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Introduction

As described in the paper, as a preliminary analysis, we treated the three consecutive days

of actiwatch sleep duration data as a stratified simple random sample of the past thirty days

with equal day-to-day variance for weekdays and weekends. Two potentially serious concerns

with this approach are the following: (i) sleep duration measures on these three days, be-

cause they occur consecutively, might be autocorrelated, and (ii) the daily-variance in sleep

duration might be different on the weekends than on the weekdays. Positive autocorrelation

and larger variance on the weekends will mean that our initial error variance estimates (in

using the 3-day weighted average as an estimate of the true 30-day weighted average) are

biased low and the corresponding reliability estimates (for the 3-day relative to the averages)

are biased high. In the measurement error regression models relating subjective to objective

measures, this would then mean that slopes, correlations and variance explained between

the subjective and objective measures are under-corrected for measurement error in the

objective measure, and hence biased low as well.

Negative autocorrelation is also possible; e.g., one might compensate for little sleep on one

night by increased sleep in one or two of the following nights. Negative autocorrelation would
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mean that our reliability estimates in the paper are biased low and hence that the strength

of association between subjective and objective measures is biased high. Considering that

the “conservative estimates” in our paper are those that produce the highest correlation

between subjective and objective measures and the lowest bias in the subjective measures

relative to the objective ones, we will concentrate here primarily on the problem of positive

autocorrelation and increased weekend variance.

Fortunately, each participant supplied two series of three-day sequences of sleep measures,

one year apart. This second year of data permits us to get a handle on the degree to which

these two problems could be affecting our results, and to estimate correction factors for

the estimated error variance from our initial estimates due to autocorrelation and different

weekend than weekday variance.

Procedure

We fitted a mixed effects linear regression model (Laird and Ware, 1992) of the following

form to both years’ data:

Yijt = β1I(t = 1, 2) + β2I(t = 3) + Ui1I(t = 1, 2) + Ui2I(t = 3) + εijt . (1)

Here i indexes subject, j indexes year (j = 1, 2), t indexes day of measurement (t = 1, 2, 3),

weekdays nights are t = 1, 2, the weekend night is t = 3, I(·) is an indicator variable, and Yijt

is the actiwatch sleep duration measure for subject i, year j and day t. The fixed parameters

β1 and β2 represent the population average sleep duration for weekday and weekend nights

across all subjects and both years. The random effects Ui = (Ui1, Ui2)
′ represent subject-
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specific deviations from this average, again averaged over the two years. The long-term

average weekday sleep duration for subject i is therefore given by β1 + Ui1, while that for

weekends is β2 + Ui2. We assume that Ui is bivariate normally distributed across subjects

with mean zero and variance-covariance matrix cov(Ui).

We also assume that, given Ui, the two years’ data on a given subject are uncorrelated, i.e.,

cov(εijt, εij′t′) = 0 for j 6= j′. This is reasonable, as the role of Ui in the model is precisely to

capture long-range correlation among observations on the same subject. Then

Σ =

 Σ1 0

0 Σ2

 ,

where Σ1 = cov(εi1), Σ2 = cov(εi2), and εij = (εij1, εij2, εij3)
′, j = 1, 2. This model permits

identification and estimation of cov(Ui) and of the variance-covariance matrix Σ = cov(εi),

where εi = (ε′i1, ε
′
i2)
′. As the data used in the 30-day subjective-objective analyses were from

the first year of the study, a key quantity of interest is Σ1.

Fitting model (1) to the entire data set (not stratified by any demographic variables), we

obtained

Σ̂1 =



1.3361 0.1294 0.1794

0.1294 1.3258 0.02427

0.1794 0.02427 2.2631


,
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or, in correlation form, 

1.0000 0.09725 0.1031

0.09725 1.0000 0.01401

0.1031 0.01401 1.0000


.

Note importantly that the correlation from day to day is relatively small, that the variance

across the two weekdays is almost constant, and that the variance on the weekend is consid-

erably larger than that on the weekdays. To proceed, we averaged the nearly-equal variances

on the two weekdays to obtain

Σ̂1 =



1.3310 0.1294 0.1794

0.1294 1.3310 0.02427

0.1794 0.02427 2.2631


.

Suppose as a working model, we write

εijt = Vij1I(t = 1, 2) + Vij2I(t = 3) + Zijt (2)

where the random effects Vij = (Vij1, Vij2)
′ represent month-specific deviations from subject

i’s average sleep duration on weekdays and weekends, and the Zijt’s are daily deviations from

that monthly average. Let G = cov(Vij) and R1 = cov(Zi1) where Zi1 = (Zi11, Zi12, Zi13)
′.

The variances and covariances R1 of the Zijt’s are the relevant quantities in determining the

error variance of the three-day weighted averages as estimates of the thirty day weighted

averages for each subject. This is because, under model (1)-(2), the true thirty day weighted
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average (for subject i, year 1) is

w1(Yi11 − Zi11) + w2(Yi12 − Zi12) + w3(Yi13 − Zi13) ,

whereas what is estimated by the 3-day average is

w1Yi11 + w2Yi12 + w3Yi13 .

The error variance of this estimate is

var(w1Zi11 + w2Zi12 + w3Zi13) = w′R1w ,

where w = (w1, w2, w3)
′. The weights are w1 = w2 = 5/14 and w3 = 4/14, corresponding

to our three-day weighted average being a stratified random sample of two weekdays and

one weekend night. Note that under model (1)-(2), the total variance of weighted averages

(w1Yi11 + w2Yi12 + w3Yi13) is w′Σ1w. Under our fitted model, this is estimated as w′Σ̂1w =

1.355 h2, which compares very well with the simple sample variance of the weighted average

sleep duration (1.341 h2).

Of course, R1 is not identifiable, but with the constraints that both G and R1 must be

positive definite covariance matrices, we can learn something about the range of possible

values of w′R1w given estimate Σ̂1. Specifically, note that

R1 = Σ1 −XGX ′, (3)
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where

X =



1 0

1 0

0 1


.

(The rows of X correspond to days t = 1, 2, 3, the two columns being indicator functions for

weekday or weekend nights.)

Range of possible values for estimated error variance

Using (3), we maximized error variance w′R1w over all possible values of G holding Σ̂1

constant. The maximum occurred at G = 0, in which case Ri = Σ̂1. This corresponds

to the situation where there is no within-subject variability in sleep duration on the scale

of month-to-month or longer. Rather, variability for each subject is more on the scale of

week-to-week and hence shows up as positive autocorrelation between observations made on

consecutive days. Also, in this situation, the increased variability on the weekend nights is

not due to month-to-month variability in weekend sleep duration, but rather operates on a

smaller time scale. This situation represents the worst possible scenario with respect to error

variance due to concerns (i) and (ii) outlined in the first paragraph. The estimated error

variance in this situation is 0.599 h2, as compared to an initial estimate of 0.402 h2 assuming

no auto-correlation and equal weekend and weekday variance, representing an underestimate

of about 33% in error variance.

It is also possible that the month-to-month variability in Vij is such that the Zijt’s are

uncorrelated or even negatively correlated and that the increased variability on the weekend
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nights is accounted for by month to month variability in Vij. It turns out to be more

technically difficult to minimize w′R1w over all G than it is to maximize it, but we can select

a few key values of G to given a sense of how things might work out. In the first of these,

we choose G so that the the daily variance is constant across all three days and the first and

second and first and third days are uncorrelated. This yields

R1 =



1.2016 0.0000 0.0000

0.0000 1.2016 −0.1551

0.0000 −0.1551 1.2016



with an error variance of w′R1w = 0.373 h2. Note that this yields a small negative auto-

correlation between nights two and three. In the second one, we choose G to render the

daily variance even smaller, and allow the correlation between nights one and two to also be

negative. This yields

R1 =



1.1516 −0.0500 0.0000

−0.0500 1.1516 −0.1551

0.0000 −0.1551 1.1516


with an error variance of w′R1w = 0.343 h2. In this situation, our initial estimates would be

biased high by about 17%.

Estimated error variance under inflated weekend variance

We now turn to the more restricted setting wherein there is within-subject variability in

sleep duration on the month-to-month scale which is similar for weekdays and weekends,

and so does not account for the observed increased weekend variance in Σ̂1. This increased
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weekend variance therefore must figure into the error variance of the 3-day average.

We first consider the setting where the month-to-month variability accounts for the auto-

correlation in Σ̂1, so that there is no autocorrelation present in the 3-day average as an

estimate of the 30-day average. This yields

R1 =



1.202 0.000 0.078

0.000 1.202 −0.077

0.078 −0.077 2.134



(the covariances between nights 1 and 3 and nights 2 and 3 cancel in the error variance

calculation). The error variance in this situation is estimated as w′R1w = 0.481 h2, which

would mean that our initial estimates under no autocorrelation and equal weekday and

weekend variance would be biased low by about 16%.

Now suppose that positive autocorrelation exists in the 3-day average as an estimate of the

30-day average. The most extreme case for this in terms of error variance is simply that

where G = 0 and R1 = Σ̂1. We have already seen that the estimated error variance in this

situation is 0.599 h2, 25% greater than the case of no autocorrelation.

Finally, consider the case of negative autocorrelation in the 3-day average as an estimate

of the 30-day average. How strongly can this effect the error variance? Based only on

the estimated value of Σ1, G could be chosen such that the resulting R1 contains rather

large negative autocorrelation. A reasonable choice specifies G as accounting for all positive

autocorrelation, in particular, the largest autocorrelation in the observed Σ̂, which is that
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between day 1 and day 3. This yields

R1 =



1.1516 −0.05000 0.00000

−0.0500 1.15155 −0.15513

0.0000 −0.15513 2.08370


.

The error variance in this setting is 0.419 h2, 13% less than the case of no autocorrelation.

Sensitivity analyses

We first ran our measurement error models using our nominal initial error variance estimate

of 0.402 h2. As sensitivity analyses for how the unknown error variance could be affecting our

results, we reran these models inflating our initial estimate (i) by a factor of (0.599/0.402) =

1.49 to account for a potential underestimate due to ignoring positive autocorrelation and

increased weekend variance, (ii) by a factor of (0.481/0.402) = 1.20 to account for a potential

underestimate due to increased weekend variance only, (iii) by a factor of (0.419/0.402) =

1.04 to account for a potential underestimate due to ignoring increased weekend variance,

even assuming negative autocorrelation. We also (iv) deflated the error variance by a factor of

(0.343/0.402) = 0.85 to account for a potential overestimate due to negative autocorrelation.

The results are compared in the following table. (numbers in parentheses are 95% bootstrap

BCa confidence intervals, 2000 replications). The fourth line is what we ultimately reported

as the first entry in Table 2 of the paper; the third and fifth lines are the sensitivity analyses

reported in the paper.
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Err. Var. Self-reported vs.

Model Inflation Reliab. Measured Sleep Slope Correlation

NoWV, NegAC 0.85 0.74 0.80 (0.72, 0.88) 0.48 (0.35, 0.61) 0.43 (0.34,0.52)

NoWV, NoAC∗ 1.0 0.70 0.80 (0.72, 0.88) 0.51 (0.37, 0.66) 0.45 (0.35, 0.54)

WV, NegAC∗∗∗ 1.04 0.69 0.80 (0.71, 0.88) 0.52 (0.37, 0.67) 0.45 (0.35, 0.55)

WV, NoAC∗∗ 1.20 0.64 0.80 (0.71, 0.88) 0.56 (0.39, 0.73) 0.47 (0.36, 0.57)

WV, PosAC∗∗∗ 1.49 0.55 0.79 (0.70, 0.88) 0.65 (0.42, 0.88) 0.50 (0.38, 0.62)

(No)WV=(No) excess weekend variability.

Neg/No/PosAC=Negative/No/Positive auto-correlation.

∗These results are obtained under our initial analysis.

∗∗These results are what is reported in Table 2 of the paper.

∗∗∗These results are reported in the paper as sensitivity analyses.

Conclusion

Because one could make an argument that the auto-correlation from night-to-night is as

likely to be negative as it is to be positive, we have chosen to maintain the assumption of

no autocorrelation for our analyses for the revised paper. We do believe, however, that the

additional weekend variance observed in Σ̂1 should be accounted for in our analyses. In

the final version of the paper, therefore, we have inflated the nominal estimate of the error

variance in the 3-day average relative to the 30-day average by a factor of (0.481/0.402) =

1.20 for our main analyses and for all stratified analyses presented in Table 2. (Note: We did

not re-estimate the variance-covariance matrix Σ̂1 for each stratum, as this would have been

computationally quite cumbersome.) For the primary, unstratified analysis in the paper, we

10



also report as a sensitivity analyses, the results under negative and positive autocorrelation

(error variance inflation by 1.04 and 1.49), again assuming that the additional weekend

variance in Σ̂1 should figure into the error variance calculation.
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