
Counterexample 1. Sign of the bias of unmeasured confounding for non-binary
exposures.
Suppose that A is ternary and takes values in the set f0; 1; 2g and suppose that a single binary
variable U confounds the relationship between A and Y so that the causal relationships are given
by the causal directed acyclic graph given in the online eFigure. In this �gure, Y depends A and
U . We consider a case in which the dependence is deterministic so that Y = g(a; u). Suppose
g(a; u) = a+u� 1 we then have that g(A = 1; U = 1) = 1 and g(A = 1; U = 0) = 0 then both A
and U have a positive average monotonic e¤ect on Y . Suppose further A depends on U and some
random term � so that A = f(u; �) and suppose that P (U = 0) = P (U = 1) = 1=2; and that
P (� = 1) = P (� = 2) = P (� = 3) = 1=6 and P (� = 4) = 1=2; and that f(u; � = 1) = 2 for u =
0; 1, f(u; � = 2) = 0 for u = 0; 1, f(U = 1; � = 3) = 2, f(U = 0; � = 3) = 1, f(U = 1; � = 4) = 1
and f(U = 0; � = 4) = 0 so that U has a positive average monotonic e¤ect on A. We then have
P (U = 1jA = 1) = P (U = 1; A = 1)=P (A = 1) = (1=2)(1=2)=f(1=2)(1=2) + (1=6)(1=2)g = 3=4
and so P (U = 0jA = 1) = 1=4. Thus the true causal e¤ect on Y of intervening to set A = 1 will
be given by

P
u E[Y jA = 1; U = u]P (U = u) = (1)(1=2) + (0)(1=2) = 1=2 whereas the estimate

without controlling for U will be given by E[Y jA = 1] =
P

u E[Y jA = 1; U = u]P (U = ujA =
1) = (1)(3=4)+(0)(1=4) = 3=4. In this case the estimate of the causal e¤ect without controlling
for U exceeds the true causal e¤ect on Y of intervening to set A = 1. It can also be veri�ed
in this case that (E[Y jA = 2] � E[Y jA = 1]) � (E[Y2] � E[Y1]) = (5=3 � 3=4) � 1 = �1=12 < 0.
If however the probabilities for � had been P (� = 1) = P (� = 2) = P (� = 4) = 1=6 and
P (� = 3) = 1=2 then we would still have the positive average monotonic e¤ects indicated in the
�gure but the estimate of without controlling for U would then be 1=4 which would be less than
1=2, the true causal e¤ect on Y of intervening to set A = 1. It can be veri�ed in this case that
(E[Y jA = 2]� E[Y jA = 1])� (E[Y2]� E[Y1]) = (9=5� 1=4)� 1 = 11=20 > 0. For intermediate
values of the intervention variable we thus see that the bias when control for confounding is
inadequate may be in either direction even in the presence of positive average monotonic e¤ects.

Counterexample 2. Positive average monotonic effects are insufficient when
the condtional independence condition is not met.
Consider the causal directed acyclic graph given in Figure 5 with signs given to the V �A, the
V �W , the W �A and the W � Y edges to represent positive average monotonic e¤ects i.e. to
indicate that intervening to increase V increases both A and W on average and intervening to
increase W increases A and Y on average. Note that V and W are not independent because V
is a cause of W . Suppose in this example that A is binary and that there is no causal e¤ect of
A on Y so that there is no A� Y edge in Figure 5. Suppose that P (V = 1) = P (V = 0) = 1=2.
Suppose also that Wv=1 = 1 and that P (Wv=0 = 0) = 2=3 and P (Wv=0 = 2) = 1=3 so that
E[W jV = 1] = 1 and E[W jV = 0] = 2=3. Then V has a positive average monotonic e¤ect
on W . Suppose further that P (Av=1;w = 1) = 2=3 and P (Av=1;w = 0) = 1=3 and that
P (Av=0;w = 1) = 1=3 + W=6 and P (Av=0;w = 0) = 2=3 � W=6 so that E[AjV = 1;W ] =
2=3 and E[AjV = 0;W ] = 1=3 +W=6. Thus W has a positive average monotonic e¤ect on
A. Furthermore, since W � 2 it also follows that E[AjV = 0;W ] = 1=3 + W=6 � 2=3 =
E[AjV = 1;W ] and thus V has a positive average monotonic e¤ect on A. Finally suppose that
Yw=0 = Yw=1 = 0 and Yw=2 = 1 so that E[Y jW = 0] = E[Y jW = 1] = 0 and E[Y jW = 2] = 1
from which it follows that W has a positive average monotonic e¤ect on Y . We thus have
the signed edges given in Figure 5. Clearly in this example E[Ya=1] � E[Ya=0] = 0 since A
has no causal e¤ect on Y . However, we can calculate the following probabilities: we have
P (A = 1jV = 1) = P (A = 1jW = 1; V = 1) = 2=3 and P (A = 1jV = 0) = P (A = 1jV =
0;W = 0)P (W = 0)+P (A = 1jV = 0;W = 2)P (W = 2) = (1=3)(2=3)+(1=3+2=6)(1=3) = 4=9.
From this it follows that P (A = 1) = P (A = 1jV = 0)P (V = 0) + P (A = 1jV = 1)P (V = 1) =
(4=9)(1=2)+(2=3)(1=2) = 5=9. Also, P (V = 1jA = 1) = P (A = 1jV = 1)P (V = 1)=P (A = 1) =
(2=3)(1=2)=(5=9) = 3=5 and P (V = 1jA = 0) = P (A = 1jV = 0)P (V = 0)=P (A = 0) =
(4=9)(1=2)=(5=9) = 2=5. We can then calculate E[Y jA = 1] =

P
v E[Y jA = 1; V = v]P (V =

vjA = 1) =
P

v P (W = 2jV = v)P (V = vjA = 1) = (1=3)(2=5) + (0)(3=5) = 2=15 and
E[Y jA = 0] =

P
v E[Y jA = 0; V = v]P (V = vjA = 0) =

P
v P (W = 2jV = v)P (V = vjA =

0) = (1=3)(3=5)+ (0)(2=5) = 3=15. From this it follows that E[Y jA = 1]�E[Y jA = 0] = �1=15
is an underestimate of E[Ya=1] � E[Ya=0] = 0. If, on the other hand we had that Wv=1 = 2
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and that P (Wv=0 = 0) = 2=3 and P (Wv=0 = 2jV = 0) = 1=3 so that E[W jV = 1] = 2
and E[W jV = 0] = 2=3 we would again have the signed edges given in Figure 5 but in this
case E[Y jA = 1] =

P
v E[Y jA = 1; V = v]P (V = vjA = 1) =

P
v P (W = 2jV = v)P (V =

vjA = 1) = (1=3)(2=5) + (1)(3=5) = 11=15 and E[Y jA = 0] =
P

v E[Y jA = 0; V = v]P (V =
vjA = 0) =

P
v P (W = 2jV = v)P (V = vjA = 0) = (1=3)(3=5) + (1)(2=5) = 9=15 and thus

E[Y jA = 1] � E[Y jA = 0] = 2=15 would be an overestimate of E[Ya=1] � E[Ya=0] = 0. We
have shown that if the conditional independence condition of Result 1 does not hold then the
resultant bias to the causal risk di¤erence can be of either sign.

Counterexample 3. Positive average monotonic effects are not transitive.
Consider the causal directed acyclic graph given in Figure 6 with signs given to the A�B and
the B � C edges to represent positive average monotonic e¤ects. Suppose that P (A = 1) =
P (A = 0) = 1=2. Suppose also that if A = 1 then P (B = 1) = 1 and that if A = 0 then
P (B = 0) = 2=3 and P (B = 2) = 1=3 so that E[Ba=1] = 1 and E[Ba=0] = 2=3. Finally suppose
that if B = 2 then C = 1 and if B = 0 or B = 1 then C = 0. We then have that increasing
A increases B on average and increasing B increases C on average but in this example, when
A = 1 then B = 1 and C = 0 but when A = 0 then P (B = 0) = 2=3 and P (B = 2) = 1=3
and so P (C = 0) = 2=3 and P (C = 1) = 1=3. Thus E[Ca=1] = 0 but E[Ca=0] = 1=3. Thus
intervening to increase A decreases C on average.
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