TIO.[87–89, 92, 93, 100–109] 238 
SSTR imaging methods comprise octreoscan with SPECT/CT and 239 
68Ga-DOTA-conjugated-somatostatin-receptor-targeting-peptides (68Ga-DOTA-SST) PET/CT 240 
scan. The culprit tumors of TIO are reported to overexpress SSTR, mainly subtype 2, allowing the 241 
use of SSTR imaging.[110] Either SSTR imaging method is always recommended as a first-line 242 
imaging investigation, depending on their comparatively high sensitivity and accuracy in TIO 243 
lesion localization.[101, 103] Due to higher SSTR2 affinity of 68Ga-DOTA-SST than that of 244 
99mTc-HYNIC-TOC, it is always used for re-screening the lesions, which were negative in 245 
octreoscan.[111] When SSTR imaging methods are unavailable, 18F-FDG PET/CT shall be obliged 246 
to be second-line for tumor location, while the sensitivities of 68Ga-DOTA-SST, 247 
99mTc-HYNIC-TOC, and 18F-FDG PET/CT were reported as 87.6–90%, 83%, and 67%, 248 
respectively.[101, 112] The sensitivity of bone scan (20–30%) is the lowest one among three 249 
functional imaging approaches. Therefore, it is always employed for osteomalacia evaluation 250 
instead of lesion localization, especially for those with bone pain.[100] 251 

The fractures always demonstrate a high accumulation of tracers on SSTR imaging because 252 
inflammatory cells express SSTR2.[113] Even though SSTR imaging can differentiate the fractures’ 253 
avidity from the TIO lesion properly, additional X-ray or CT is still recommended to confirm the 254 
fractures. 255 
Anatomical imaging 256 

Once the TIO tumors are suspected by function imaging or PEs, the next step is to confirm 257 
the lesions by anatomical imagings. Based on different sites of suspected masses, techniques 258 
including MRI, CT, radiography, or ultrasound may be used. When accessible, MRI and CT are 259 
recommended because of their advantage in high resolution. 260 
MRI 261 

MRI skeletal screening has been frequently used to detect TIO tumors since it has inherently 262 
superior soft-tissue resolution with better imaging characteristics for the tumors in either soft 263 
tissues or bones.114, 115] Since MR imaging characteristically can delineate tumors in detail and 264 
identify accurately extension to critical structures around the tumor, it is extremely useful for 265 
surgery planning to prevent local recurrence and injury to the critical structures around the tumor. 266 
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Among the different sequences for image acquisition, short-tau inversion recovery (STIR) images 267 
and T2-weighted fat-suppressed MR images[116] can clearly show tumor areas with high signal 268 
intensity,[114] which should be used preferentially for tumor locations.[117] Contrast-enhanced MRI 269 
has proven to be extremely helpful for differential diagnosis, particularly for intracranial 270 
tumors.[118, 119] Although whole-body MRI can be used for detecting multifocal tumors throughout 271 
the body, it has the limitation for much longer time-consuming for screening compared with other 272 
whole-body modalities (such as PET/CT). In addition, whole-body MRI is usually neither 273 
sensitive nor specific for tumor detection.[120] 274 
CT 275 

CT has the advantage to delineate bone structure and tumors, particularly at irregular bone 276 
sites. Head CT can detect tumors in paranasal sinuses. For tumors located in the jawbone, the 277 
panoramic image and cone-beam CT could help to determine the extent of bone destruction 278 
caused by lesions. Chest high-resolution CT could demonstrate lung metastasis from malignant 279 
TIO tumors.[8, 121–123] 280 
Venous sampling 281 

Venous sampling with measurement of FGF23 is also used in several cases.[124–132] One study 282 
utilized systemic venous sampling, which collected 16–22 blood samples from each patient, to 283 
locate causative tumors and succeed 8 of 10 consecutive patients with suspected TIO.[128] Another 284 
study underwent selective venous sampling in 14 cases and proposed an FGF23 diagnostic ratio of 285 
1:6 (maximum FGF23 value/mean FGF23 value) to diagnose causative tumors, with a sensitivity 286 
of 0.87 and a specificity of 0.71.[129] Of note, selective venous sampling is particularly useful to 287 
confirm causative tumors in patients with multiple suspicious regions, or patients with relatively 288 
high surgical risk or trauma. 289 
Pathology 290 

TIO-associated tumors are generally of mesenchymal origin.[7, 8, 133] These mesenchymal 291 
tumors are histologically polymorphous and have been diagnosed as giant cell tumors, 292 
hemangiopericytomas (HPCs), non-ossifying fibromas, fibrosarcomas, osteosarcomas, 293 
osteoblastomas, chondroblastomas, chondrosarcomas, sclerosing hemangiomas, angiofibromas, 294 
angiolipomas, or other mesenchymal tumors.[8, 9, 62] In 1987, Weidner and Santa Cruz coined the 295 
term “phosphaturic mesenchymal tumor” (PMT) and categorized these mesenchymal tumors into 296 
four morphological subtypes: (1) PMT, mixed connective tissue type (PMTMCT); (2) PMT, 297 
osteoblastoma-like; (3) PMT, nonossifying fibroma-like; and (4) PMT, ossifying fibroma-like.[8] 298 
With improved recognition of the histological spectrum, another landmark study by Folpe et al[9] 299 
in 2004 analyzed 32 cases of TIO-associated mesenchymal tumors with a comprehensive review 300 
of 106 cases in the literature and concluded that most tumors, both in their series and in the 301 
literature, were a single entity (PMTMCT) with a wide histological spectrum. 302 

Most PMT present as non-specific soft tissue or bone masses and may contain calcified or 303 
hemorrhagic areas.[133] PMT of soft tissue at least focally infiltrate into surrounding tissues, 304 
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probably accounting for their high local recurrence rate. The neoplastic cells typically have a low 305 
nuclear grade with absent or minimal nuclear pleomorphism, absent to rare mitotic figures, and 306 
low Ki-67 proliferative index (<5%). The tumor contains a small, arborizing network of capillaries. 307 
Prominent hyalinized and branching HPC-like vasculature may also be found. The tumor typically 308 
produces a characteristic “smudgy” matrix that calcifies in a peculiar “grungy” or flocculent 309 
fashion, and sometimes osteoid, chondroid, and/or myxoid matrix. A variable component of 310 
osteoclast-like giant cells and mature adipose tissue are also common findings in PMT. PMT in 311 
the sinonasal and craniofacial bone may show some unique histopathological features.[9, 133, 134] 312 
PMT arising from alveolar bone is characterized by haphazardly and diffusely distributed small, 313 
irregular odontogenic epithelial nests.[51] 314 

Although the histological criteria for malignant PMT have not been well developed, frankly 315 
sarcomatous features (high cellularity, marked nuclear atypia, elevated mitotic activity and Ki-67 316 
proliferative index, and necrosis) support the diagnosis of malignant PMT. Malignant PMT 317 
typically appears as a recurrent or metastatic tumor.[51, 135] 318 

By immunohistochemistry, FGF23, SSTR2A, NSE, CD99, CD56, Bcl-2, D2-40, CD56, 319 
CD68, SATB2, and ERG have also been demonstrated to be frequently expressed in PMT. Other 320 
mesenchymal markers including FLI-1, SMA, and CD34 were also expressed to varying 321 
degrees.[51, 136, 137] Although immunohistochemistry is considered to be non-specific and thus of 322 
limited value, the polyimmunophenotypic profile may favor the diagnosis of PMT. Although 323 
previous studies have used immunohistochemistry for detecting FGF23 expression, some 324 
pathologists believe that commercially available antibodies to FGF23 have questionable 325 
specificity and are not widely available, and prefer chromogenic in situ hybridization (CISH) for 326 
FGF23 expression detection in PMT. However, CISH is not commonly used in routine pathology 327 
practice. Besides, detecting the characteristic FN1/FGFR1 or FN1–FGF1 gene fusions by 328 
fluorescence in situ hybridization (FISH) or next-generation sequencing (NGS) can be of great 329 
value in the diagnosis of morphologically ambiguous cases, cases without a given history of TIO 330 
or so-called “Non-phosphaturic PMT” (tumors showing morphological features of PMT without 331 
TIO). 332 

Limited data have been obtained regarding TIO-associated tumors other than PMT. The 333 
histopathological, immunohistochemical, and molecular features of these tumors remain 334 
unclarified. Due to the apparent difference in the clinical implications, great caution is 335 
recommended when diagnosing any other specific type of mesenchymal tumor as the cause of TIO. 336 
Rare TIO cases have been reported in patients with carcinomas including pulmonary small cell 337 
carcinoma and anaplastic thyroid carcinoma. The expression of FGF23 in tumor cells was 338 
confirmed in at least some of these cases.[133, 138, 139] 339 
Differential diagnosis 340 

The clinical manifestations of TIO are latent and non-specific. In lack of knowledge about 341 
TIO, missed diagnoses or even misdiagnoses with subsequent diagnostic and therapeutic delay are 342 
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commonly seen in reported TIO cases, accompanied by prolonged morbidity and poor 343 
prognosis.[43, 140–143] In a Chinese study, 95.1% of patients were initially misdiagnosed as an 344 
intervertebral disc herniation, spondyloarthritis, osteoporosis, and other diseases.[24] 345 

Serum phosphate level is the key point for differential diagnosis. TIO patients had moderate 346 
to severe hypophosphatemia together with normal serum calcium, elevated serum ALP, and 347 
normal or slightly elevated PTH level. The diagnosis should be considered when patients are 348 
characterized as hypophosphatemic osteomalacia/rickets. It needs to be differentiated from other 349 
disorders of phosphate metabolism. Serum FGF23 levels, which should be low in the setting of 350 
hypophosphatemia, are elevated or inappropriately normal in TIO. It could be used to differentiate 351 
from non-FGF23-related hypophosphatemic disorders, such as hereditary hypophosphatemic 352 
rickets with hypercalciuria (HHRH) and antiretroviral medication-induced Fanconi 353 
syndrome.[15,120,144] FGF23-related hypophosphatemic rickets/osteomalacia are shown in 354 
Supplementary Table 1 including inherited diseases, such as XLH, autosomal dominant 355 
hypophosphatemic rickets (ADHR), autosomal recessive hypophosphatemic rickets (ARHR), and 356 
disease syndromes such as McCune-Albright syndrome, neurofibromatosis 1, and so on.[15, 120, 144] 357 
TIO is the acquired form of FGF23-related hypophosphatemic osteomalacia. In children and 358 
adolescents without a family history, as well as in patients whose tumors cannot be located, 359 
genetic testing should be considered for excluding inherited diseases.[15] 360 
Management and Treatment 361 
Surgery 362 

Surgical treatment has been widely regarded as the gold standard of TIO treatment.[78, 145, 146] 363 
From the surgical perspective, the optimal treatment for TIO involves the complete removal of the 364 
disease-causing tumor.[78, 145, 146] In most cases, this procedure can correct biochemical 365 
abnormalities and accelerate the process of bone remineralization. However, even a small amount 366 
of tumor tissue remains, the patient’s symptoms continue to present or relapse easily.[78, 147] 367 
Orthopedic surgery 368 

The specific plan of surgical treatment should be determined based on the anatomical 369 
location of the disease-causing tumor and the surgeon’s clinical experience. It is worth noting that 370 
osteomalacia reduces bone quality and increases the risk of fractures, nonunion, and delayed 371 
healing.[79, 148, 149] 372 

For tumors located in the bones, orthopedic surgical protocols reported in the literature 373 
mostly include tumor resection, tumor curettage, and intraosseous injection of bone cement.[78, 145] 374 
For tumors that are partly hidden and difficult to remove, tumor curettage or intraosseous injection 375 
of bone cement is advised.[78, 146, 150] After the curettage of the tumor, the tumor cavity should be 376 
treated sequentially with phenol, high-temperature electrocoagulation, and warm distilled water 377 
before allogeneic bone transplantation is performed.[78] Three-dimensional technology guided 378 
tumor resection is expected to be more accurate in intraoperative localization and helpful to 379 
complete tumor resection.[151] If residual defects are present after segment resection, artificial joint 380 
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prosthesis or allogeneic bone segments are used to reconstruct and stabilize the anatomical 381 
structure. Intraosseous injection of bone cement has also been tried in the treatment of TIO, but 382 
the efficacy of this procedure and its long-term outcomes need to be confirmed.[146, 150] Due to the 383 
complexity of the anatomical structure of the spine, it is usually difficult to completely remove the 384 
TIO tumor in the spine, bone cement filling may also be an adequate treatment option.[150] 385 
However, extreme caution should be paid against cement leakage into the spinal canal even 386 
subsequent compression of the spinal cord. 387 

For tumors located in soft tissue, special attention should be paid to the identification and 388 
protection of local nerves, blood vessels, muscles, fascia, ligaments, and other important 389 
anatomical structures to ensure complete tumor resection and avoid secondary damage. 390 
Nasal surgery 391 

A recent study of 222 PMT patients revealed 29 (13%) cases located in the sinonasal area.[51] 392 
The operative principle is to remove the soft tissue tumor and the adjacent bone lesions completely. 393 
Because of the abundant blood supply, endoscopic resection of the tumor is often challenging.[152, 394 
153] Here are the recommended endoscopic surgical steps, first open the normal sinus and 395 
determine the boundary of the tumor, then remove the soft tissue tumor along with the bone 396 
interface, and finally resect the involved bone. The intraoperative navigation system could also 397 
increase the safety and efficiency of endoscopic sinus and skull base surgery.[154, 155] In addition, 398 
highly vascularized tumors, which could cause massive intraoperative hemorrhage, can be 399 
managed by preoperative transcatheter arterial embolization or feeding artery ligation.[152] 400 

For patients with nasal septum involved and extension to the contralateral sinonasal cavity, a 401 
bilateral surgical approach is suggested to remove the tumor completely.[152] However, the external 402 
technique through the osteoplastic flap or lateral rhinotomy or combined approach is needed when 403 
the tumor is too large or the site of the tumor is not suitable for an entirely endoscopic 404 
technique.[156, 157] For cases involving frontal sinus, tumors with lateral extension or involvement 405 
of neurovascular structures are an indication for an open approach.[156] The skull base, especially 406 
the cribriform plate and roof, is often involved. To resect the tumor completely, the bone of the 407 
skull base should be removed. The dural mater and intracranial lesions should also be resected if 408 
there are the dural and intracranial invasions. To avoid postoperative cerebrospinal fluid leakage, 409 
autologous flaps (free or vascularized locoregional flaps), and nonautologous grafts are suggested 410 
to be used to repair the skull base defect endoscopically.[158, 159] For tumors located in the temporal 411 
bone and lateral skull base,[152, 160, 161] The temporal skull base and intracranial invasion should be 412 
removed through the temporal craniotomy to achieve clinical remission. If the adjacent vital 413 
structures were invaded, incomplete resection of the tumor combined with local radiotherapy is 414 
necessary for the remission of symptoms.[153] 415 
Oral surgery 416 

All primary PMT in the jaw could be resected by surgery. The intraoral approach is mainly 417 
used as most primary lesions are located around the alveolar process. For the cases involving the 418 
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lower edge of the mandible and the mandible body, the submandibular extraoral approach could 419 
be used. Local massive osteotomy should be performed at 0.5 cm away from the tumor. As the 420 
lesions often involve a wider range in the cancellous bone, the bone wall should be further 421 
scratched after osteotomy until the bone hardness is normal. The teeth affected by the lesion 422 
should be extracted or removed together with the osteotomy.[162] If the lesion involves the inferior 423 
alveolar nerve canal, the lesion should be completely removed by curettage. The inferior alveolar 424 
neurovascular bundle in the nerve canal should be preserved as far as possible.[163] If the lesion 425 
involves the whole mandible body, the complete removal of the lesion may lead to the weakness 426 
or fracture of the left wall of the mandible, and the titanium plate should be used for fixation and 427 
reinforcement of the bone. 428 

Generally, the primary oral lesion of PMT in the maxilla and mandible is easy to be removed 429 
completely. The causes of incomplete primary removal include: (1) Blurred boundary of primary 430 
PMT; (2) Difficult to identify the adjacent teeth affected by primary PMT or not; and (3) 431 
Important anatomical structures such as inferior alveolar nerve canal affected by primary PMT. If 432 
the tumor is not completely removed or the primary tumor recurs, more strict surgical standards 433 
should be adopted for complete removal. A few tumors would evolve into malignant tumors after 434 
multiple local recurrences.[55, 164] At this time, the principle of tumor-free radical surgery should be 435 
adopted.[152] 436 
Postoperative recovery 437 

Once the TIO-causing tumor is successfully eliminated, the circulating level of FGF23 drops 438 
rapidly in hours, phosphate concentration gradually increases, and typically returns to normal 439 
levels within 5 days (2–16).[4] The patient’s symptoms begin to gradually improve within a few 440 
days or weeks,[4, 24, 45] but the completion of the process may take several months.[17] However, 441 
studies have shown that even with extensive tumor resection, the possibility of metastasis or 442 
recurrence persists.[147] Therefore, TIO patients require long-term follow-up. 443 
Nonremission and recurrence 444 

As mentioned above, serum FGF23 normalizes in hours after surgery and serum phosphate 445 
normalizes in days. Nonremission refers to a persistent disease without normalization or just a 446 
transient normalization in one or two tests of serum FGF23 and phosphate after surgery, while 447 
recurrence refers to a recrudescent condition after a sustained disease-free period of at least 1 448 
month. We believe both nonremission and recurrence are conditions of refractory cases. Although 449 
TIO is curable by complete excision of the responsible tumor, refractory cases have been reported 450 
with a combined incidence of 0–57% in case series studies.[4, 9, 16, 43, 47, 62, 106, 136, 165–170] In most 451 
cases, the persist or recurrent tumors localize at the same sites of primary tumors, indicating the 452 
initial resections may be inadequate in these cases, even when surgeries have been performed 453 
according to the recommended protocol to excise all visible tumor with wide margins.[145] In a 454 
most recent study, the characteristics of refractory cases were reviewed in a total of 230 patients 455 
with TIO.[25] Among these patients, 24 patients had persistent diseases and 18 relapsed after initial 456 
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surgeries, suggesting a nonremission rate of 10.4%, a recurrent rate of 7.8%, and a combined 457 
refractory rate of 18.2%.[25] Refractory tumors showed several features that differ from the other 458 
tumors. Tumors located at the head and neck region showed the lowest refractory rate of 7.5%, 459 
whereas tumors located at the spine showed the highest refractory rate of 77.8%; furthermore, 460 
tumor involved bone tissues showed a higher refractory rate than those only involved soft tissues; 461 
finally, malignant tumors had worse outcomes than benign tumors.[25] On the other hand, these 462 
results demonstrated that benign tumors also persisted or recurred in some cases, which is 463 
consistent with previous studies.[169] In multiple regression analysis, this study found that female, 464 
spine tumors, bone tissue–involved tumors, malignant tumors, low preoperative serum phosphate 465 
levels, and high preoperative FGF23 levels were risk factors associated with refractory outcomes 466 
while preoperative serum FGF23 level had an area under the curve (AUC) of 0.7656 for 467 
discriminating refractory and remission outcomes.[25] 468 

Serum phosphate is an easily accessible parameter to monitor surgery outcomes. We suggest 469 
that serum phosphate levels should be evaluated in consecutive 5 days right after surgery and 470 
repeated every 3–5 days until two successive normal results or 1 month after surgery to identify 471 
the outcomes. Once persistent or recurrent diseases develop, especially when the resected tumor 472 
turned out to be a non-PMTs according to histopathological examination, the diagnosis of TIO 473 
should be reconsidered. If TIO is still suspected, re-localize the responsible tumor following the 474 
stepwise localization process is recommended. The sensitivity of 99mTc-HYNIC-TOC to identify 475 
recurrent tumors was 86.7% in a retrospective study of 18 patients,[171] and there are also reports 476 
suggested that 68Ga-DOTATATE-PET/CT was also capable to detect culprit recurrent tumors after 477 
octreotide scintigraphy failed.[172] Generally, about 80% of refractory patients successfully located 478 
suspicious tumors again, and reoperation still benefited these patients.[25, 145] Of note is that the 479 
remission rate of reoperations, which is approximately 50% according to one study, seems to be 480 
lower than primary operations. 481 
Medical treatment 482 

Therapy of TIO is directed first toward resection of the tumor. When complete resection of 483 
the causative tumor is not successful or not possible, medical treatment could lead to clinical 484 
improvement to a certain extent. 485 
Conventional treatment 486 

Conventional medical treatment is the supplementation of phosphate and active vitamin D 487 
(calcitriol or alphacalcidol).[173] The therapeutic goal of conventional medical treatment is to 488 
alleviate clinical symptoms, increase serum phosphate levels, normalize ALP, and maintain PTH 489 
in the normal range. Complete normalization of serum phosphate usually represents an overdose. 490 
As far as we know, there is no RCT or any prospective study concerning the optimum dose of 491 
phosphate and active vitamin D. We recommend a dose of 20–40 mg/kg/day (1–3 g/day for adults) 492 
for element phosphate and a dose of 20–30 ng/kg/day (0.5–1.5 μg/day for adults) for calcitriol. 493 
The equivalent dosage of alphacalcidol is 1.5–2 times that of calcitriol. Phosphate supplements 494 
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should be divided into 4–6 doses/day and titrated to the target dose over several days to weeks to 495 
minimized gastrointestinal side effects, such as abdominal discomfort and diarrhea. It is not 496 
necessary to get up in the night on the purpose of distributing the interval of each dose 497 
equally.[14,15,120] 498 
FGF23 antibodies 499 

Burosumab or KRN23, a fully human monoclonal antibody against FGF23, is the most 500 
promising drug in near future. Burosumab has been proved to be effective in reversing 501 
biochemical changes and improving symptoms in children and adults with XLH.[174–177] In a 502 
suspicious TIO case with elevated FGF23 concentrations and two DOTATATE PET/CT avid 503 
lesions, 70 mg/month of burosumab normalized serum phosphate after initiation and improved 504 
symptoms after 7 weeks.[178] Clinical trials of burosumab in patients with TIO are ongoing. 505 
Unpublished preliminary results suggested normalization of serum phosphate, improvement of 506 
histomorphometric indices, and alleviation of symptoms in 24–48 weeks of use.[179] However, if 507 
the drug is associated with increasing FGF23 levels or progression of the tumor in long term is 508 
unknown. Concerning the long-term effectiveness and safety, we recommend using burosumab 509 
only in patients with unresectable tumors, or for symptoms controlling purpose during the 510 
reduplicative tumor localization process in patients with undetectable lesions. The dosage of 511 
burosumab is different depending on the nations. The recommended initial dosage of burosumab 512 
for TIO is 0.5 mg/kg once every 4 weeks; round dose to the nearest 10 mg; and maximum dosage 513 
2 mg/kg (not to exceed 180 mg) every 2 weeks. Dosage adjustment should be based on serum 514 
phosphate. Evaluate fasting serum phosphate monthly, measured 2 weeks postdose, for the first 3 515 
months of treatment and as clinically necessary thereafter. 516 
FGFR inhibitors 517 

FGF receptor inhibitor suppresses of the downstream signaling of from Klotho-FGF receptor 518 
complex are also potential drugs to treat patients with TIO. A pan FGF receptor inhibitor BGJ398 519 
and an inhibitor of mitogen-activated protein kinase (MAPK) PD0325901 are effective in Hyp 520 
mice.[73, 180] In humans, BGJ398 normalized FGF23 and phosphate levels and reduced tumor 521 
burden in two TIO cases.[181] Although promising, the efficacy of these drugs needs more evidence. 522 
Despite dose adjustments, tyrosine kinase inhibitor-related side effects led to infigratinib being 523 
discontinued after 18 months of treatment.[182] 524 
Cinacalcet 525 

Cinacalcet, a calcium-sensing receptor agonist, was reported to result in decreases in PTH 526 
and sustained increases in tubular phosphate resorption in patients with TIO.[183] However, it 527 
seems that hypercalciuria developed frequently, and evidence is scarce and inconsistently.[21, 135, 166] 528 
In a clinical study, the administration of calcimimetics agent cinacalcet to TIO patients led to a 529 
sustained increase in serum phosphate level and TRP while decreasing serum PTH and calcium. 530 
This result suggested the cinacalcet might be a useful adjuvant in the treatment of 531 
FGF23-mediated phosphate wasting disorders, and the phosphaturic effect of FGF23 was inhibited 532 
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by a decrease in serum PTH. However, this study also revealed that cinacalcet treatment in TIO 533 
patients for >70 days would increase serum FGF23 levels, and hypercalciuria developed 534 
frequently.[183] 535 
Clinical outcome after treatment 536 

The complications of conventional medical treatment include secondary or even tertiary 537 
hyperparathyroidism,[75] nephrolithiasis, nephrocalcinosis, and reduced renal function. Thus, renal 538 
function, PTH, serum calcium, 24-h urinary calcium, and renal ultrasound should be examined at 539 
baseline of treatment, and biochemical tests should be monitored every 3 months to adjust the 540 
medication dosage. During follow-up, usually, elevated PTH represents overdose of phosphate, 541 
elevated serum, or urinary calcium represents overdose of active vitamin D. 542 
Other treatment 543 

Ablative therapy has been used in patients with TIO who are neither willing nor qualified to 544 
undergo complete excision surgeries on tumors, with challenging anatomical tumor location, 545 
severe comorbid conditions.[184–190] It is a process using heat (microwave, ultrasound, laser, or 546 
radiofrequency), cold (cryoablation), or chemical agents (percutaneous ethanol instillation) to 547 
destroy tissues, performed under the guidance of multimodality imaging such as ultrasound and 548 
CT augmented by fusion of MRI, 18FDG PET/CT, or 68Ga-DOTATATE PET/CT, depending upon 549 
which modality best defines the tumor margins. Radiofrequency and cryoablation were used in 550 
most cases.[184–190] Among the present reported 13 cases treated with ablation, only one patient 551 
with a large and incomplete resected tumor failed,[187] while all the other patients reached 552 
biochemical resolution and clinical improvement a few days after ablation.[184–190] However, the 553 
high remission rate of current cases may result from publication bias, and the true effective rate is 554 
unknown due to the lack of long-term follow-up, head-to-head comparison studies and relatively 555 
large sample size studies. We recommend that ablation therapy should be used after careful 556 
consideration of patient condition and surgical risk. 557 

Peptide receptor radionuclide therapy (PPRT) is an emerging method to treat neuroendocrine 558 
neoplasms.[191, 192] This therapy delivers highly localized radiation by targeting specific receptors 559 
(which are usually SSTR 2 and 5) on tumor cells.[192] In three cases from India, two of them 560 
recovered partially after PRRT using 177Luttetium tagged DOTATATE.[57, 165, 193] Modest reduction 561 
in uptake on both 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT suggesting a favorable 562 
response.[57] 563 

In cases of incompletely resected tumors, adjuvant radiotherapy has been used to avoid 564 
recurrence. However, there are insufficient data to support this practice.[120, 194] A few reports have 565 
provided evidence indicating the achievement of long and complete remission in patients with 566 
TIO in whom the positive margins of the resected tumor were treated with radiotherapy 567 
postoperatively, but other studies show lower disease-free survival rates.[195, 196] 568 
Monitoring 569 

Once the tumor causing TIO has been successfully removed, patients’ symptoms improve 570 
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within days or weeks after surgery.[140, 197] An exacerbation of bone pain may occur in some 571 
patients and persist for several weeks, the underlying mechanism of which is still unclear. 572 

Bone mineral density increases after tumor complete removal. Results from PUMCH show 573 
that BMDs of total hip and lumbar spine of patients after surgeries are increased by 30.9% and 574 
49.3%, respectively, while among patients with the drug therapy the increase is 12.9% and 8.7% 575 
after a 6-month follow-up.[14] Minisola et al[120] observed a dramatic increase in the bone mineral 576 
density within 2–4 years after complete tumor resection. Colangelo et al[17] also demonstrated a 577 
striking increase of BMD values that peaked at 26.7 ± 6.5 months and then leveling off with the 578 
absence of further fractures. 579 

Evidence-based studies that assess the best strategy to follow after the initial operation have 580 
not been carried out. In our experience, for patients with complete tumor removal, biochemical 581 
parameters, especially serum phosphate, should be measured initially every 6 months and then at 582 
yearly intervals with a DXA examination. The biochemical profile of patients should be fully 583 
re-evaluated in cases in which clinical symptoms suggest a recurrence. However, for patients who 584 
fail to locate the tumor and adopt a long-term medical treatment, the interval examinations for 585 
biochemical parameters, such as serum calcium, phosphate, and PTH, as well as urinary calcium 586 
should be shortened to every 3–6 months to adjust the drug doses and prevent the side effects.[121] 587 
Tumor localization in these cases should be repeated every 1–2 years, in hopes that a tumor may 588 
be more evident with time.[120, 121] The Diagnostic and management diagram of TIO is summarized 589 
in Supplementary Figure 3. 590 
Summary 591 

TIO is a rare metabolic bone disease that gradually devastates the quality of life of affected 592 
patients, but curable in the majority of cases with localized tumors by complete excision of 593 
causative tumors. The diagnosis, especially localization diagnosis is challenging. Knowledge of 594 
this condition is still restricted to a few specialized centers, leading to delay of diagnosis and 595 
appropriate treatment. In this consensus, we attempted to cover most features of TIO and aimed to 596 
guide the management of TIO. We hope that this consensus will reduce the gap in the management 597 
of TIO and improve the prognosis of patients with TIO. 598 
There is still a far distance between the standard management of TIO and current evidence. In 599 
terms of diagnosis, we need to propose some specific and easy-obtained criteria to help making 600 
suspicious diagnoses quickly in primary health care institutions. For example, patients having 601 
“tetralogy of TIO” (bone pain, muscle weakness, chronic hypophosphatemia, and adult onset) 602 
could be suspected in the diagnosis of TIO. Besides, future studies should focus on the 603 
mechanisms of tumorigenesis and FGF23 overproduction. Understanding these processes will 604 
promote future non-surgical treatment targeted tumor since inoperable cases and incomplete 605 
excision are not uncommon. Finally, the improvement of novel drugs including burosumab, 606 
FGFR1 inhibitors would greatly expand treatment options of TIO in the future. 607 
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Supplementary Figure 1: Walton-Bijvoet chart. GFR: Glomerular filtration rate; TRP: Tubular 1204 
reabsorption of phosphate. 1205 
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Supplementary Figure 2: Frequency of tumors per region.[6] 1207 
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 1208 

Supplementary Figure 3: The Diagnostic and management diagram of TIO. 1,25(OH)2D: 1209 
1,25-dihydroxyvitamin D; 68Ga-DOTA-SST: 68Ga-DOTA-conjugated-somatostatin-receptor- 1210 
targeting-peptides; GFR: Glomerular filtration rate; TmP: Tubular maximum reabsorption of 1211 
phosphate; TIO: Tumor-induced osteomalacia. 1212 
 1213 
Supplementary Table 1: FGF23-related hypophosphatemic rickets/osteomalacia 1214 

Inherited forms of FGF23-related hypophosphatemic rickets/osteomalacia 
XLH 
ADHR 
ARHR 

Disease syndromes of FGF23-related hypophosphatemic rickets/osteomalacia 
NF1 
ENSs 
FD/MAS 
OGD 

Acquired form of FGF23-related hypophosphatemic rickets/osteomalacia 
TIO 

ADHR: Autosomal dominant hypophosphatemic rickets or osteomalacia; ARHR: Autosomal 1215 
recessive hypophosphatemic rickets or osteomalacia; ENSs: Epidermal nevus syndromes; 1216 
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FD/MAS: Fibrous dysplasia/McCune-Albright syndrome; NF1: Neurofibromatosis type 1; OGD: 1217 
Osteoglophonic dysplasia; TIO: Tumor-induced osteomalacia; XLH: X-linked hypophosphatemic 1218 
rickets. 1219 


