Supplemental Digital Content 1

Speech Auditory Brainstem Responses: Effects of Background, Stimulus Duration,

Consonant-Vowel, and Number of Epochs

Section 1: Characteristics of CV Stimuli

Table 1. Formant Frequency Components $(F_0 - F_6, \text{ in Hz})$ of CV Stimuli used to Record Speech-ABRs.

 $\mathbf{\uparrow}$ = frequency rises during vowel formant transition.

 Ψ = frequency falls during vowel formant transition.

	40ms	50ms			170ms			
	[da]	[ba]	[da]	[ga]	[ba]	[da]	[ga]	
F ₀	103 🛧 125		100		100			
F ₁	220 🛧 720		400 ↑ 720)	400 🛧 720			
	1700 ↓ 1240				900 🛧	1700 🗸	2480 ¥	
Б		900 🛧	1700 🗸	2480 🗸	1240	1240	1240	
\mathbf{F}_2		1240	1240	1240	Frequency transition during the			
					first 50ms			
F ₃	2580 ₩2500	2580 4 2500			2580 ♥ 2500			
F ₄	3600	3300			3300			
F ₅	4500	3750			3750			
F ₆	NA		4900		4900			

40ms [da] from (Banai et al. 2009)

170ms [ba] [da] [ga] from (Hornickel et al. 2009)

Time Domain Waveforms of Stimuli

Fig. 1. Time domain waveform of a single polarity 40ms [da] stimulus

Fig. 2. Time domain waveforms of a single polarity: (A) 50ms [ba] stimulus, (B) 50ms [da] stimulus, (C) 50ms [ga] stimulus

Fig. 3. Time domain waveforms of the transition period (first 50ms) of a single polarity: (A) 170ms [ba] stimulus, (B) 170ms [da] stimulus, (C) 170ms [ga] stimulus

Fig. 4. Time domain waveforms of a single polarity: (A) 170ms [ba] stimulus, (B) 170ms [da] stimulus, (C) 170ms [ga] stimulus

Spectrum of Stimuli

Fig. 5. Spectrum (FFT of the full stimulus) of a single polarity 40ms [da] stimulus

Fig. 6. Spectrum (FFT of the full stimulus) of a single polarity: (A) 50ms [ba] stimulus, (B) 50ms [da] stimulus, (C) 50ms [ga] stimulus

Fig. 7. Spectrum (FFT of the first 50ms of the stimulus) of the transition period (first 50ms) of a single polarity: (A) 170ms [ba] stimulus, (B) 170ms [da] stimulus, (C) 170ms [ga] stimulus

Fig. 8. Spectrum (FFT of the full stimulus) of a single polarity: (A) 170ms [ba] stimulus, (B) 170ms [da] stimulus, (C) 170ms [ga] stimulus

Section 2: Recording Time Per Stimulus

Table 2. Mean, SD, and Range of Recording Times (in minutes) required for completing 4 Speech-ABR blocks (i.e. 12,000 epochs) per stimulus, across durations (40ms, 50ms, 170ms), and in each background (quiet and noise).

			Quiet			Noise	
		Mean	SD	Range	Mean	SD	Range
40ms	[da]	23.17	5.22	20-31	21.75	3.19	19 – 25
	[ba]	27.08	3.94	24 - 36	30.17	7.52	25 - 49
50ms	[da]	27.75	6.45	24 - 45	28.17	5.64	23 - 45
	[ga]	29.17	5.75	25 - 40	30.33	7.45	25 - 47
	[ba]	56.08	15.92	48 - 106			
170ms	[da]	54.50	8.92	48 - 81	56.00	7.48	49 – 71
	[ga]	53.92	7.04	49 - 73			

Shaded cells indicate that stimulus was not tested in noise.

Section 3: Filtering Speech-ABRs to Emphasize Peak Latency Differences Between [ba], [da], and [ga]

Johnson et al. 2008 and Hornickel et al. 2009 reported first band-pass filtering speech-ABRs to each stimulus polarity from 70 - 2000 Hz, then adding speech-ABRs to the 2 polarities. Following filtering and adding speech-ABRs, an additional high-pass filter of 300 Hz was applied to the added speech-ABRs.

In speech-ABRs that were recorded in this study, applying the additional high-pass filter to the added responses resulted in a drastic decrease in speech-ABR amplitudes with no clearly defined peaks (Figs.9, 10, 11, 12). A spectrum of speech-ABR onset and transition periods to these 3 stimuli shows that speech-ABRs from this study have little to no spectral peaks above 300 Hz (Fig. 13), which explains why responses were obliterated when high-pass filtered at 300 Hz.

Fig. 9. Grand average speech-ABRs with pre-stimulus baseline (onset and transition period: 0 - 70ms) in quiet to the 170ms [ba] [da] [ga] overlaid, band-pass filtered 70 - 2000 Hz. Shade represents 1 SE.

Fig. 10. Grand average speech-ABRs with pre-stimulus baseline (onset and transition period: 0 - 70ms) in quiet to the 170ms [ba] [da] [ga] overlaid, with additional high-pass filter (300 Hz) applied, showing the drastic decrease in amplitudes and overall absence of responses. Shade represents 1 SE

Fig. 11. Grand average speech-ABRs with pre-stimulus baseline (onset and transition period: 0 - 70ms) in quiet to the: (A) 170ms [ba], (B) 170ms [da], (C) 170ms [ga] plotted separately, bandpass filtered 70 – 2000 Hz. Shade in all panels represents 1 SE.

Fig. 12. Grand average speech-ABRs with pre-stimulus baseline (onset and transition period: 0 - 70ms) in quiet to the: (A) 170ms [ba], (B) 170ms [da], (C) 170ms [ga] plotted separately, with additional high-pass filter (300 Hz) applied. Shade in all panels represents 1 SE.

Fig. 13. Spectrum of grand average speech-ABRs band-pass filtered 70 - 2000 Hz (FFT of onset and transition period: 0 - 70ms) in quiet to the 170ms [ba], [da], and [ga] showing little to no spectral peaks above 300 Hz.

Section 4: Why Speech-ABRs Contained No Spectral Peaks Above 300 Hz

In order to best predict the expected spectra of the speech-ABRs, half-wave rectifying the acoustic signals of the 2 stimulus polarities then processing their waveforms through the same analyses as the speech-ABR raw data provides a prediction of the spectral characteristics of the speech-ABR in idealized circumstances (i.e. if the auditory system encodes the acoustic waveform with absolute accuracy). Therefore, for the acoustic stimulus spectra to be comparable to the speech-ABR spectra, the 170ms [ba] [da] [ga] acoustic stimuli were processed similarly to the speech-ABRs for comparison. The following steps were conducted:

- 1. For each stimulus (170ms [ba], 170ms [da], and 170ms [ga]), each stimulus polarity was half-wave rectified.
- 2. The half-wave rectified 2 polarities of each stimulus were added (as speech-ABRs to the 2 stimulus polarities were added).
- 3. FFTs were performed on the transition period (first 50ms) of the added half-wave rectified stimuli.

The resulting spectra of the half-wave rectified added stimuli (Fig. 14) are similar to the speech-ABR spectra, i.e. they contain 3 peaks at 100 Hz, 200 Hz, and 300 Hz and no clear spectral peaks above 300 Hz. It would therefore not be expected for the speech-ABRs to these stimuli to contain any spectral peaks above 300 Hz.

Fig. 14. Spectrum (FFT of the first 50ms) of the transition period of the half-wave rectified and added 170ms [ba] [da] and [ga] stimuli, showing 3 peaks at 100 Hz, 200 Hz, and 300 Hz with little to no spectral content above 300 Hz.

References:

- Banai, K., Hornickel, J., Skoe, E., et al. (2009). Reading and subcortical auditory function. *Cerebral Cortex*, 19, 2699–2707.
- Hornickel, J., Skoe, E., Nicol, T., et al. (2009). Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. *Proceedings of the National Academy of Sciences*, 106, 13022–13027.
- Johnson, K., Nicol, T., Zecker, S., et al. (2008). Brainstem encoding of voiced consonant–vowel stop syllables. *Clinical Neurophysiology*, 119, 2623–2635.