	Gene
	Chromosome
	Location
	Base change
	Amino Acid change
	Functional evidence
	Comment 
	Reference 

	MASP2
	1
	Exon 3
	A359G
	D120G
	Yes
	Lowers MASP-2 concentration and the MASP-2 and may lead to inability to activate complement
	Stengaard-Pedersen et al1, Thiel et al2

	NCF2
	1
	Exon 13
	C1167A
	H389Q
	Yes
	Significantly decreased binding to Vav1  resulting in reduced reactive oxygen species production
	Dhillon et al3, Armstrong et al4

	NCF2
	1
	Exon 15
	C1360T
	P454S
	Yes
	Results in loss of exonic splicing enhancer leading to reduced oxidative burst response
	Dhillon et al3,   Denson et al5

	NCF2
	1
	Exon 14
	A1256T
	N419I
	Yes
	Significantly decreased binding to p40phox resulting in reduced reactive oxygen species production
	Dhillon et al3, Denson et al5

	NCF2
	1
	Exon 14
	G1184A
	R395Q
	Possible 
	R395W and R394Q have functional evidence showing  reduced reactive oxygen species production
	Armstrong et al4, Sancho-Shimizo et al6

	STAT1
	2
	Exon 10
	G796A
	V266I
	Conflicting
	Initially reported to have higher GAS oligonucleotide binding in response to IFN- γ but a subsequent report could not replicate this 
	Uzel et al7, Depner et al8

	NCF1
	7
	Exon 4
	G269A
	R90H
	Yes
	Located in PI(3,4)P2-binding domain of p47phox resulting in reduced reactive oxygen species production
	Dhillon et al3, Zhao et al9

	NCF1
	7
	Exon 4
	G247A
	G83R
	Yes
	Reduced oxidative burst response to formyl peptide
	Denson et al5

	DCLRE1C
	10
	Exon 6
	G457A
	G153R
	No
	
	

	DCLRE1C
	10
	Exon 7
	C512G
	P171R
	Yes
	Decrease in Artemis endonuclease activity in vitro (3x). Cells with variant demonstrated a DSB repair defect in G2 phase
	Woodbine et al10

	TRIM22
	11
	Exon 8
	G962A
	R321K
	Yes
	Reduced or absent TRIM22-NOD2 binding with reduced downstream TNFα, IL-6, and ISG15 expression
	Li et al11

	TRIM22
	11
	Exon 8
	C1324T
	R442C
	Yes
	Reduced or absent TRIM22-NOD2 binding with reduced  downstream TNFα, IL-6, and ISG15 expression
	Li et al11

	TRIM22
	11
	Exon 4
	C731T
	S244L
	Yes
	Reduced or absent TRIM22-NOD2 binding with reduced  downstream TNFα, IL-6, and ISG15 expression
	Li et al11

	TRIM22
	11
	Exon 8
	C1450T
	P484S
	No
	Reported to alter protein structure in silico, no functional evidence 
	Kelly et al12

	IL10RA
	11
	Exon 7
	C1259T
	S420L
	No
	
	

	NOD2
	16
	Exon 4
	C2104T
	R702W
	Yes
	[bookmark: _GoBack]Reduced levels of NF-κB activation, greatly reduced response to lipopolysaccharide and peptidoglycan stimulation 
	Bonen et al13,  Parkhouse et al14

	NOD2
	16
	Exon 9
	G2863A
	V955I
	Conflicting
	Trend towards reduced IL10 production with T cell responses, seen with enhanced CD4+ T cell proliferation. But no impact on  NF-κB signalling
	Hedegaard 15

	NOD2
	16
	Exon 4
	C2264T
	A755V
	Yes
	Reduced levels of NF-κB activity by 25-54%
	Parkhouse et al14

	NOD2
	16
	Exon 4
	A1055G
	H352R
	No
	
	

	NOD2
	16
	Exon 5
	G2470A
	D824N
	No
	
	

	NOD2
	16
	Exon 6
	A2555G
	N852S
	No
	Located in the 4th LRR domain, widely reported association but no absolute functional evidence
	Parkhouse et al14, Tukel et al16

	NOD2
	16
	Exon 8
	G2722C
	G908R
	Yes
	Reduced levels of NF-κB activation, greatly reduced response to lipopolysaccharide and peptidoglycan stimulation
	Bonen et al13

	NOD2
	16
	Exon 11
	3017dupC
	A1007fs
	Yes
	Reduced levels of NF-κB activation, no response to lipopolysaccharide and peptidoglycan stimulation
	Bonen et al13

	NOD2
	16
	Exon 4
	C2230T
	R744W
	No
	
	

	NOD2
	16
	Exon 4
	G2123A
	R708H
	No
	
	

	NOD2
	16
	Exon 10
	A2888G
	E963G
	Novel
	
	

	BTK
	X
	Exon 7
	A720C
	E240D
	No
	
	

	CD40LG
	X
	Exon 5
	G655A
	G219R
	Yes
	Deleterious in vivo alongside XIAP mutations. In vitro functional evidence of reduced binding of CD40LG to CD40 leading possible affects on CD40L-mediated interactions
	Rigaud et al17, Barnhart et al18

	WAS
	X
	Exon 4
	G391A
	E131K
	Yes
	Absent WAS protein expression through Western blot analysis 
	Stewart et al19, Jin et al20

	WAS
	X
	Exon 11
	C1378T
	P460S
	Yes
	Slowed cell growth, increased actin polymerisation impacting on cellular proliferation
	Zheng et al21

	DKC1
	X
	UTR5
	142C>G
	
	Yes
	Disruption of  Sp1 transcription factor binding site leading to reduced promotor activity 
	Salowsky et al22, Knight et al23

	FOXP3
	X
	Exon 6
	C543T
	S181S
	No
	
	

	SH2D1A
	X
	Exon 1
	C48T
	G16G
	No
	
	

	XIAP
	X
	Exon 7
	A1408T
	T470S
	Conflicting
	Too common to be disease causing, may contribute to disease in conjunction with additional variants 
	Uhlig et al24

	CYBB
	X
	Exon 9
	G1090C
	G364R
	Possible
	Constituent of gp91phox adjacent to the FAD-binding domain. Widely reported but lacks functional validation to demonstrate reduced reactive oxygen species production 
	Dhillon et al3,  Dennison et al5,  O’Neill et al25

	POLA1
	X
	Exon 32
	G3604C
	D1202H
	No
	
	


Supplementary table 2- Summary of functional evidence for significant monogenic IBD variants identified within the Wessex cohort. Variants are coded as confirmed functional impact (red), possible or conflicting impact (yellow), no reported functional validation (blue) or novel variants (green). 
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