Supplemental Digital Content 1

Speech Auditory Brainstem Responses: Effects of Background, Stimulus Duration,

Consonant-Vowel, and Number of Epochs

Section 1: Characteristics of CV Stimuli

Table 1. Formant Frequency Components $\left(\mathrm{F}_{0}-\mathrm{F}_{6}\right.$, in Hz$)$ of CV Stimuli used to Record SpeechABRs.
$\boldsymbol{\uparrow}=$ frequency rises during vowel formant transition.
$\downarrow=$ frequency falls during vowel formant transition.

	40ms	50ms		170ms
	[da]	[ba]	[da] [ga]	[ba] [da] [ga]
F_{0}	103 个 125		100	100
F_{1}	$220 \uparrow 720$		$400 \uparrow 720$	400 个 720
F_{2}	$1700 \downarrow 1240$	$\begin{gathered} 900 \uparrow \\ 1240 \end{gathered}$	$1700 \downarrow$ $2480 \downarrow$ 1240 1240	$900 \uparrow$ $1700 \downarrow$ $2480 \downarrow$ 1240 1240 1240Frequency transition during thefirst 50 ms
F_{3}	$2580 \downarrow 2500$		$2580 \downarrow 2500$	$2580 \downarrow 2500$
F_{4}	3600		3300	3300
F_{5}	4500		3750	3750
F_{6}	NA		4900	4900

40ms [da] from (Banai et al. 2009)
170ms [ba] [da] [ga] from (Hornickel et al. 2009)

Time Domain Waveforms of Stimuli

Fig. 1. Time domain waveform of a single polarity 40 ms [da] stimulus

Fig. 2. Time domain waveforms of a single polarity: (A) 50ms [ba] stimulus, (B) 50ms [da] stimulus, (C) 50 ms [ga] stimulus

Fig. 3. Time domain waveforms of the transition period (first 50 ms) of a single polarity: (A) 170 ms [ba] stimulus, (B) 170 ms [da] stimulus, (C) 170 ms [ga] stimulus

Fig. 4. Time domain waveforms of a single polarity: (A) 170ms [ba] stimulus, (B) 170 ms [da] stimulus, (C) 170 ms [ga] stimulus

Spectrum of Stimuli

Fig. 5. Spectrum (FFT of the full stimulus) of a single polarity 40 ms [da] stimulus

Fig. 6. Spectrum (FFT of the full stimulus) of a single polarity: (A) 50 ms [ba] stimulus, (B) 50 ms [da] stimulus, (C) 50 ms [ga] stimulus

Fig. 7. Spectrum (FFT of the first 50 ms of the stimulus) of the transition period (first 50 ms) of a single polarity: (A) 170 ms [ba] stimulus, (B) 170 ms [da] stimulus, (C) 170 ms [ga] stimulus

Fig. 8. Spectrum (FFT of the full stimulus) of a single polarity: (A) 170ms [ba] stimulus, (B) 170 ms [da] stimulus, (C) 170 ms [ga] stimulus

Section 2: Recording Time Per Stimulus

Table 2. Mean, SD, and Range of Recording Times (in minutes) required for completing 4 Speech-ABR blocks (i.e. 12,000 epochs) per stimulus, across durations $(40 \mathrm{~ms}, 50 \mathrm{~ms}, 170 \mathrm{~ms})$, and in each background (quiet and noise).

Shaded cells indicate that stimulus was not tested in noise.

	Quiet				Noise		
		Mean	SD	Range	Mean	SD	Range
$\mathbf{4 0 m s}$	[da]	23.17	5.22	$20-31$	21.75	3.19	$19-25$
	[ba]	27.08	3.94	$24-36$	30.17	7.52	$25-49$
	[da]	27.75	6.45	$24-45$	28.17	5.64	$23-45$
	[ga]	29.17	5.75	$25-40$	30.33	7.45	$25-47$
	[ba]	56.08	15.92	$48-106$			
	[da]	54.50	8.92	$48-81$	56.00	7.48	$49-71$
	[ga]	53.92	7.04	$49-73$			

Section 3: Filtering Speech-ABRs to Emphasize Peak Latency Differences Between [ba],

 [da], and [ga]Johnson et al. 2008 and Hornickel et al. 2009 reported first band-pass filtering speech-ABRs to each stimulus polarity from $70-2000 \mathrm{~Hz}$, then adding speech-ABRs to the 2 polarities. Following filtering and adding speech-ABRs, an additional high-pass filter of 300 Hz was applied to the added speech-ABRs.

In speech-ABRs that were recorded in this study, applying the additional high-pass filter to the added responses resulted in a drastic decrease in speech-ABR amplitudes with no clearly defined peaks (Figs.9, 10, 11, 12). A spectrum of speech-ABR onset and transition periods to these 3 stimuli shows that speech-ABRs from this study have little to no spectral peaks above 300 Hz (Fig. 13), which explains why responses were obliterated when high-pass filtered at 300 Hz .

Fig. 9. Grand average speech-ABRs with pre-stimulus baseline (onset and transition period: $0-$ 70 ms) in quiet to the 170 ms [ba] [da] [ga] overlaid, band-pass filtered $70-2000 \mathrm{~Hz}$. Shade represents 1 SE .

Fig. 10. Grand average speech-ABRs with pre-stimulus baseline (onset and transition period: $0-$ 70 ms) in quiet to the 170 ms [ba] [da] [ga] overlaid, with additional high-pass filter (300 Hz) applied, showing the drastic decrease in amplitudes and overall absence of responses. Shade represents 1 SE

Fig. 11. Grand average speech-ABRs with pre-stimulus baseline (onset and transition period: $0-$ 70 ms) in quiet to the: (A) 170 ms [ba], (B) 170 ms [da], (C) 170 ms [ga] plotted separately, bandpass filtered $70-2000 \mathrm{~Hz}$. Shade in all panels represents 1 SE.

Fig. 12. Grand average speech-ABRs with pre-stimulus baseline (onset and transition period: $0-$ 70 ms) in quiet to the: (A) 170 ms [ba], (B) 170 ms [da], (C) 170 ms [ga] plotted separately, with additional high-pass filter $(300 \mathrm{~Hz})$ applied. Shade in all panels represents 1 SE .

Fig. 13. Spectrum of grand average speech-ABRs band-pass filtered $70-2000 \mathrm{~Hz}$ (FFT of onset and transition period: $0-70 \mathrm{~ms}$) in quiet to the 170 ms [ba], [da], and [ga] showing little to no spectral peaks above 300 Hz .

Section 4: Why Speech-ABRs Contained No Spectral Peaks Above 300 Hz

In order to best predict the expected spectra of the speech-ABRs, half-wave rectifying the acoustic signals of the 2 stimulus polarities then processing their waveforms through the same analyses as the speech-ABR raw data provides a prediction of the spectral characteristics of the speech-ABR in idealized circumstances (i.e. if the auditory system encodes the acoustic waveform with absolute accuracy). Therefore, for the acoustic stimulus spectra to be comparable to the speech-ABR spectra, the 170 ms [ba] [da] [ga] acoustic stimuli were processed similarly to the speech-ABRs for comparison. The following steps were conducted:

1. For each stimulus (170 ms [ba], 170 ms [da], and 170 ms [ga]), each stimulus polarity was half-wave rectified.
2. The half-wave rectified 2 polarities of each stimulus were added (as speech-ABRs to the 2 stimulus polarities were added).
3. FFTs were performed on the transition period (first 50 ms) of the added half-wave rectified stimuli.

The resulting spectra of the half-wave rectified added stimuli (Fig. 14) are similar to the speechABR spectra, i.e. they contain 3 peaks at $100 \mathrm{~Hz}, 200 \mathrm{~Hz}$, and 300 Hz and no clear spectral peaks above 300 Hz . It would therefore not be expected for the speech-ABRs to these stimuli to contain any spectral peaks above 300 Hz .

Fig. 14. Spectrum (FFT of the first 50 ms) of the transition period of the half-wave rectified and added 170 ms [ba] [da] and [ga] stimuli, showing 3 peaks at $100 \mathrm{~Hz}, 200 \mathrm{~Hz}$, and 300 Hz with little to no spectral content above 300 Hz .

References:

Banai, K., Hornickel, J., Skoe, E., et al. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19, 2699-2707.

Hornickel, J., Skoe, E., Nicol, T., et al. (2009). Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proceedings of the National Academy of Sciences, 106, 13022-13027.

Johnson, K., Nicol, T., Zecker, S., et al. (2008). Brainstem encoding of voiced consonant-vowel stop syllables. Clinical Neurophysiology, 119, 2623-2635.

