Appendix 

CONDITIONS FOR IGNORABLE EXITING IN THE CROSS-SECTIONAL COHORT DESIGN

Exiting from the cross-sectional cohort study is ignorable when standard cohort analysis methods produce unbiased estimates of the measures of effect. In this appendix, we present sufficient conditions for ignorable exiting in the cross-sectional cohort study. To establish ignorable exiting in the cross-sectional cohort study, we compare the estimates from the study cohort with those obtained from its corresponding conceptual cohort, as defined in the body of the paper, in which there is no exiting. The study cohort is the same as the conceptual cohort except that it has missing data due to exiting. The conditions for ignorable exiting the cross-sectional cohort study are therefore those under which these missing data are ignorable (or non-informative) with respect to estimation of the measures of effect.

Parenthetically, it should be noted that we have defined the term “study cohort” to refer to all individuals available at time t1; i.e., all individuals in the conceptual cohort minus those who have exited prior to t1. In practice, one rarely evaluates every individual eligible for the study cohort, but instead attempts to evaluate a random subsample of these individuals. Provided that this subsample is a random sample of the entire study cohort, these groups are stochastically equivalent.

We examine specifically the conditions under which 1) the hazard for the conceptual cohort and the study cohort are equal; and 2) the hazard ratio comparing two levels of exposure or other covariates for the conceptual cohort and the study cohort are equal.

We can determine from the conceptual cohort the probability at each time point that the outcome of interest occurs, conditional on covariates. The three measures that express this relationship are the hazard function, (t); the survival function S(t); and the probability density function, f (t). Each of these measures is a function any of the other two. For example, (t) = f (t)/S(t) = -d(log[S(t)])/dt, and ∫ f (t) = 1-S(t).18 Thus, knowing one of these functions implies that we know all three. Although we focus on the hazard here, we can easily derive the other measures if the hazard is known.

I. Conditions under which the hazard for the conceptual cohort and for the study cohort are equal. 

The hazard, (t | Z), is the instantaneous probability of occurrence of an outcome at time t (time since cohort entry), given a vector of explanatory variables (including the exposures and covariates) Z, in an individual who was previously free of the outcome. The hazard function for the conceptual cohort is:

C (t | Z) = f C (t | Z) / SC (t | Z)

 

   = Pr (t ≤T<t+dt | Z) / Pr(T≥t | Z),

where T is the time from cohort entry to the outcome of interest, and Pr (t ≤T<t+dt | Z) indicates limdt↓0 {Pr (t ≤T<t+dt | Z)/dt}.


The hazard for the conceptual cohort can be considered separately for those who are in the study cohort and those who are not, denoted by the indicator variable S (S=1 if in the study cohort, and S=0 if not in the study cohort). The hazard for an individual in the study cohort, S (t | Z), is thus the hazard for an individual in the conceptual cohort, conditional on S=1, and is:


S (t | Z) = C (t | S=1,Z) 

  = Pr(t ≤T<t+dt | S=1,Z) / Pr(T≥t | S=1,Z)



  = {Pr(t ≤T<t+dt,S=1 | Z)/Pr(S=1 | Z)} / {Pr(T≥t,S=1 | Z)/Pr(S=1 | Z)}



  = {Pr(t ≤T<t+dt | Z)Pr(S=1 | t ≤T<t+dt,Z)} / {Pr(T≥t | Z)Pr(S=1 | T≥t,Z)}



  = C (t | Z) Pr(S=1 | t ≤T<t+dt,Z) / Pr(S=1 | T≥t,Z)



  = C (t | Z) C(t | Z),

where C(t | Z) = Pr(S=1 | t ≤T<t+dt,Z) / Pr(S=1 | T≥t,Z). 

C(t | Z) can be viewed as the relative probability (for a given level of Z) of ultimately being a member of the study cohort at calendar time t1 (hereafter referred to for brevity as “membership in the study cohort”), depending on whether the outcome occurred or did not occur at time t. When C(t | Z) equals one, then S (t | Z) equals C (t | Z). This occurs when S and T are independent, conditional on Z; that is, when Pr(S=1 | T,Z) = Pr(S=1 | Z). When this condition is met, membership in the study cohort is non-informative with respect to the hazard. Because the survival function and probability density function are functions of the hazard function,S(t | Z) = C(t | Z) implies that SS (t | Z) = SC (t | Z) and fS(t | Z) = f C (t | Z).

Using these results, we construct the likelihood function for data arising from the study cohort and the conceptual cohort under the assumption that membership in the study cohort is non-informative with respect to the hazard. We allow in this construction for censoring at the time of cross-sectional sampling; that is, some individuals will not have developed the outcome of interest before this time. We also assume that this censoring is non-informative; that is, censoring is independent of the occurrence of the outcome, conditional on the explanatory variables. Finally, we make the assumption, which is plausible in most circumstances, that the probability of membership in the study cohort is not only independent of the outcome, but also of any regression parameters in the model (discussed further in Glynn19).

Assuming that membership in the study cohort is non-informative with respect to the hazard and non-informative censoring, and assuming that membership is independent of the parameters, the likelihood for the study cohort is:

LS(( | T,Z) = (i=1m S (ti | Zi,()(i SS (ti | Zi,()1-(i

     = (i=1m C (ti | Zi,()(i SC (ti | Zi,()1-(i,

where i (i = 1,…m) indexes individuals in the study cohort, ( is vector of parameters, 

S (t | Z,() is the survival function, and ( is an indicator variable for whether the event has occurred at some time under observation.cf. 7,18
The likelihood for the conceptual cohort is:

LC(( | T,Z) = (i=1m C (ti | Zi,()(i SC (ti | Zi,()1-(i (i=m+1n C (ti | Zi,()(i SC (ti | Zi,()1-(i


     =  LS(( | T,Z) LNS(( | T,Z),

where i (i = m+1,…n) indexes individuals in the conceptual cohort but not in the study cohort, and LNS(( | T,Z) is the likelihood for the group who are in the conceptual cohort but not the study cohort.

The likelihood for the study cohort differs from that of the conceptual cohort only in the addition of more subjects who make the same contribution to the likelihood. Because the maximization of the likelihood does not depend on the number of subjects, the two likelihood functions will yield the same maximum likelihood estimator. Therefore, the estimates for the study cohort and the conceptual cohort based on maximizing the likelihood will be stochastically equivalent; that is, they will differ only due to sampling variability and will be asymptotically equal. 

II. Conditions under which the hazard ratio comparing two levels of exposure for the conceptual cohort and the study cohort are equal. 

If we have an unbiased estimator for the hazard for each level of the explanatory variables, then we can obtain an unbiased estimator for the hazard ratio. However, under certain conditions, we can obtain an unbiased estimator for the hazard ratio even when we cannot obtain an unbiased estimator for the individual hazards.

To look at the hazard ratio for a particular exposure, we consider for simplicity a binary exposure Z1, which we distinguish from the remainder of the vector of explanatory variables, Z*. The hazard ratio, HR, for the conceptual cohort is:

HRC = C (t | Z1=1,Z*) / C (t | Z1=0,Z*).

The hazard ratio for the study cohort is thus:


HRS = {C (t | Z1=1,Z*) C(t | Z1=1,Z*)} / {C (t | Z1=0,Z*) C(t | Z1=0,Z*)} 


        = HRC {C(t | Z1=1,Z*)} / C(t | Z1=0,Z*)}.

Therefore, when C(t | Z1=1,Z*) = C(t | Z1=0,Z*), the hazard ratio measuring the effect of exposure for the study cohort will be the same as the hazard ratio for the conceptual cohort. Kleinbaum and colleagues20 have shown that an analogous condition is necessary and sufficient for lack of selection bias for the odds ratio in case-control studies.

This condition is equivalent to requiring that the logarithm of the probability of membership in the study cohort for a given combination of exposure and outcome at time t is an additive function of the exposure and the outcome status; specifically,

log Pr(S =1 | t,Z) = (0 + (1f (t)  + (2 g(Z),

where f (t) is an arbitrary function independent of Z, and g(Z) is an arbitrary function that is independent of T. It is of interest that, in the general setting of analysis of complete case data where missingness may depend on the outcome (of which selection into the study cohort of the cross-sectional cohort study, availability at follow-up for other cohort studies, and selection into the sample for a case-control study are special cases), this condition is required for the validity of logistic regression and proportional hazards models.19

We proceed to construct an estimator for the hazard ratio for the effect of an exposure. We use a proportional hazards or relative risk model with an arbitrary baseline hazard for the conceptual cohort, so that:

C (t | Z, () = 0 (t) exp{Z´(}, 

where 0 (t) is the baseline hazard (when Z = 0), and for a given component of the covariate vector (Zi), exp{(i} is the hazard ratio for each increase of 1 in the level of Zi. The results that follow can be easily generalized to the case of time-varying covariates and other functional forms of the proportional hazards model.cf. 7,18
To estimate ( in the proportional hazards model for the conceptual cohort, we use the partial likelihood function. This function uses information only from the time points where events occur. The partial likelihood for random sampling from the conceptual cohort is:

LC(() = (j=1d {C ((j | Zi,() / (k(R ((j) C ((j | Zk,()} 

          
         = (j=1d {exp{Zj´(} / (k( R ((j) exp{Zk´(}}, 

where j denotes the individual with outcome occurring at (j; (j is the jth time of occurrence of an outcome (j = 1,…d); and R ((j) is the set of individuals at risk for disorder at time (j (those who still have not developed the outcome and who are still under observation just prior to (j).cf. 7,18

The partial likelihood for random sampling from the study cohort is thus:

LS(() = (j=1c {C ((j | Zi,() C((j | Zj,()} /  (k( R ((j) C ((j | Zk,() C((j | Zk,()}

         = (j=1c {exp{Zj´(} C((j | Zj,() / ( k( R ((j) exp{Zk´(} C((j | Zk,()}, 

where j = 1,…c (c ≤ d). 

Note that when C((j | Z, () is the same for all for levels of Z and of ( within the risk set at (j, for all (j, then C((j | Z, () cancels in the numerator and the denominator, and

LS(() = (j=1c {Ci ((j | Zi,()} /  (k( R ((j) Ck ((j | Zk,()}

         = (j=1c {exp{Zj´(} / (k( R ((j) exp{Zk´(}}.

Under the assumption that the probability of membership in the study cohort is independent of the regression parameters, the above condition reduces to the assumption that, for all (j, C((j | Z) is the same for all levels of Z (discussed further in Glynn19).

We now show that LS(() is maximized at the same point as the partial likelihood obtained when the conceptual cohort is sampled according to a scheme of a valid nested case-control study. Because the nested case-control design yields asymptotically unbiased estimates for (,21 this result will establish that LS(() is stochastically equivalent to LC(().

To construct this hypothetical nested case-control sample from the conceptual cohort, we first consider the simple situation where Z is a single binary exposure variable.

For each time point (j, we select randomly from among those at risk in the conceptual cohort just prior to (j a fraction, ƒ1, of cases with Z=1, and another fraction, ƒ2, of cases with Z=0. We then select randomly for each case a fraction, ƒ3, of controls with Z=1, and a fraction, ƒ4, of controls with Z=0. We apply the constraint that the ratio ƒ1/ƒ2 equals ƒ3/ƒ4. This sampling is unbiased for the odds ratio for the association between exposure and disease,20,22 which in turn is an unbiased estimator for the hazard ratio (or incidence rate ratio).23 To demonstrate this point, we show that the odds ratio for the nested case-control sample, ORNCC, is the same as ORC, the odds ratio for the underlying cohort from which the case and controls are selected, for each time point. For each time point,

 Pr(D=1 | S=1,Z=1) / Pr(D=0| S=1,Z=1)

        ORNCC =

 Pr(D=1 | S=1,Z=0) / Pr(D=0| S=1,Z=0)

 Pr(D=1,S=1 | Z=1)Pr(S=1,Z=1) / Pr(D=0,S=1 | Z=1)Pr(S=1,Z=1) 

        =

 Pr(D=1,S=1 | Z=0)Pr(S=1,Z=0) / Pr(D=0,S=1 | Z=0)Pr(S=1,Z=0)


             Pr(D=1 | Z=1)Pr(S=1 | D=1,Z=1) / Pr(D=0 | Z=1)Pr(S=1 | D=0,Z=1)


        =


             Pr(D=1 | Z=0)Pr(S=1 | D=1,Z=0) / Pr(D=0 | Z=0)Pr(S=1 | D=0,Z=0)

        =  ORC (ƒ1/ƒ3)/ (ƒ2/ƒ4)

        =  ORC (ƒ1/ƒ2)/ (ƒ3/ƒ4)

        =  ORC,

where D is an indicator variable for the presence or absence of the outcome, and S is an indicator variable for selection into the nested case-control sample.

Now we extend this condition to all levels of Z. The specific scheme here is that, for each time point (j, we select from among those at risk in the conceptual cohort just prior to (j according to the rule that C((j | Z) is uniform. The likelihood for the resulting nested case-control study is asymptotically equivalent to LS(() because it uses the same rule for selection as the rule for membership in the study cohort. The likelihood for the case-control study is also asymptotically equivalent to LC(() because the nested case-control design yields asymptotically unbiased estimates of (.21 Therefore, LS(() is asymptotically equivalent to LC(().

Thus, if we can assume that C((j | Z)—the relative probability (for a given level of Z) of membership in the study cohort, depending on whether the onset of outcome occurred or did not occur at time t—is the same for all for all levels of Z at each time point (and that the probability of membership is independent of (), then the partial likelihood for the study cohort will yield an asymptotically unbiased estimate for the hazard ratio from the underlying conceptual cohort. 

If we assume that C(t | Z) is constant across all levels of Z, but are uncertain whether it is constant for a given covariate or set of covariates for which we wish to adjust, we can perform a stratified analysis.7 The relevant assumption here is that within each stratum, C (t | Z) is constant across all levels of Z at each time point. The reason that we can relax the requirements for C(t | Z) is that the proportional hazard assumption in the underlying model does not need to hold for stratification variables. 
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