
eAppendix 

In this appendix, we provide a concise introduction to partial least squares (PLS) regression and its 

relation to ordinary least squares (OLS) and principal component analysis (PCA).  The citation 

numbers correspond to those in the reference list for the main paper. 

1. Relationships between PLS, PCA and OLS regression 

Partial least squares (PLS) analysis17-21 can be viewed as an extension of principal component 

analysis (PCA)26,27 and is a member of the family of continuum regression, which includes PCA 

and OLS.28  From a statistical viewpoint, OLS regression is to maximise the covariance between the 

n × 1 outcome variable vector y and the vector of the linear combination of covariates Xβ , where X 

is the n × p matrix containing p covariates and β is the p × 1 vector of OLS regression coefficients.  

PCA seeks to maximise the variance of principal component t1 = Xc1 under the constraint for the 

modulus of the p × 1 vector c1 to be unity.  Successive principal components, t2 = Xc2, t3 = Xc3 etc., 

are obtained by repeating the procedure on the residuals from the preceding step, and all new 

principal components are uncorrelated with preceding ones.  The extraction of principal 

components uses a mathematical technique known, in matrix algebra, as singular value 

decomposition, which requires the calculation of eigenvectors and eigenvalues.22,26  For p variables, 

x1, x2,…, xp, each principal component, pci, is a weighted composite of p covariates: 

pipiii xwxwxwpc +++= ...2211 ,    [Eq.1] 

where wij, j=1 to p, is the weight for covariate xp in principle component pci.  For six variables 

without perfect multicollinearity, six principal components, which are weighted combinations of the 

original six covariates, can be extracted.   Note that in the construction of principal components, 

variables x1, x2,…, xp are usually in standardised form, i.e. they have zero means and standard 

deviations equal to 1.  The extracted principal components are ordered by the amount of total 

variance across the covariates that is explained by the components, i.e. pc1 explains more variance 



than pc2, and pc2 explains more than pc3, etc.   The first few principal components that explain most 

of the covariate variance are used as revised covariates for OLS regression.  If all six principal 

components were selected as covariates, the results, such as regression coefficients and R2, from 

PCA regression would be equivalent to those from OLS regression.  When the outcome is only 

regressed on the first few components, results will be different and this is why PCA (and also PLS 

and ridge regression) is a shrinkage method (although the PCA or PLS regression coefficients do 

not necessarily “shrink”).22  Note that the extraction of principal components does not take into 

account the relationship of the outcome with any of the covariates.  In extreme cases, whilst the first 

few principal components might explain most of the variance amongst the covariates, they may 

have very small associations with the outcome.27 

In contrast to PCA, PLS regression seeks to select components that maximise the covariance matrix 

between y and t.  PLS extracts components that are also weighted combinations of the original p 

variables, but also takes into account their correlations with the outcome.  In other words, in PCA, 

the extraction of components is independent of the outcome variables, whereas in PLS, components 

are extracted for their associations with the outcome.  The extraction of PLS components is under 

the same constraints as with PCA: (1) the sum of the squared weights is unity and (2) the 

correlations amongst all components are zero.22  When there are six covariates without perfect 

multicollinearity, six PLS components can be extracted (and they are independent of each other).  

PLS components are ordered according to the amount of variance in the outcome that is explained, 

i.e. the first PLS component has a higher correlation with the outcome than the second PLS 

component, and the second has a higher correlation than the third, etc.  In PLS, the first PLS 

component explains most of the outcome variance as shown in our study.  For p variables, x1, x2,…, 

xp, each PLS component, plsci, is also a weighted composite of p covariates: 

pipiii xwxwxwplsc +++= ...2211 .    [Eq.2] 



The PLS regression coefficient for each x is derived from the sum of products of the regression 

coefficients for PLS components and the weight for each x.  For example, when the outcome y is 

regressed on the first two PLS components, the equation is given as: 

εββ ++= 2211 ** plscplscy        

εββ ++++++++= )...()...( 2222121212121111 pppp xwxwxwxwxwxw ,  

where β1 and β2 are the regression coefficients for PLS component 1 and 2, respectively, and ε is the 

residual error term.  The PLS regression coefficient for x1 is therefore 212111 ww ββ + . 

If all six PLS components are used as new covariates, the results from the PLS regression, such as 

regression coefficients and R2, are equivalent to those from PCA regression and OLS regression.  

The advantage of PLS over PCA is that the first few components explain most of the covariance 

between the outcome and covariates, and as a result, the caveat of PCA regression previously 

discussed does not occur in PLS regression.  PLS can be viewed as a middle ground between OLS 

regression and PCA regression.28  When covariates are highly correlated, results from PLS will be 

closer to those from PCA regression, and when covariates are less correlated, results from PLS will 

be closer to those from OLS regression.   

2. PLS and perfect collinearity 

It is not feasible to estimate the ‘independent’ contributions of birth size, growth in body size at 

different stages of the lifecourse, and current body size simultaneously using OLS multiple 

regression, because of perfect collinearity amongst these three variables caused by their 

mathematical relationship.  From a statistical viewpoint, this is because these three variables only 

have two degrees of freedom, i.e. their variable space is only 2-dimensional rather than 3-

dimensional.  As a result, it is not feasible to undertake OLS regression analysis, as the estimation 

of OLS regression coefficients involves the inversion of data matrix that contain three variables, 



and a matrix with insufficient degrees of freedom (in mathematical jargon the rank of the matrix) is 

not invertible.  However, this is not a problem for either PCA or PLS regression.   

Suppose we wish to estimate the effects of zwt0, zwt19 and zwt19–0, for instance.  Since these three 

covariates are perfectly collinear, at least one of them has to be omitted for OLS regression as 

shown in Table 2 in the main paper.  In PCA and PLS, perfect collinearity amongst the three 

variables means that only two components can be extracted from the three covariates, but each of 

the two components is a combination of the original three variables.  The first PLS component will 

have the largest covariance with the outcome, whereas the first PCA component has the largest 

explained variance amongst the covariates.  As we show in the main paper, the PLS model with one 

component is a good approximation to the model with two components.  It is important to note that 

results from PCA and PLS regression differ from those for OLS regression because regression 

coefficients for all three original variables can be estimated in PCA and PLS, whilst only regression 

coefficients for two out of the three variables can be estimated in OLS regression.  Although there 

are mathematical relationships amongst the three variables, it is not possible to derive the PLS 

regression coefficients for the three variables from the two OLS regression coefficients.  In contrast, 

once we obtain the three regression coefficients from PLS regression with two components, it is 

possible to derive the OLS regression coefficients for models with any two of the three variables, as 

the projection vector of the outcome variable is the same in OLS, PCA and PLS regression.  The 

weights for each covariate in PLS components can be viewed as their share of the explained 

variance in the outcome, so even if the covariates are perfectly collinear, PLS is still able to 

partition the variance shares according to the correlations amongst the covariates and outcome.  In 

other words, whilst OLS regression is unable to disentangle the individual contribution to the 

outcome of birth size, growth and current size, PLS can unravel their individual contributions 

according to the correlations amongst them and the outcome, by distributing the overall contribution 

of three variables.  



From a statistical viewpoint , a model with three perfectly collinear variables and one with only two 

variables has a different variable space in the estimation of PCA and PLS regression coefficients.  

Let us use a simple example for illustration: suppose we have two standardised variables x1 and x2 

and they are orthogonal, i.e. the correlation between them is zero, and the covariance matrix for x1 

and x2 is: 
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For these two orthogonal variables, the density plot for their joint distribution is a circle with radius 

= 1.  The radius has the same length in every direction.  Now we include a third variable x3 = x1 + x2 

in the analysis, and as they are all standardised variables, their covariance matrix is: 
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The density plot for their joint distribution is now an ellipse: the long axis is in the same direction as 

x3 with a length of √2 (i.e. its variance is 2), and the second component (which has to be 

orthogonal to x3) will be in the same direction as  x1 – x2 with a length of 1.  PLS analysis is first to 

find a vector in this variable space that has the greatest covariance with the outcome, and then to 

find the second vector, which is orthogonal to the first.  As the variable space is different for the 

two matrices, the results from PLS analysis will be different.  Mathematically speaking, this is 

because the results of singular value decomposition (SVD) on a 2 by 2 matrix (x1 and x2) are 

different from those of SVD on a 3 by 3 matrix (x1, x2, and x3) with rank = 2, i.e. the density 

functions for the joint distribution are different.  This example illustrates why and how PLS can 

estimate the individual contribution of the three prefect collinear variables. To gain more detail 

about how PLS works, the most intuitive way to explain this difference is to use vector geometry as 

shown in a paper by Phatak and de Jong.22   



eTable 1: Results from partial least squares regression with 6 original body weight z-scores for 960 
boys. The outcome variables are systolic (SBP) or diastolic blood pressure (DBP) at age 19 
yr. The number of components means how many PLS components were extracted as 
covariates in the regression analysis. CumR2 is the cumulative R2 explained by the number 
of components. 

 
 

Components 1 2 6 
SBP Coefficient 95%CI Coefficient 95%CI Coefficient 95%CI 
zwt0 -0.01 (-0.22 to 0.18) -0.81 (-1.36 to -0.23) -0.55 (-1.15 to 0.11) 
zwt1 0.26 (0.05 to 0.42) -0.64 (-1.13 to -0.23) -0.76 (-2.01 to 0.38) 
zwt2 0.37 (0.20 to 0.53) -0.30 (-0.73 to 0.11) 0.18 (-1.11 to 1.39) 
zwt8 0.73 (0.56 to 0.90) 0.65 (0.22 to 0.94) -0.56 (-2.18 to 0.62) 
zwt15 0.88 (0.68 to 1.11) 1.32 (0.91 to 1.75) 0.01 (-1.44 to 1.33) 
zwt19 1.06 (0.85 to 1.34) 2.10 (1.65 to 2.68) 4.19 (2.90 to 5.52) 

CumR2 7.60% 10.40% 11.56% 

    DBP Coef 95%CI Coef 95%CI Coef 95%CI 
zwt0 -0.02 (-0.17 to 0.14) -0.75 (-1.22 to -0.30) -0.72 (-1.27 to -0.18) 
zwt1 0.33 (0.20 to 0.47) -0.11 (-0.52 to 0.23) -0.21 (-1.23 to 0.77) 
zwt2 0.41 (0.28 to 0.56) 0.13 (-0.26 to 0.47) 0.45 (-0.62 to 1.55) 
zwt8 0.62 (0.46 to 0.82) 0.66 (0.28 to 1.04) 0.11 (-1.15 to 1.46) 
zwt15 0.67 (0.51 to 0.85) 0.95 (0.63 to 1.28) 0.35 (-0.80 to 1.48) 
zwt19 0.74 (0.58 to 0.92) 1.27 (0.94 to 1.68) 2.20 (0.97 to 3.27) 

CumR2 6.66% 8.03% 8.33% 
 

 



eTable 2: Results from partial least squares regression with 6 original body weight z-scores and 15 changes in weight z-scores for 960 boys. The 
outcome variables are systolic (SBP) or diastolic blood pressure (DBP) at age 19 yr. The number of components means how many PLS 
components were extracted as covariates in the regression analysis. CumR2 is the cumulative R2 explained by the number of components. 

 

 
  SBP       DBP 

 Components 1 2 6   1 2 6 

 
Coef 95%CI Coef 95%CI Coef 95%CI 

 
Coef 95%CI Coef 95%CI Coef 95%CI 

zwt0 0.00 (-0.10 to 0.10) 0.25 (0.04 to 0.48) 0.23 (0.03 to 0.46) 
 

-0.01 (-0.09 to 0.08) 0.13 (-0.03 to 0.33) 0.16 (-0.01 to 0.35) 

zwt1–0 0.11 (0.01 to 0.20) 0.07 (-0.10 to 0.22) 0.04 (-0.12 to 0.19) 
 

0.16 (0.08 to 0.24) 0.16 (0.03 to 0.28) 0.13 (-0.01 to 0.26) 

zwt1 0.13 (0.02 to 0.23) 0.33 (0.15 to 0.49) 0.28 (0.09 to 0.45) 
 

0.18 (0.10 to 0.28) 0.32 (0.19 to 0.46) 0.30 (0.15 to 0.45) 

zwt2–1 0.18 (0.00 to 0.37) 0.23 (-0.29 to 0.75) 0.28 (-0.37 to 0.89) 
 

0.14 (-0.02 to 0.31) 0.16 (-0.21 to 0.53) 0.19 (-0.34 to 0.73) 

zwt2–0 0.15 (0.06 to 0.23) 0.12 (-0.03 to 0.26) 0.11 (-0.03 to 0.24) 
 

0.18 (0.12 to 0.25) 0.19 (0.08 to 0.29) 0.17 (0.04 to 0.27) 

zwt2 0.18 (0.08 to 0.29) 0.40 (0.22 to 0.56) 0.36 (0.19 to 0.54) 
 

0.22 (0.14 to 0.32) 0.36 (0.23 to 0.51) 0.36 (0.22 to 0.52) 

zwt8–2 0.24 (0.10 to 0.35) 0.03 (-0.22 to 0.24) 0.02 (-0.28 to 0.27) 
 

0.15 (0.04 to 0.26) 0.03 (-0.18 to 0.23) 0.02 (-0.24 to 0.29) 

zwt8–1 0.28 (0.17 to 0.37) 0.12 (-0.12 to 0.30) 0.13 (-0.11 to 0.34) 
 

0.18 (0.08 to 0.28) 0.09 (-0.09 to 0.26) 0.09 (-0.10 to 0.31) 

zwt8–0 0.24 (0.17 to 0.31) 0.12 (0.00 to 0.24) 0.11 (-0.01 to 0.22) 
 

0.23 (0.16 to 0.31) 0.19 (0.07 to 0.30) 0.15 (0.04 to 0.28) 

zwt8 0.36 (0.27 to 0.47) 0.44 (0.27 to 0.60) 0.39 (0.23 to 0.56) 
 

0.33 (0.23 to 0.47) 0.40 (0.25 to 0.61) 0.39 (0.23 to 0.62) 

zwt15–8 0.25 (0.03 to 0.50) 0.29 (-0.13 to 0.77) 0.26 (-0.22 to 0.81) 
 

0.11 (-0.06 to 0.30) 0.10 (-0.24 to 0.46) 0.12 (-0.33 to 0.55) 

zwt15–2 0.27 (0.17 to 0.36) 0.13 (-0.04 to 0.28) 0.11 (-0.05 to 0.27) 
 

0.15 (0.06 to 0.22) 0.06 (-0.08 to 0.17) 0.06 (-0.10 to 0.20) 

zwt15–1 0.30 (0.21 to 0.38) 0.19 (0.05 to 0.33) 0.19 (0.03 to 0.34) 
 

0.18 (0.10 to 0.26) 0.11 (-0.01 to 0.22) 0.11 (-0.02 to 0.26) 

zwt15–0 0.28 (0.21 to 0.36) 0.18 (0.06 to 0.30) 0.16 (0.04 to 0.27) 
 

0.24 (0.18 to 0.31) 0.2 (0.10 to 0.28) 0.17 (0.08 to 0.26) 



zwt15 0.43 (0.33 to 0.56) 0.53 (0.36 to 0.72) 0.47 (0.30 to 0.67) 
 

0.36 (0.28 to 0.47) 0.43 (0.30 to 0.57) 0.42 (0.27 to 0.57) 

zwt19–15 0.36 (0.15 to 0.59) 0.97 (0.38 to 1.56) 1.19 (0.50 to 1.88) 
 

0.16 (-0.04 to 0.37) 0.35 (-0.06 to 0.85) 0.53 (-0.08 to 1.10) 

zwt19–8 0.43 (0.22 to 0.66) 0.85 (0.48 to 1.30) 0.96 (0.59 to 1.43) 
 

0.19 (0.02 to 0.36) 0.31 (-0.03 to 0.65) 0.43 (0.00 to 0.79) 

zwt19–2 0.35 (0.25 to 0.46) 0.39 (0.22 to 0.59) 0.44 (0.25 to 0.62) 
 

0.19 (0.10 to 0.26) 0.16 (0.04 to 0.28) 0.20 (0.04 to 0.34) 

zwt19–1 0.37 (0.28 to 0.47) 0.42 (0.28 to 0.58) 0.48 (0.33 to 0.62) 
 

0.21 (0.13 to 0.29) 0.19 (0.09 to 0.30) 0.24 (0.10 to 0.36) 

zwt19–0 0.34 (0.26 to 0.43) 0.34 (0.23 to 0.46) 0.36 (0.24 to 0.48) 
 

0.26 (0.20 to 0.34) 0.25 (0.16 to 0.34) 0.26 (0.16 to 0.35) 

zwt19 0.52 (0.42 to 0.67) 0.77 (0.59 to 0.97) 0.78 (0.59 to 0.98) 
 

0.40 (0.30 to 0.51) 0.51 (0.38 to 0.68) 0.55 (0.40 to 0.71) 

CumR2 10.23% 11.47% 11.57%   7.71% 8.24% 8.33% 
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