


Supplementary Figure 1: Inclusion and exclusion criteria of participants extracted from the Nutrition and Health Surveillance in Schoolchildren of Beijing (NHSSB). HAZ: Height-for-age Z-score; BAZ: Body mass index-for-age Z-score; hs-CRP: high-sensitivity C-reactive protein; Hb: hemoglobin

Supplementary Figure 2: Distributions of HAZ, serum ferritin, folate, and vitamin B₁₂ with Hb in anemic children. (A) Height-for-age Z-score (HAZ) distribution in anemic children. There were only 4 (labeled as a, b, c, d) out of 56 children whose HAZ were below –l. Case a: an urban 7.0-years-old boy, HAZ –2.14, Hb 106 g/L, ferritin 62.3 ng/ml, folate 4.21 ng/ml, and vitamin B₁₂ 917.0 pg/ml; Case b: a rural 6.9-years-old boy, HAZ –1.56, Hb 110 g/L, ferritin 77.6 ng/ml, folate 6.95 ng/ml, and vitamin B₁₂ 624.8 pg/ml; Case c: a rural 6.1-years-old girl, HAZ –1.09, Hb 111 g/L, ferritin 31.4 ng/ml, folate 9.49 ng/ml, and vitamin B₁₂ 1317.0pg/ml; Case d: a rural 6.3-years-old girl, HAZ –1.45, Hb 113 g/L, ferritin 74.4 ng/ml, folate 7.51 ng/ml, and vitamin B₁₂ 675.1pg/ml. (B) Ferritin distribution in anemic children. The red line indicates the threshold of ferritin (15 ng/ml) and 3 had iron deficiency among all 56 anemic children. (C,D) Folate and Vitamin B₁₂ distribution in anemic children, respectively. The red lines indicate the thresholds of folate (4 ng/ml) or vitamin B₁₂ (203.25 pg/mL), and no one had folate or vitamin B₁₂ deficiency among all anemic children.

Supplementary Table 1: Characteristics of participants in study population 2 (n=1969).

Items	Non-anemia	Anemia	P value*
N	1913 (97.2)	56 (2.8)	
Age (year)	8.6 ± 1.7	7.2 ± 1.1	< 0.001
Boy	968 (50.6%)	25(44.6%)	0.379
Rural	1112 (58.1)	48 (85.7)	< 0.001
Household income per capita			
per year			0.441
<20,000 Yuan/year	277(14.5)	6 (10.7)	
20,000-39,999 Yuan/year	431(22.5)	9 (16.1)	
40,000-69,999 Yuan/year	560(29.3)	17 (30.4)	
≥70,000 Yuan/year	645(33.7)	24 (42.8)	
Caregiver's education			0.783
< higher education	717 (37.5)	22 (39.3)	
≥ higher education	1196 (62.5)	34 (60.7)	
Hemoglobin (g/L)	129 ± 9	110 ± 3	< 0.001
Height (cm)	135.4 ± 11.6	126.2 ± 8.8	< 0.001
Weight (kg)	32.7 ± 10.2	25.9 ± 5.4	< 0.001
HAZ	0.83 (0.18, 1.53)	0.81(0.15, 1.33)	0.608
BAZ	0.36(-0.41, 1.41)	-0.03(-0.44, 0.77)	0.084
Ferritin (ng/mL)	56.1 (41.7, 75.5)	57.6 (33.5, 73.8)	0.457
Iron deficiency (%)	11 (0.6)	3 (5.4)	0.006
sTfR (mg/L)	4.02 ± 1.06	$4.20\pm\!1.50$	0.221
Vitamin B_{12} (pg/mL)	797.8 ± 334.0	856.5 ± 344.8	0.195
Vitamin B ₁₂ deficiency	4 (0.2)	0	1.000
Folate (ng/ml)	10.12 ± 3.38	10.92 ± 3.16	0.080
Folate deficiency	12 (0.6)	0	1.000
Vitamin A (umol/L)	1.50 ± 0.33	1.48 ± 0.31	0.656
Vitamin A deficiency	3(0.2)	0	1.000
Vitamin D (ng/mL)	21.83 ± 7.73	22.67 ± 7.88	0.427
Serum Zinc(umol/L)	12.72 ± 1.62	12.51 ± 1.31	0.347
Total protein (g/L)	74.0 ± 3.9	74.0 ± 3.9 72.9 ± 4.3	
Albumin (g/L)	47.3 ± 2.1	46.9 ± 2.1	0.115
hs-CRP (mg/L)	0.19 (0.07,0.56)	19 (0.07,0.56) 0.21 (0.09,0.72)	
Supplements intake	579 (30.3)	9 (16.1)	0.022

Data are presented as n (%) or mean \pm standard deviation or median (P_{25} , P_{75}).

*Student's *t*-test was applied for the comparison of continuous variables (normal distribution) and χ^2 for categorical variables (Pearson's or Fisher's exact test was applied as appropriate). The Wilcoxon rank-sum test was implemented to detect the median disparities. HAZ: Height-for-Age Z-score; BAZ: BMI-for-Age Z-score; sTfR:soluble transferrin receptor; hs-CRP: high-sensitivity C-reactive protein.

Supplementary Table 2: The nutrients intake in non-anemia and anemia participants in study population 3 (n=554).

Items	Non-anemia	Anemia	P value
Participants	535	18	
Age (year)	8.6 ± 1.6	7.3 ± 1.4	0.002
Boy	275 (51.4)	8 (44.4)	0.561
Rural	311 (58.1)	3 (16.7)	0.033
Household income per capita per	year		0.368
<20000 yuan	78 (14.6)	1 (5.6)	
20000_39999 yuan	120 (22.4)	2 (11.1)	
40000-69999 yuan	152 (28.4)	7 (38.9)	
≥70000 yuan	185 (34.6)	8 (44.4)	
Caregiver's education			0.824
< higher education attainment	192 (35.9)	6 (33.3)	
≥higher education attainment	343 (64.1)	12 (66.7)	
Hemoglobin (g/L)	130 ± 9	110 ±3	< 0.001
Height(cm)	135.3 ± 11.5	126.2 ± 11.2	0.001
Weight (Kg)	$\textbf{32.6} \pm \textbf{9.8}$	25.7 ± 5.2	0.003
HAZ	0.83(0.25, 1.62)	0.44(-0.28,1.74)	0.269
BAZ	0.37 (-0.38, 1.47)	0.15(-0.55, 0.57)	0.196
Total energy (kcal)	1684 ± 559	1568 ± 461	0.383
Protein (g /1000kcal)	36.1 ± 7.5	36.4 ± 6.4	0.865
Fat (g/1000kcal)	39.4 ± 9.4	40.7 ± 9.8	0.555
Carbohydrate (g/1000kcal)	131.0 ± 22.1	127.3 ± 20.2	0.488
Vitamin A (µg RE /1000kcal)	315 ± 759	370 ± 365	0.759
Retinol (µg /1000kcal)	151 ± 743	177 ± 320	0.883
Thiamin (mg/1000kcal)	0.45 ± 0.12	0.49 ± 0.12	0.236
Riboflavin (mg/1000kcal)	0.54 ± 0.35	0.54 ± 0.13	0.986
Vitamin C (mg/1000kcal)	39 ± 25	38 ± 17	0.960
Vitamin E (mg/1000kcal)	13.82 ± 8.33	16.03 ± 7.61	0.268

Iron (mg/1000kcal)	11.1 ± 4.9	10.9 ± 3.1	0.844
Calcium (mg/1000kcal)	245 ± 107	240 ± 90	0.837
Zinc (mg/1000kcal)	5.66 ± 1.55	5.55 ± 0.77	0.766
Manganese (mg/1000kcal)	2.55 ± 1.22	2.38 ± 0.59	0.547
Copper (mg/1000kcal)	0.90 ± 0.37	0.86 ± 0.25	0.611
Supplements intake	172 (32.1)	5 (27.8)	0.628

Data are presented as n (%) or mean±standard deviation or median (P_{25},P_{75}) . *Student's t-test was applied for the comparison of continuous variables (normal distribution) and χ^2 for categorical variables (Pearson's or Fisher's exact test was applied as appropriate). The Wilcoxon rank-sum test was implemented to detect the median disparities. HAZ: Height-for-age Z-score; BAZ: BMI-for-age Z-score.

Supplementary Table 3: Association between dietary nutrients intake and Hb by multivariable linear regression* in study population $3(n=553^{\circ})$.

Hb	β	P value	95% CI
Sex (ref:boy)	1.790	0.023	0.252, 3.329
Age	1.732	< 0.001	1.273, 2.191
HAZ	0.464	0.240	- 0.312, 1.240
BAZ	0.650	0.050	0.001, 1.298
Caregiver's ducational attainment	1.253	0.179	- 0.577, 3.084
Income	- 0.404	0.340	- 1.235, 0.427
Rural	- 0.282	0.732	- 1.898, 1.334
Supplements	- 1.009	0.221	- 2.627, 0.610
Total energy (kcal)	0.001	0.268	- 0.001, 0.002
Protein (g/1000 kcal)	- 0.212	0.093	- 0.461, 0.036
Fat (g/1000 kcal)	- 0.445	0.065	- 0.917, 0.028
Carbohydrate (g/1000 kcal)	- 0.150	0.154	- 0.357, 0.056
Vitamin A (µg RE /1000 kcal)	- 0.006	0.067	- 0.012, 0.000
Retinol (μg/1000 kcal)	0.005	0.153	- 0.002, 0.012 - 11.272,
Thiamin (mg/1000 kcal)	- 3.952	0.289	3.367 - 6.804,
Riboflavin (mg/1000 kcal)	2.293	0.621	11.391
Vitamin C (mg/1000 kcal)	- 0.004	0.811	- 0.040, 0.031
Vitamin E (mg/1000 kcal)	0.070	0.173	- 0.031, 0.171
Iron (mg/1000 kcal)	- 0.073	0.548	- 0.312, 0.166
Calcium (mg/1000 kcal)	- 0.002	0.684	- 0.013, 0.009

Zinc (mg/1000 kcal)	0.634	0.141	- 0.211, 1.479
Copper (mg/1000 kcal)	1.997	0.121	- 0.528, 4.523
Manganese (mg/1000 kcal)	0.233	0.555	- 0.541, 1.007

^{*} All the list variates were listed as co-variables into multivariable linear regression.

Supplementary Table 4: Change trends of anthropometry and Hb with age in population 1 (n=4326).

Items	Tertile1*	Tertile2	Tertile3	P _{trend value}
	(n=1449)	(n=1449)	(n=1428)	
Age (year)	6.6±0.4	8.6±0.3	10.6±0.4	<0.001
Sex (boys%)	742 (51.2)	705 (48.6)	762 (53.4)	0.252
Height (cm)	123.6±5.5	134.7±6.2	147.3±7.5	< 0.001
Weight (kg)	25.4±5.3	31.9±7.7	41.5±11.0	< 0.001
HAZ	0.90 ± 0.98	0.81 ± 1.02	0.92 ± 1.10	0.805
BAZ	0.55 ± 1.34	0.55±1.34	0.60 ± 1.37	0.047
Hemoglobin (g/L)	125.33±9.10	128.78±8.83	131.44±9.35	< 0.001
Anemia (%)	100 (6.9%)	29 (2.0%)	9 (0.6%)	< 0.001

^{*}The tertiles was separated by age. HAZ: Height-for-age Z-score; BAZ: BMI-for-age Z-score.

Supplementary Table 5: The changes of Hb and anemia from 2015 to 2017 in children who were anemic at baseline.

Items	Year (baseline)	2015	Year 2017		
rtems	Age (year)	Hb (g/L)	Age (year)	Hb (g/L)	Cases of children remaining anemic
Study population 1	(n=4326)				
Total (<i>n</i> =104) *	7.0 ± 0.9	110±3	9.2 ± 0.9	128±9	5
Grade 1 (<i>n</i> =78)	6.5 ± 0.3	110±3	8.7 ± 0.3	127±9	3
Grade 3 (<i>n</i> =26)	8.5 ± 0.3	110±3	10.7 ± 0.3	128 ± 9	2
Study population 2 (<i>n</i> =1969)					
Total $(n=45)^{\dagger}$	7.1 ± 0.9	110±3	9.3 ± 0.9	129±10	2
Grade 1 (<i>n</i> =33)	6.6 ± 0.3	110±3	8.8 ± 0.3	129±10	1
Grade 3 (<i>n</i> =12)	8.6 ± 0.3	110±3	10.8 ± 0.3	128 ± 10	1

^{*}For the study population 1, 104 of 136 anemic cases in 2015 (78 in Grade 1 and 26 in Grade 3) were traced to 2017 and only 5 cases remained as anemia in 2017.

[†]1 child with IDA was excluded. HAZ: Height-for-age Z-score; BAZ: BMI-for-age Z-score; Hb: hemoglobin; CI: confidence interval.

[†] For the study population 2, 45 of 56 anemic cases in 2015 (33 in Grade 1 and 12 in Grade 3) were traced to 2017 and only 2 cases remained as anemia in 2017.