Supplementary Figure 1: Inclusion and exclusion criteria of participants extracted from the Nutrition and Health Surveillance in Schoolchildren of Beijing (NHSSB). HAZ: Height-for-age Z-score; BAZ: Body mass index-for-age Z-score; hs-CRP: high-sensitivity C-reactive protein; Hb: hemoglobin **Supplementary Figure 2: Distributions of HAZ, serum ferritin, folate, and vitamin B**₁₂ with Hb in anemic children. (A) Height-for-age Z-score (HAZ) distribution in anemic children. There were only 4 (labeled as a, b, c, d) out of 56 children whose HAZ were below –l. Case a: an urban 7.0-years-old boy, HAZ –2.14, Hb 106 g/L, ferritin 62.3 ng/ml, folate 4.21 ng/ml, and vitamin B₁₂ 917.0 pg/ml; Case b: a rural 6.9-years-old boy, HAZ –1.56, Hb 110 g/L, ferritin 77.6 ng/ml, folate 6.95 ng/ml, and vitamin B₁₂ 624.8 pg/ml; Case c: a rural 6.1-years-old girl, HAZ –1.09, Hb 111 g/L, ferritin 31.4 ng/ml, folate 9.49 ng/ml, and vitamin B₁₂ 1317.0pg/ml; Case d: a rural 6.3-years-old girl, HAZ –1.45, Hb 113 g/L, ferritin 74.4 ng/ml, folate 7.51 ng/ml, and vitamin B₁₂ 675.1pg/ml. (B) Ferritin distribution in anemic children. The red line indicates the threshold of ferritin (15 ng/ml) and 3 had iron deficiency among all 56 anemic children. (C,D) Folate and Vitamin B₁₂ distribution in anemic children, respectively. The red lines indicate the thresholds of folate (4 ng/ml) or vitamin B₁₂ (203.25 pg/mL), and no one had folate or vitamin B₁₂ deficiency among all anemic children. Supplementary Table 1: Characteristics of participants in study population 2 (n=1969). | Items | Non-anemia | Anemia | P value* | |------------------------------------|-------------------|---------------------------------|----------| | N | 1913 (97.2) | 56 (2.8) | | | Age (year) | 8.6 ± 1.7 | 7.2 ± 1.1 | < 0.001 | | Boy | 968 (50.6%) | 25(44.6%) | 0.379 | | Rural | 1112 (58.1) | 48 (85.7) | < 0.001 | | Household income per capita | | | | | per year | | | 0.441 | | <20,000 Yuan/year | 277(14.5) | 6 (10.7) | | | 20,000-39,999 Yuan/year | 431(22.5) | 9 (16.1) | | | 40,000-69,999 Yuan/year | 560(29.3) | 17 (30.4) | | | ≥70,000 Yuan/year | 645(33.7) | 24 (42.8) | | | Caregiver's education | | | 0.783 | | < higher education | 717 (37.5) | 22 (39.3) | | | ≥ higher education | 1196 (62.5) | 34 (60.7) | | | Hemoglobin (g/L) | 129 ± 9 | 110 ± 3 | < 0.001 | | Height (cm) | 135.4 ± 11.6 | 126.2 ± 8.8 | < 0.001 | | Weight (kg) | 32.7 ± 10.2 | 25.9 ± 5.4 | < 0.001 | | HAZ | 0.83 (0.18, 1.53) | 0.81(0.15, 1.33) | 0.608 | | BAZ | 0.36(-0.41, 1.41) | -0.03(-0.44, 0.77) | 0.084 | | Ferritin (ng/mL) | 56.1 (41.7, 75.5) | 57.6 (33.5, 73.8) | 0.457 | | Iron deficiency (%) | 11 (0.6) | 3 (5.4) | 0.006 | | sTfR (mg/L) | 4.02 ± 1.06 | $4.20\pm\!1.50$ | 0.221 | | Vitamin B_{12} (pg/mL) | 797.8 ± 334.0 | 856.5 ± 344.8 | 0.195 | | Vitamin B ₁₂ deficiency | 4 (0.2) | 0 | 1.000 | | Folate (ng/ml) | 10.12 ± 3.38 | 10.92 ± 3.16 | 0.080 | | Folate deficiency | 12 (0.6) | 0 | 1.000 | | Vitamin A (umol/L) | 1.50 ± 0.33 | 1.48 ± 0.31 | 0.656 | | Vitamin A deficiency | 3(0.2) | 0 | 1.000 | | Vitamin D (ng/mL) | 21.83 ± 7.73 | 22.67 ± 7.88 | 0.427 | | Serum Zinc(umol/L) | 12.72 ± 1.62 | 12.51 ± 1.31 | 0.347 | | Total protein (g/L) | 74.0 ± 3.9 | 74.0 ± 3.9 72.9 ± 4.3 | | | Albumin (g/L) | 47.3 ± 2.1 | 46.9 ± 2.1 | 0.115 | | hs-CRP (mg/L) | 0.19 (0.07,0.56) | 19 (0.07,0.56) 0.21 (0.09,0.72) | | | Supplements intake | 579 (30.3) | 9 (16.1) | 0.022 | Data are presented as n (%) or mean \pm standard deviation or median (P_{25} , P_{75}). *Student's *t*-test was applied for the comparison of continuous variables (normal distribution) and χ^2 for categorical variables (Pearson's or Fisher's exact test was applied as appropriate). The Wilcoxon rank-sum test was implemented to detect the median disparities. HAZ: Height-for-Age Z-score; BAZ: BMI-for-Age Z-score; sTfR:soluble transferrin receptor; hs-CRP: high-sensitivity C-reactive protein. Supplementary Table 2: The nutrients intake in non-anemia and anemia participants in study population 3 (n=554). | Items | Non-anemia | Anemia | P value | |---------------------------------|----------------------------------|-------------------|---------| | Participants | 535 | 18 | | | Age (year) | 8.6 ± 1.6 | 7.3 ± 1.4 | 0.002 | | Boy | 275 (51.4) | 8 (44.4) | 0.561 | | Rural | 311 (58.1) | 3 (16.7) | 0.033 | | Household income per capita per | year | | 0.368 | | <20000 yuan | 78 (14.6) | 1 (5.6) | | | 20000_39999 yuan | 120 (22.4) | 2 (11.1) | | | 40000-69999 yuan | 152 (28.4) | 7 (38.9) | | | ≥70000 yuan | 185 (34.6) | 8 (44.4) | | | Caregiver's education | | | 0.824 | | < higher education attainment | 192 (35.9) | 6 (33.3) | | | ≥higher education attainment | 343 (64.1) | 12 (66.7) | | | Hemoglobin (g/L) | 130 ± 9 | 110 ±3 | < 0.001 | | Height(cm) | 135.3 ± 11.5 | 126.2 ± 11.2 | 0.001 | | Weight (Kg) | $\textbf{32.6} \pm \textbf{9.8}$ | 25.7 ± 5.2 | 0.003 | | HAZ | 0.83(0.25, 1.62) | 0.44(-0.28,1.74) | 0.269 | | BAZ | 0.37 (-0.38, 1.47) | 0.15(-0.55, 0.57) | 0.196 | | Total energy (kcal) | 1684 ± 559 | 1568 ± 461 | 0.383 | | Protein (g /1000kcal) | 36.1 ± 7.5 | 36.4 ± 6.4 | 0.865 | | Fat (g/1000kcal) | 39.4 ± 9.4 | 40.7 ± 9.8 | 0.555 | | Carbohydrate (g/1000kcal) | 131.0 ± 22.1 | 127.3 ± 20.2 | 0.488 | | Vitamin A (µg RE /1000kcal) | 315 ± 759 | 370 ± 365 | 0.759 | | Retinol (µg /1000kcal) | 151 ± 743 | 177 ± 320 | 0.883 | | Thiamin (mg/1000kcal) | 0.45 ± 0.12 | 0.49 ± 0.12 | 0.236 | | Riboflavin (mg/1000kcal) | 0.54 ± 0.35 | 0.54 ± 0.13 | 0.986 | | Vitamin C (mg/1000kcal) | 39 ± 25 | 38 ± 17 | 0.960 | | Vitamin E (mg/1000kcal) | 13.82 ± 8.33 | 16.03 ± 7.61 | 0.268 | | Iron (mg/1000kcal) | 11.1 ± 4.9 | 10.9 ± 3.1 | 0.844 | |-------------------------|-----------------|-----------------|-------| | Calcium (mg/1000kcal) | 245 ± 107 | 240 ± 90 | 0.837 | | Zinc (mg/1000kcal) | 5.66 ± 1.55 | 5.55 ± 0.77 | 0.766 | | Manganese (mg/1000kcal) | 2.55 ± 1.22 | 2.38 ± 0.59 | 0.547 | | Copper (mg/1000kcal) | 0.90 ± 0.37 | 0.86 ± 0.25 | 0.611 | | Supplements intake | 172 (32.1) | 5 (27.8) | 0.628 | Data are presented as n (%) or mean±standard deviation or median (P_{25},P_{75}) . *Student's t-test was applied for the comparison of continuous variables (normal distribution) and χ^2 for categorical variables (Pearson's or Fisher's exact test was applied as appropriate). The Wilcoxon rank-sum test was implemented to detect the median disparities. HAZ: Height-for-age Z-score; BAZ: BMI-for-age Z-score. Supplementary Table 3: Association between dietary nutrients intake and Hb by multivariable linear regression* in study population $3(n=553^{\circ})$. | Hb | β | P value | 95% CI | |-----------------------------------|---------|---------|-----------------------------| | Sex (ref:boy) | 1.790 | 0.023 | 0.252, 3.329 | | Age | 1.732 | < 0.001 | 1.273, 2.191 | | HAZ | 0.464 | 0.240 | - 0.312, 1.240 | | BAZ | 0.650 | 0.050 | 0.001, 1.298 | | Caregiver's ducational attainment | 1.253 | 0.179 | - 0.577, 3.084 | | Income | - 0.404 | 0.340 | - 1.235, 0.427 | | Rural | - 0.282 | 0.732 | - 1.898, 1.334 | | Supplements | - 1.009 | 0.221 | - 2.627, 0.610 | | Total energy (kcal) | 0.001 | 0.268 | - 0.001, 0.002 | | Protein (g/1000 kcal) | - 0.212 | 0.093 | - 0.461, 0.036 | | Fat (g/1000 kcal) | - 0.445 | 0.065 | - 0.917, 0.028 | | Carbohydrate (g/1000 kcal) | - 0.150 | 0.154 | - 0.357, 0.056 | | Vitamin A (µg RE /1000 kcal) | - 0.006 | 0.067 | - 0.012, 0.000 | | Retinol (μg/1000 kcal) | 0.005 | 0.153 | - 0.002, 0.012
- 11.272, | | Thiamin (mg/1000 kcal) | - 3.952 | 0.289 | 3.367
- 6.804, | | Riboflavin (mg/1000 kcal) | 2.293 | 0.621 | 11.391 | | Vitamin C (mg/1000 kcal) | - 0.004 | 0.811 | - 0.040, 0.031 | | Vitamin E (mg/1000 kcal) | 0.070 | 0.173 | - 0.031, 0.171 | | Iron (mg/1000 kcal) | - 0.073 | 0.548 | - 0.312, 0.166 | | Calcium (mg/1000 kcal) | - 0.002 | 0.684 | - 0.013, 0.009 | | Zinc (mg/1000 kcal) | 0.634 | 0.141 | - 0.211, 1.479 | |--------------------------|-------|-------|----------------| | Copper (mg/1000 kcal) | 1.997 | 0.121 | - 0.528, 4.523 | | Manganese (mg/1000 kcal) | 0.233 | 0.555 | - 0.541, 1.007 | ^{*} All the list variates were listed as co-variables into multivariable linear regression. **Supplementary Table 4**: Change trends of anthropometry and Hb with age in population 1 (n=4326). | Items | Tertile1* | Tertile2 | Tertile3 | P _{trend value} | |------------------|-----------------|-----------------|-----------------|--------------------------| | | (n=1449) | (n=1449) | (n=1428) | | | Age (year) | 6.6±0.4 | 8.6±0.3 | 10.6±0.4 | <0.001 | | Sex (boys%) | 742 (51.2) | 705 (48.6) | 762 (53.4) | 0.252 | | Height (cm) | 123.6±5.5 | 134.7±6.2 | 147.3±7.5 | < 0.001 | | Weight (kg) | 25.4±5.3 | 31.9±7.7 | 41.5±11.0 | < 0.001 | | HAZ | 0.90 ± 0.98 | 0.81 ± 1.02 | 0.92 ± 1.10 | 0.805 | | BAZ | 0.55 ± 1.34 | 0.55±1.34 | 0.60 ± 1.37 | 0.047 | | Hemoglobin (g/L) | 125.33±9.10 | 128.78±8.83 | 131.44±9.35 | < 0.001 | | Anemia (%) | 100 (6.9%) | 29 (2.0%) | 9 (0.6%) | < 0.001 | ^{*}The tertiles was separated by age. HAZ: Height-for-age Z-score; BAZ: BMI-for-age Z-score. Supplementary Table 5: The changes of Hb and anemia from 2015 to 2017 in children who were anemic at baseline. | Items | Year (baseline) | 2015 | Year 2017 | | | |--------------------------------------|-----------------|-------------|----------------|--------------|------------------------------------| | rtems | Age
(year) | Hb
(g/L) | Age
(year) | Hb
(g/L) | Cases of children remaining anemic | | Study population 1 | (n=4326) | | | | | | Total (<i>n</i> =104) * | 7.0 ± 0.9 | 110±3 | 9.2 ± 0.9 | 128±9 | 5 | | Grade 1 (<i>n</i> =78) | 6.5 ± 0.3 | 110±3 | 8.7 ± 0.3 | 127±9 | 3 | | Grade 3 (<i>n</i> =26) | 8.5 ± 0.3 | 110±3 | 10.7 ± 0.3 | 128 ± 9 | 2 | | Study population 2 (<i>n</i> =1969) | | | | | | | Total $(n=45)^{\dagger}$ | 7.1 ± 0.9 | 110±3 | 9.3 ± 0.9 | 129±10 | 2 | | Grade 1 (<i>n</i> =33) | 6.6 ± 0.3 | 110±3 | 8.8 ± 0.3 | 129±10 | 1 | | Grade 3 (<i>n</i> =12) | 8.6 ± 0.3 | 110±3 | 10.8 ± 0.3 | 128 ± 10 | 1 | ^{*}For the study population 1, 104 of 136 anemic cases in 2015 (78 in Grade 1 and 26 in Grade 3) were traced to 2017 and only 5 cases remained as anemia in 2017. [†]1 child with IDA was excluded. HAZ: Height-for-age Z-score; BAZ: BMI-for-age Z-score; Hb: hemoglobin; CI: confidence interval. [†] For the study population 2, 45 of 56 anemic cases in 2015 (33 in Grade 1 and 12 in Grade 3) were traced to 2017 and only 2 cases remained as anemia in 2017.