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ONLINE APPENDIX 

 

Applications to Causal Inquiries Contrasting Specific Regimes 

Here we describe how to estimate metrics among those following regimes of interest �̅�† as they 

evolve. Imagine a trial that only randomized exposure 𝐴(𝑡) for persons who were previously 

randomized to stay on a regime of interest. We would only expect and care about 

exchangeability 𝑌�̅�†∐𝐴(𝑡)|�̅�(𝑡 − 1)† and statistical exogeneity 𝐶̅(𝑡)∐𝐴(𝑡)|�̅�(𝑡 − 1)† among 

exposure histories �̅�(𝑡 − 1)† compatible with regimes of interest. 

 

To apply Diagnostics 1 and 3 to regimes as they evolve, one must censor persons when their 

exposure history at time 𝑡 i.e. �̅�(𝑡 − 1) becomes incompatible with all regimes of interest. 

Similarly, for Diagnostic 2, persons would be censored when their exposure history at time 𝑡 − 𝑘 

is incompatible, regardless of the exposure trajectory after time 𝑡 − 𝑘. Note that so far we have 

considered so-called static exposure regimes defined only by exposure history. This censoring 

approach could be extended to consider so-called dynamic regimes where exposures depend on 

covariate history.1,2 Though, the exchangeability conditions for dynamic exposure regimes differ 

from those used here. 

 

This implementation aligns closely with a strategy to estimate causal effects of exposure regimes 

via censoring rules to reduce modeling assumptions.2 When models are used to “borrow” 

information from other regimes—sometimes of no scientific interest—and thereby improve the 

efficiency of effect estimates, those “borrowed” regimes should also be diagnosed (e.g. 

diagnosing all observed regimes as they evolve, as in the main text simulated example). 
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Bias Metrics for Measured Confounding 

The covariate balance metrics in the main text ignore data on the covariate-outcome relationship. 

Suppose that 𝐶(𝑡) is necessary to attain exchangeability 𝑌�̅�∐𝐴(𝑡)|�̅�(𝑡 − 1), 𝐶̅(𝑡). Following the 

notation in Table 2 of the main text, from VanderWeele and Arah 20103 it follows that a crude 

estimate for the additive effect of exposure 𝐴(𝜏) on outcome 𝑌 among those with exposure 

history 𝐻(𝜏) would, upon adjustment for a binary covariate 𝐶(𝜏𝑐), be reduced by the amount: 

(𝐸[𝐶(𝜏𝑐)|𝐴(𝜏) = 𝑎′, 𝐻(𝜏)] − 𝐸[𝐶(𝜏𝑐)|𝐴(𝜏) = 𝑎′′, 𝐻(𝜏)])

× (𝐸[𝑌|𝐶(𝜏𝑐) = 1, 𝐴(𝜏) = 𝑎′′, 𝐻(𝜏)] − 𝐸[𝑌|𝐶(𝜏𝑐) = 0, 𝐴(𝜏) = 𝑎′′, 𝐻(𝜏)]) 

Thus, for binary variables and dummy indicators, we can incorporate empirical data on the 

covariate-outcome relationship by multiplying the balance of covariates at time 𝜏𝑐 across 

exposure at time 𝜏, among a particular level of exposure history at time 𝜏,  

𝐸[𝑊(𝜏) × 𝐼(𝐴(𝜏) = 𝑎′) × 𝐶(𝜏𝑐)|𝐻(𝜏)] − 𝐸[𝑊(𝜏) × 𝐼(𝐴(𝜏) = 𝑎′′) × 𝐶(𝜏𝑐)|𝐻(𝜏)], 

by the difference in mean outcome across covariate levels at time 𝜏𝑐 (among the referent group at 

time 𝜏 with the same level of exposure history):  

𝐸[𝑊(𝜏) × 𝐼(𝐶(𝜏𝑐) = 1) × 𝑌|𝐴(𝜏) = 𝑎′′, 𝐻(𝜏)] − 𝐸[𝑊(𝜏) × 𝐼(𝐶(𝜏𝑐) = 0) × 𝑌|𝐴(𝜏) = 𝑎′′, 𝐻(𝜏)] 

where 𝑊(𝜏) represents equals one for Diagnostic 1 or a weight for Diagnostic 3. The bias metric 

will equal zero when, conditional on exposure history, the covariate 𝐶(𝜏𝑐) is not associated with 

the exposure 𝐴(𝜏) or the outcome 𝑌 in the weighted population. The expression given here is 

based on a simplifying assumption that 𝐴(𝜏) does not statistically interact with 𝐶(𝜏𝑐) for 𝑌 (on 

the additive scale) but more general bias expressions can be derived.3,4 Future work might 

examine these generalizations and accommodations for censoring in greater depth. 
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Extensions to Multivariate Time-Varying Exposures 

To diagnose confounding in studies of multivariate exposures (e.g. joint effects, direct effects 

and interaction) one can assess each exposure while conditioning on their joint exposure history. 

We develop this result for the case of two distinct time-varying exposures where (i) at each time 

𝑡, exposure 𝐴(𝑡) affects covariates 𝐶(𝑡) which affects exposure 𝑍(𝑡), and (ii) covariates 𝐶(𝑡) 

affect subsequent exposures 𝐴(𝑡 + 𝑘) and 𝑍(𝑡 + 𝑘) and also the outcome 𝑌. 

 

Diagnostic 1: time-varying confounding in the study population 

In trials that randomly assign two distinct exposures 𝐴(𝑡) and 𝑍(𝑡) within levels of their joint 

exposure history, we expect exchangeability for each exposure 𝑌𝑎𝑧̅̅̅̅ ∐𝐴(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡 − 1) and 

𝑌𝑎𝑧̅̅̅̅ ∐𝑍(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡) and, as a result, statistical exogeneity for each exposure with respect to 

their joint history i.e. 𝐶̅(𝑡)∐𝐴(𝑡)| �̅�(𝑡 − 1), �̅�(𝑡 − 1) and 𝐶̅(𝑡)∐𝑍(𝑡)|�̅�(𝑡), �̅�(𝑡 − 1).5,6 In 

observational studies where there is confounding, causal inference regarding 𝑎𝑧̅̅ ̅ requires 

exchangeability for both exposures within levels of their joint exposure history plus some set of 

covariate history e.g. 𝑌𝑎𝑧̅̅̅̅ ∐𝐴(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡 − 1), 𝐶̅(𝑡) and 𝑌𝑎𝑧̅̅̅̅ ∐𝑍(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡), 𝐶̅(𝑡).34 

Confounding is reflected by departures from joint statistical exogeneity. In eAppendix Table 1 

we propose analogues of Diagnostic 1 to describe confounding for distinct exposures 𝐴(𝑡) and 

𝑍(𝑡). Note that when 𝐴 and 𝑍 are point exposures and 𝐶 and 𝐿 are covariates (with ordering 

𝐶, 𝐴, 𝐿, 𝑍), this version of Diagnostic 1 assesses the balance of covariates 𝐶 across 𝐴, and the 

balance of covariates 𝐶, 𝐿 across 𝑍 within strata of 𝐴. Applied studies have used this point 

exposure metric to describe measured mediator-outcome confounding in mediation analyses.7,8 
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Diagnostic 2: exposure-covariate feedback in the study population 

Assuming 𝑌𝑎𝑧̅̅̅̅ ∐𝐴(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡 − 1), 𝐶̅(𝑡) and 𝑌𝑎𝑧̅̅̅̅ ∐𝑍(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡), 𝐶̅(𝑡), any covariate 

𝐶(𝑡) associated with a prior exposure in �̅�(𝑡) or �̅�(𝑡 − 1) given its past contributes to exposure-

covariate feedback for the average joint effect of �̅� and �̅� on 𝑌. In eAppendix Table 1, we 

present analogues of Diagnostics 2a and 2b for exposure-covariate feedback in censored data. 

The models for exposures 𝐴(𝑡 − 𝑘) and 𝑍(𝑡 − 𝑘) and also censoring 𝑆(𝑡 − 𝑘) used to develop 

the weights (or propensity score strata) must condition on joint exposure history; the model for 

exposure 𝐴(𝑡 − 𝑘) should also include covariates that block backdoor paths between 𝐴(𝑡 − 𝑘) 

and 𝑌; the model for exposure 𝑍(𝑡 − 𝑘) should also include covariates that block backdoor paths 

between 𝑍(𝑡 − 𝑘) and 𝑌. When the models and weights (or strata) are correctly specified, the 

diagnostic will produce two populations: one statistically exogenous for 𝐴(𝑡 − 𝑘), and the other 

statistically exogenous for 𝑍(𝑡 − 𝑘), isolating the associations between covariates and prior 

exposures that motivate g-methods: ones that are causal or arise through unmeasured causes. 

Note that when 𝐴 and 𝑍 are point exposures and 𝐶 and 𝐿 are covariates (with ordering 𝐶, 𝐴, 𝐿, 𝑍), 

this version of Diagnostic 2 would check for balance of 𝐿 across 𝐴 after weighting the population 

by the inverse probability of exposure 𝐴 or within levels of propensity score strata for 𝐴. 

 

Diagnostic 3: residual time-varying confounding in the weighted population 

Assuming 𝑌𝑎𝑧̅̅̅̅ ∐𝐴(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡 − 1), 𝐶̅(𝑡) and 𝑌𝑎𝑧̅̅̅̅ ∐𝑍(𝑡)|�̅�(𝑡 − 1), �̅�(𝑡), 𝐶̅(𝑡), inverse 

probability weights can be used to adjust for confounding of causal contrasts between regimes 

involving two distinct exposures 𝐴(𝑡) and 𝑍(𝑡).6 The weight at each time 𝑡 is the product of the 

cumulative inverse probability weights for 𝐴(𝑡) and 𝑍(𝑡). The weights aim to create a pseudo-

population where, at each time 𝑡, 𝐴(𝑡) and 𝑍(𝑡) are both statistically exogenous with respect to 
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prior covariates within levels of  joint exposure history.9 But the weighted population will suffer 

residual imbalance if, for either exposure, weights or models are misspecified or positivity is 

violated. In eAppendix Table 1, we propose analogues for Diagnostic 3 to assess departures 

from joint statistical exogeneity for 𝐴(𝑡) and 𝑍(𝑡) in the weighted population. Note that when 𝐴 

and 𝑍 are point exposures and 𝐶 and 𝐿 are covariates (with ordering 𝐶, 𝐴, 𝐿, 𝑍), this version of 

Diagnostic 3 assesses the weighted balance of covariates 𝐶 across 𝐴, and the weighted balance of 

covariates 𝐶, 𝐿 across 𝑍 within strata of 𝐴. 

 

Extension to a Special Case of the Parametric G-formula 

Diagnostic 3 can be reframed to examine residual confounding for a special case of the 

parametric g-formula, where models for longitudinal propensity score histories �̅�𝑎(𝑡) replace 

those for covariate histories 𝐶̅(𝑡). Achy-Brou et al10 proved that if 𝑌�̅�∐𝐴(𝑡)|�̅�(𝑡 − 1), 𝐶̅(𝑡) holds 

then 𝑌�̅�∐𝐴(𝑡)|�̅�(𝑡 − 1), �̅�𝑎(𝑡) also holds, implying statistical exogeneity within joint levels of 

exposure and propensity score history i.e.  𝐶̅(𝑡)∐𝐴(𝑡)|�̅�(𝑡 − 1), �̅�𝑎(𝑡). The curse of 

dimensionality might prohibit checking such statistical exogeneity directly, but a model might 

provide progress if �̅�𝑎(𝑡) are coarsened into strata. At a minimum, one can check the unweighted 

balance of all prior covariates across 𝐴(𝑡) within levels of exposure history �̅�(𝑡 − 1) and time-

specific propensity score 𝑒𝑎(𝑡) strata, as proposed by Shinohara,11 since this is a prerequisite. 
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eAppendix Table 1. Time-specific balance metrics for confounding of multivariate time-varying exposures 𝐴(𝑡) and 𝑍(𝑡) by time-varying 
covariates 𝐶(𝑡) among the uncensored 𝑆(𝑡) = 0 

Diagnostic 1: Time-varying confounding i.e. 𝑪(𝒕 − 𝒌) across levels of 𝑨(𝒕) and 𝒁(𝒕) 
(for all 𝑡 ∈ {0, … , 𝑡} and chosen 𝑘 ∈ {0, … , 𝑡} where 1 ≤ 𝑘 ≤ 𝑡′ for 𝐴 and 0 ≤ 𝑘 ≤ 𝑡′ for 𝑍) 

Balance metrics Definitions 

𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′, �̅�(𝑡 − 1), �̅�(𝑡 − 1), 𝑆̅(𝑡) = 0]
− 𝐸[𝐶(𝑡 − 𝑘)|𝐴(𝑡) = 𝑎′′, �̅�(𝑡 − 1), �̅�(𝑡 − 1), 𝑆̅(𝑡) = 0] 

N/A 

𝐸[𝐶(𝑡 − 𝑘)|𝑍(𝑡) = 𝑧′, �̅�(𝑡 − 1), �̅�(𝑡), 𝑆̅(𝑡) = 0]
− 𝐸[𝐶(𝑡 − 𝑘)|𝑍(𝑡) = 𝑧′′, �̅�(𝑡 − 1), �̅�(𝑡), 𝑆̅(𝑡) = 0] 

N/A 

Diagnostic 2: Exposure-covariate feedback i.e. 𝑪(𝒕) across levels of 𝑨(𝒕 − 𝒌) and 𝒁(𝒕 − 𝒌) 

(for all 𝑡 ∈ {0, … , 𝑡} and all 𝑘 ∈ {0, … , 𝑡} where 0 ≤ 𝑘 ≤ 𝑡′ for 𝐴 and 1 ≤ 𝑘 ≤ 𝑡′ for 𝑍) 

Balance metrics  

a. by inverse probability weighting Weight 𝑊𝑎𝑠(𝑡−𝑘) = 𝑊𝑎(𝑡−𝑘) × 𝑊𝑠(𝑡) and 𝑊𝑧𝑠(𝑡−𝑘) = 𝑊𝑧(𝑡−𝑘) × 𝑊𝑠(𝑡)  

𝐸[𝑊𝑎′𝑠(𝑡−𝑘) × 𝐼(𝐴(𝑡 − 𝑘) = 𝑎′) × 𝐶(𝑡)|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝑆̅(𝑡) = 0]

− 𝐸[𝑊𝑎′′𝑠(𝑡−𝑘) × 𝐼(𝐴(𝑡 − 𝑘) = 𝑎′′) × 𝐶(𝑡)|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝑆̅(𝑡) = 0] 

𝑊𝑎(𝑡−𝑘) =
𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘) = 0]

𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘) = 0]
 

𝑊𝑧(𝑡−𝑘) =
𝑃[𝑍(𝑡 − 𝑘) = 𝑧|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘), 𝑆̅(𝑡 − 𝑘) = 0]

𝑃[𝑍(𝑡 − 𝑘) = 𝑧|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘), 𝐶̅(𝑡 − 𝑘), 𝑆̅(𝑡 − 𝑘) = 0]
 

𝑊𝑠(𝑡)

=  ∏
𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0, �̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1)]

𝑘=𝑡

𝑘=0
 

𝐸[𝑊𝑧′𝑠(𝑡−𝑘) × 𝐼(𝑍(𝑡 − 𝑘) = 𝑧′) × 𝐶(𝑡)|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘), 𝑆̅(𝑡) = 0]

− 𝐸[𝑊𝑧′′𝑠(𝑡−𝑘) × 𝐼(𝑍(𝑡 − 𝑘) = 𝑧′′) × 𝐶(𝑡)|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘), 𝑆̅(𝑡) = 0] 

b. by propensity score stratificationb Propensity scores 𝑒𝑎(𝑡−𝑘) and 𝑒𝑧(𝑡−𝑘) and Weight 𝑊𝑠(𝑡) 

𝐸[𝑊𝑎′𝑠(𝑡−𝑘) × 𝐼(𝐴(𝑡 − 𝑘) = 𝑎′) × 𝐶(𝑡)|𝑒𝑎′(𝑡−𝑘), 𝑆̅(𝑡) = 0]

− 𝐸[𝑊𝑎′′𝑠(𝑡−𝑘) × 𝐼(𝐴(𝑡 − 𝑘) = 𝑎′′) × 𝐶(𝑡)|𝑒𝑎′(𝑡−𝑘), 𝑆̅(𝑡) = 0] 

𝑒𝑎′(𝑡−𝑘)

=  𝑃[𝐴(𝑡 − 𝑘) = 𝑎′|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘) = 0] 

𝑒𝑧′(𝑡−𝑘)

=  𝑃[𝑍(𝑡 − 𝑘) = 𝑧′|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘), 𝐶̅(𝑡 − 𝑘), 𝑆̅(𝑡 − 𝑘) = 0] 

𝑊𝑠(𝑡)

=  ∏
𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0]

𝑃[𝑆(𝑡 − 𝑘) = 0|𝑆̅(𝑡 − 𝑘 − 1) = 0, �̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1)]

𝑘=𝑡

𝑘=0
 

𝐸[𝑊𝑧′𝑠(𝑡−𝑘) × 𝐼(𝑍(𝑡 − 𝑘) = 𝑧′) × 𝐶(𝑡)|𝑒𝑧′(𝑡−𝑘), 𝑆̅(𝑡) = 0]

− 𝐸[𝑊𝑧′′𝑠(𝑡−𝑘) × 𝐼(𝑍(𝑡 − 𝑘) = 𝑧′′) × 𝐶(𝑡)|𝑒𝑧′(𝑡−𝑘), 𝑆̅(𝑡) = 0] 

Diagnostic 3: Residual time-varying confounding i.e. 𝑪(𝒕 − 𝒌) across levels of 𝑨(𝒕) and 𝒁(𝒕) 
(for all 𝑡 ∈ {0, … , 𝑡} and chosen 𝑘 ∈ {0, … , 𝑡} where 1 ≤ 𝑘 ≤ 𝑡′ for 𝐴 and 0 ≤ 𝑘 ≤ 𝑡′ for 𝑍) 

Balance metrics Weight  𝑊𝑎𝑧(𝑡) = 𝑊𝑎(𝑡) × 𝑊𝑧(𝑡) 

𝐸[𝑊𝑎′𝑧(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′) × 𝐶(𝑡 − 𝑘)|�̅�(𝑡 − 1), �̅�(𝑡 − 1), 𝑆̅(𝑡) = 0]

− 𝐸[𝑊𝑎′′𝑧(𝑡) × 𝐼(𝐴(𝑡) = 𝑎′′) × 𝐶(𝑡 − 𝑘)|�̅�(𝑡 − 1), �̅�(𝑡 − 1), 𝑆̅(𝑡) = 0] 

𝑊𝑎(𝑡)

= ∏
𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘) = 0]

𝑃[𝐴(𝑡 − 𝑘) = 𝑎|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘 − 1), 𝐶̅(𝑡 − 𝑘 − 1), 𝑆̅(𝑡 − 𝑘) = 0]

𝑘=𝑡

𝑘=0
 

 

𝑊𝑧(𝑡)

= ∏
𝑃[𝑍(𝑡 − 𝑘) = 𝑧|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘), 𝑆̅(𝑡 − 𝑘) = 0]

𝑃[𝑍(𝑡 − 𝑘) = 𝑧|�̅�(𝑡 − 𝑘 − 1), �̅�(𝑡 − 𝑘), 𝐶̅(𝑡 − 𝑘), 𝑆̅(𝑡 − 𝑘) = 0]

𝑘=𝑡

𝑘=0
 

𝐸[𝑊𝑎𝑧′𝑠(𝑡) × 𝐼(𝑍(𝑡) = 𝑧′) × 𝐶(𝑡 − 𝑘)|�̅�(𝑡 − 1), �̅�(𝑡), 𝑆̅(𝑡) = 0]

− 𝐸[𝑊𝑎𝑧′′𝑠(𝑡) × 𝐼(𝑍(𝑡) = 𝑧′′) × 𝐶(𝑡 − 𝑘)|�̅�(𝑡 − 1), �̅�(𝑡), 𝑆̅(𝑡) = 0] 

aThese balance metrics are on the mean difference scale. They can be reported on the standardized mean difference scale by dividing by the (unweighted) pooled standard 

deviation conditional on joint exposure history (for Diagnostics 1, 2a and 3) or propensity-score strata (for Diagnostic 2b). Doing so places metrics for binary and continuous 
covariates on the same scale. 
bFor categorical exposures one needs to jointly condition on the predicted probabilities for each non-referent exposure level 
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Details of Example Simulations 

We simulated a baseline-randomized trial (n=100,000) of a time-varying exposure 𝐴(𝑡) subject 

to confounding over follow-up by a vector of covariates 𝐶(𝑡) = (𝐿(𝑡), 𝑀(𝑡), 𝑁(𝑡), 𝑂(𝑡), 𝑃(𝑡)), 

and also a censoring indicator 𝑆(𝑡) with no censoring at baseline (all realized at times 𝑡 =

(0,1,2) in the order 𝑆(𝑡), 𝐶(𝑡), 𝐴(𝑡) at each time 𝑡). Each covariate in 𝐶(𝑡) was specified as a 

function of its prior realizations and an unmeasured variable 𝑈, and also exposure 𝐴(𝑡) in the 

case of covariates 𝐿(𝑡) and 𝑀(𝑡). For times 𝑡 > 0 exposure 𝐴(𝑡) depended on entire exposure 

and covariate histories �̅�(𝑡 − 1) and 𝐶̅(𝑡) and included the interactions 𝑀(𝑡) × 𝑁(𝑡) and 𝑂(𝑡) ×

𝑃(𝑡). For time 𝑡 = 0 there was no censoring but for times 𝑡 > 0 censoring 𝑆(𝑡) depended on full 

exposure and covariate histories �̅�(𝑡 − 1) and 𝐶̅(𝑡 − 1). We did not simulate an outcome 𝑌 

because each diagnostic in the main text ignores data on the outcome. If we had, though, each 

variable in 𝐶̅(𝑡) would be a common cause of exposures 𝐴(𝑡) and the outcome 𝑌; and each 

variable in �̅�(𝑡 − 1) and 𝐶̅(𝑡 − 1) would be a common cause of censoring indicators 𝑆(𝑡) and 

the outcome 𝑌. 

 

Realizations for all variables 𝑉(𝑡) were simulated as random bernoulli draws with probability 

𝑝𝑣(𝑡). For 𝐴(0), 𝑆(0), and also 𝑈, the probability was specified directly. For all other variables 

we used linear combinations on the log odds scale to calculate 𝑝𝑣(𝑡). This setup allowed for 

encoding of time-varying confounding through immediate and distant covariates, temporally 

indexed by 𝑡 − 𝑘. The logits for each 𝑝𝑣(𝑡) are listed below:  

For U:  ~bernouli(0.4) 

 

logit 𝑝𝑙(𝑡) =  𝛽0𝑙(𝑡) + 𝛽𝑢
𝑙 𝑢 + ∑ 𝐿(𝑡 − 𝑘)𝛽𝑙

𝑙(𝑡 − 𝑘)𝑘=𝑡
𝑘=1 +∑ 𝐴(𝑡 − 𝑘)𝛽𝑎

𝑙 (𝑡 − 𝑘)𝑘=𝑡
𝑘=1   

For L(0): β0=-1.20; βU=0.88;  

For L(1): β0=-1.20; βU=0.88; βL0=0.56 ; βA0=1.10  
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For L(2): β0=-1.20; βU=0.88; βL0=0.14 ; βA0=.41 ; βL1=.56 ; βA1= 1.10 

logit 𝑝𝑚(𝑡) = 𝛽0𝑚(𝑡) + 𝛽𝑢
𝑚𝑢 + ∑ 𝑀(𝑡 − 𝑘)𝛽𝑚

𝑚(𝑡 − 𝑘)𝑘=𝑡
𝑘=1 +∑ 𝐴(𝑡 − 𝑘)𝛽𝑎

𝑚(𝑡 − 𝑘)𝑘=𝑡
𝑘=1   

For M(0): β0=-.29; βU=-1.61;  

For M(1): β0=-.29; βU=-1.61; βM0=.69; βA0=-.43  

For M(2): β0=-.29; βU=-1.61; βM0=.59; βA0=-.29 ; βM1=.69; βA1=-.43  

 

logit 𝑝𝑛(𝑡) = 𝛽0𝑛(𝑡) + 𝛽𝑢
𝑛𝑢 + ∑ 𝑁(𝑡 − 𝑘)𝛽𝑛

𝑛(𝑡 − 𝑘)𝑘=𝑡
𝑘=1   

For N(0): β0=-.69; βU=0.69;  

For N(1): β0=-.69; βU=0.69; βN0=.26;  

For N(2): β0=-.69; βU=0.69; βN0=.18; βN1=.26;  

 

logit 𝑝𝑜(𝑡) = 𝛽0𝑜(𝑡) + 𝛽𝑢
𝑜𝑢 + ∑ 𝑂(𝑡 − 𝑘)𝛽𝑜

𝑜(𝑡 − 𝑘)𝑘=𝑡
𝑘=1   

For O(0): β0=-.51; βU=1.39;  

For O(1): β0=-.51; βU=1.39; βO0=.10 ;  

For O(2): β0=-.51; βU=1.39; βO0=.05; βO1=.10;  

 

logit 𝑝𝑝(𝑡) = 𝛽0𝑝(𝑡) + 𝛽𝑢
𝑝

𝑢 + ∑ 𝑃(𝑡 − 𝑘)𝛽𝑝
𝑝

(𝑡 − 𝑘)𝑘=𝑡
𝑘=1   

For P(0): β0=-.92; βU=-1.61;  

For P(1): β0=-.92; βU=-1.61; βP0=.18;  

For P(2): β0=-.92; βU=-1.61; βP0=.10; βP1=.18; 

 

For A(0): ~bernouli(0.4)  

 

logit 𝑝𝑎(𝑡) = 𝛽0𝑎(𝑡) + ∑ 𝐴(𝑡 − 𝑘)𝛽𝑎
𝑎(𝑡 − 𝑘)𝑘=𝑡

𝑘=1 + ∑ 𝐿(𝑡 − 𝑘)𝛽𝑙
𝑎(𝑡 − 𝑘)𝑘=𝑡

𝑘=0 + ∑ 𝑀(𝑡 − 𝑘)𝛽𝑚
𝑎 (𝑡 − 𝑘)𝑘=𝑡

𝑘=0 +

∑ 𝑁(𝑡 − 𝑘)𝛽𝑛
𝑎(𝑡 − 𝑘)𝑘=𝑡

𝑘=0 + ∑ 𝑂(𝑡 − 𝑘)𝛽𝑜
𝑎(𝑡 − 𝑘)𝑘=𝑡

𝑘=0 + ∑ 𝑃(𝑡 − 𝑘)𝛽𝑝
𝑎(𝑡 − 𝑘)𝑘=𝑡

𝑘=0 + 𝛽𝑚×𝑛
𝑎 (𝑡) × (𝑀(𝑡) × 𝑁(𝑡)) +

𝛽𝑜×𝑝
𝑎 (𝑡) × (𝑂(𝑡) × 𝑃(𝑡))  

 

For A(1): β0=-.92; βA0=.26; βL0= .14; βM0= -.36; βN0=.18; βO0=.10; βP0=.18;  

                            βL1= .83; βM1= -.92; βN1=.26; βO1=.18; βP1=.10; βM1*N1=-.24; βO1*P1=.02 

 

For A(2): β0=-1.20; βA0=.34; βL0= .05; βM0= -.22; βN0=.10; βO0=.05; βP0=.10;  

                    βA1=.59; βL1= .14; βM1= -.36; βN1=.18; βO1=.10; βP1=.05; 

                             βL2= .83; βM2= -.92; βN2=.26; βO2=.18; βP2=.18; βM1*N1=-.24; βO1*P1=.03 

 

logit 𝑝𝑠(𝑡) = 𝛽0𝑠(𝑡) + ∑ 𝐴(𝑡 − 𝑘)𝛽𝑎
𝑠(𝑡 − 𝑘)𝑘=𝑡

𝑘=1 + ∑ 𝐿(𝑡 − 𝑘)𝛽𝑙
𝑠(𝑡 − 𝑘)𝑘=𝑡

𝑘=1 + ∑ 𝑀(𝑡 − 𝑘)𝛽𝑚
𝑠 (𝑡 − 𝑘)𝑘=𝑡

𝑘=1 +

∑ 𝑁(𝑡 − 𝑘)𝛽𝑛
𝑠(𝑡 − 𝑘)𝑘=𝑡

𝑘=1 + ∑ 𝑂(𝑡 − 𝑘)𝛽𝑜
𝑠(𝑡 − 𝑘)𝑘=𝑡

𝑘=1 + ∑ 𝑃(𝑡 − 𝑘)𝛽𝑝
𝑠(𝑡 − 𝑘)𝑘=𝑡

𝑘=1   

 

For S(1): β0=-1.90; βA0=1.69; βL0=.10; βM0=.10; βN0=.10; βO0=-1.61; βP0=-1.61;  

 

For S(2): β0=-1.90; βA0=1.39; βL0=.10; βM0=.10; βN0=.10; βO0=-1.20; βP0=-1.20;  

                    βA1=1.61; βL1=.10; βM1=.10; βN1=.10; βO1=-1.61; βP1=-1.61; 
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To obtain censored data used in Figure 6, eFigure 4, and eFigure 5 we repeated the simulation 

but censored records once 𝑆(𝑡) = 1 was realized, and to obtain data with positivity violations 

used in Figure 5c, 5d, and 5e we set 𝑝𝑎(𝑡) = 1/10,000,000 whenever 𝐿(𝑡) = 0 and 𝑂(𝑡) = 1. 
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eFigures 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
eFigure 1. Directed Acyclic Graphs for each diagnostic in the 
absence of censoring. (a) Diagnostic 1 for assessing 𝐴(𝑡)’s 
association with 𝐶(𝑡). (b) Diagnostic 2a by inverse probability 
weighting to assess the association between 𝐶(𝑡) and 𝐴(𝑡 − 1) 
through their causal relationship and through unmeasured 
common causes (c) Diagnostic 2b by propensity score 
stratification to assess the association between 𝐶(𝑡) and 𝐴(𝑡 − 1) 
through their causal relationship and through unmeasured 
common causes. (d) Diagnostic 3 to assess residual associations 
between 𝐶(𝑡) and 𝐴(𝑡) after applying cumulative inverse 
probability weights for 𝐴(𝑡). Boxes represent evaluating the 
diagnostic within levels of those variables. Bold arrows represent 
associations captured by the diagnostic and (for diagnostics that 
apply weights) dashed arrows represent associations that the 
weights are meant to remove. Note that in (a) only the causal 
path between 𝐶(𝑡) and 𝐴(𝑡) is bolded but many other non-causal 
paths also contribute to Diagnostic 1. 
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eFigure 2. The diagonal of a full trellised plot for Diagnostic 3 
(residual confounding) indexed by exposure measurement 
times. Each subplot evaluates the weighted balance of 
covariates 𝐶 (𝑖. 𝑒. 𝐿, 𝑀, 𝑁, 𝑂, 𝑃) across levels of exposure 𝐴 =
1 versus 𝐴 = 0, both measured at time 𝑡. Each dot represents 
a pattern of exposure history through time 𝑡 − 1. The 
interpretation is similar to the plot for Diagnostic 1. In our 
simulated example there is no measured residual confounding 
of 𝐴(𝑡) by proximal covariates and, although not shown, this 
also was true for more distant covariates. Note that here, all 
observed exposure regimes were examined. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
eFigure 3. Directed Acyclic Graphs for each diagnostic in the presence of censoring. (a) 
Diagnostic 1 for assessing 𝐴(𝑡)’s association with 𝐶(𝑡). (b) Diagnostic 2a by inverse 
probability weighting to assess the association between 𝐶(𝑡) and 𝐴(𝑡 − 1) through 
their causal relationship and through unmeasured common causes (c) Diagnostic 2b by 
propensity score stratification to assess the association between 𝐶(𝑡) and 𝐴(𝑡 − 1) 
through their causal relationship and through unmeasured common causes (d) 
Diagnostic 3 to assess residual associations between 𝐶(𝑡) and 𝐴(𝑡) after applying joint 
cumulative inverse probability weights for 𝐴(𝑡) and 𝑆(𝑡). Boxes represent evaluating 
the diagnostic within levels of those variables. Bold arrows represent associations 
captured by the diagnostic and (for diagnostics that apply weights) dashed arrows 
represent associations that the weights are meant to remove. Note that in (a) several 
other non-bolded paths contribute to Diagnostic 1 for 𝐶(𝑡) and 𝐴(𝑡). 
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eFigure 4. A trellised plot for Diagnostic 2b among the 
uncensored, averaged over propensity score strata and 
time. The panels are indexed by distance between 
exposure and covariate times (columns). Each dot 
represents the average balance of covariates, measured at 
time 𝑡, across levels of prior exposure, measured at times 
𝑡 − 𝑘. The right panel reports the average over balances 
for 𝐶(2) vs. 𝐴(1) and also  𝐶(1) vs. 𝐴(0),  while the left is 
for 𝐶(2) vs. 𝐴(0). In our example, the average balance 
across pools of person-time appear similar, and reflect the 
same patterns described in Figure 4. These plots suggest 
that, on-average, covariates 𝐿(𝑡) and 𝑀(𝑡) contribute to 
exposure-covariate feedback. Note that here, all observed 
exposure regimes among the uncensored were examined. 
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eFigure 5. A trellised plot for Diagnostic 1 examining 
statistical exogeneity for censoring 𝑆(𝑡), after averaging 
over exposure history and also time. Implicitly, the exposure 
history of interest here is among the uncensored i.e. 

�̅�(𝑡 − 1) = �̅�(𝑡 − 1), 𝑆̅(𝑡 − 1) = 0. The panels are indexed 
by distance between censoring and covariate measurement 
times (columns). The right panel reports summary metrics 
that assess the average balance between censoring and 
proximal covariates at one unit of distance (adjusting for 
exposure history): 𝑆(1) vs. 𝐶(0) and 𝑆(2) vs. 𝐶(1). The left 
panel reports the analogous balance metric at two units of 
distance: 𝑆(2) vs. 𝐶(0). Note that balance measures 
comparing 𝑆(0) vs 𝐶(0), 𝑆(1) vs 𝐶(1), and 𝑆(2) vs 𝐶(2) do 
not contribute to this plot because, in the data-generating 
model, censoring 𝑆(𝑡) precedes covariate measurement 
𝐶(𝑡) at every time 𝑡. Note also that here, all exposure 
regimes observed among the uncensored were examined.  
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eFigure 6. A modified trellised plot for Diagnostic 1 under 
the assumption that baseline covariates 𝑂(0) and 𝑃(0) and 
the most recent values of 𝐿(𝑡), 𝑀(𝑡), and 𝑁(𝑡) are 
sufficient to adjust for confounding of each exposure 𝐴(𝑡). 
Even though this assumption is incorrect in our simulated 
example (it may be tenable in real settings), we apply it here 
to demonstrate the plots when investigators assume that a 
subset of the chosen covariate history is sufficient to adjust 
for confounding. Such assumptions are commonly invoked 
in analyses of time-to-event and repeated measures 
outcomes. 
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