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Derivation of the formula expressing excess mortality rates as a function of 
incidence and prevalence  
The goal was to derive an equation expressing excess mortality rates, defined as the 

difference in mortality between persons with and without the disease, as a function of 

incidence and prevalence. The first step is to describe the survival over time of a cohort 

consisting of both persons with and without a particular chronic disease:  
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)(tS   Probability of being alive at time t 

),( dtS   Probability of being alive at time t and having disease d  

),( dtS  Probability of being alive at time t without having disease d 

),( dtm  Mortality probability for those with disease d at time t  

),( dtm  Mortality probability for those without disease d at time t 

 

Equation (1) simply states that the change in the probability of survival over time is the 

negative of the sum of the probabilities of dying for those with and those without the disease. 

If we now focus on the part of the cohort with the disease we can state the following: 
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)(ti   incidence rate for  disease d at time t 

 

It should be noted that the incidence rate in accordance with the data model equation (2) 

refers to the total population, not to the disease-free population. It may seem illogical that 

incidence refers to the whole population (i.e. including those with the disease). However, this 

is the manner in which most cross sectional data are presented. The probability of having the 

disease (conditional upon survival) can now be written as: 
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)(tp  Probability of having disease d at time t conditional on survival 

 

Now, we will show that by using the derivative of p(t) (that is, the change in the probability of 

having disease d conditional on survival), we can express the difference in mortality between 

those with and those without a particular disease as a function of p(t) and incidence only: 

 

)(

)(
*)(

),(
)(

)(
*),()(*

),(
)(

2

tS
dt

tdS
tp

dt
dtdS

tS
dt

tdS
dtStS

dt
dtdS

dt
tdp

−
=

−
=

     (4) 

 

From (1) and (2) we have: 
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Thus, we can write (4) as: 
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So we obtain: 
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We will take this difference as our definition of the excess mortality (�) associated with a 

particular disease: 
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Equation (7) shows that excess mortality rates can be expressed as a function of incidence and 

prevalence if we know how these quantities develop over time in a cohort. However, our goal 

is to apply this equation with cross-sectional data on incidence and prevalence specified by 

age. This does not need to be an obstacle to using our equations if the data are derived from a 

population that is in a steady-state. In a steady state, we may assume that age-specific 

incidences and prevalences (and mortality rates) remain constant. We can then assume (as is 

done in the life table method) that the age-specific data that are available from cross-sectional 

studies actually represent the changes an aging individual experiences over time. Thus, we 

may consider the age variable as a proxy for the time variable: 
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Equations 1–9 can now be interpreted as a description of a cross-sectional population, 

implying an assumption of steady state for the disease.  

Data used in the example 
Data for our example study were incidence and prevalence counts from 4 different general 

practitioners (GP) registries in the Netherlands. By linking together electronic medical 

records, several general practice registration networks have been established which can be 

used for epidemiological studies. The data utilized in this study comes from four of these 

networks, which are considered to be nationally representative. For each of these 4 

registrations the following data were available for the year 2007: incidence and prevalence 

counts for chronic heart failure (CHF), population size as of January 1, as well as the number 

of personyears of the total population in the GP registration. All data were grouped by sex and 

10 age classes (40-45, 45-49,….., 85+). 

Regression modeling strategy  
Generalized linear mixed models were estimated describing incidence and prevalence as a 

function of orthogonal polynomials of age. Incidence and prevalence were estimated 

simultaneously as a multivariate outcome. This can be easily realised in standard software by 

combining all data and fitting a model using a dummy variable indicating whether the 
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outcome is incidence or prevalence. We estimated this multivariate outcome assuming a 

binomial distribution and a logit link function: 
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where 

y dependent variable (incidence or prevalence) 

I Indicator variable that has value 1 if the dependent variable is incidence and 0 if the  

 dependent variable is prevalence 

 

We estimated cumulative incidence probabilities using population size instead of person 

years. This assumption could be made, as GP registrations represent fairly stable populations.  

We transformed the probabilities into rates by assuming that incidence occurred on average 

halfway during the year. To capture the possible systematic differences between the four GP 

registrations the registration identifier was entered into the models as a random intercept. 

To select the ‘optimal’ regression models in terms of highest order polynomial we used the 

Bayesian Information Criterion.1 Since we used our regression model to indirectly estimate 

the parameters that describe the excess mortality rates we opted for the BIC criterion since it 

penalized inclusion of additional parameters more than the AIC criterion. Predictions for 

incidence and prevalence for the ‘average’ GP registration were entered as values into 

equation (9) to estimate excess mortality rates.  This was accomplished by fixing the 

‘random’ intercept at its average value. Life expectancy with CHF was estimated by 

decomposing population mortality rates for 2007 from Statistics Netherlands into mortality 

rates for persons with and without CHF:2 
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)(am  Mortality probability in the total population at age a  

 

Uncertainty assessment for excess mortality and life expectancy was done using Monte Carlo 

simulation. With the estimated coefficients and their covariance matrix from the optimal 

regression models, we set up a Monte Carlo simulation to calculate random excess mortality 

rates and life expectancy with CHF. Sample size was set at 5,000. Modeling incidence and 

prevalence as one outcome variable takes into account the correlation between incidence and 

prevalence. Such a correlation is expected, as high incidences will lead to high prevalence 

rates, and GP-registrations with high incidences can be expected to have high prevalence rates 
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too. By modeling incidence and prevalence simultaneously, it is possible to let incidence and 

prevalence share the GP specific random effect in the regression model and to quantify the 

correlation between parameters that describe incidence and prevalence. 

 

Exploring the effect of possible time trends  
Sensitivity analyses were directed towards testing the key assumption of a ‘steady state’. We 

calculated excess mortality rates and life expectancy in scenarios in which we assumed an 

annual increase or decrease in the prevalence of respectively 1%, 5% and 10% in our heart 

failure example. Thus, besides the age related increase there is change in the prevalence 

proportion due to time effects (e.g. if in year 1 prevalence at ages 50 and 51 is 0.2 and 0.21 

respectively, in year 2 these will be .22 and .231 assuming a 10% time trend. The increase in 

prevalence within a year of a cohort aged 50 years in year 1 will then be .231 - .2  = .031 ). 

Equation (9) reveals that not accounting for a positive time trend will result in an 

underestimate of excess mortality and an overestimate of disease duration. Table 1 displays 

results of sensitivity analyses. It can be seen that results are sensitive to time trends. However, 

it should be noted that a 10% annual increase in age specific prevalence is large, since it 

would imply an almost 50% increase of the incidence.  

 

Table 1:  Estimates of disease duration (life expectancy with disease) for the average 

male CHF patient in the Netherlands in 2007 (These were obtained by weighing age 

specific estimates of disease duration by prevalence numbers.)   

Annual time trends in disease prevalence Average disease duration  

- 10% 3.3  

-5 % 3.8  

-1 % 4.2  

0 4.3 (3.9 – 4.9) 

+ 1% 4.5  

+ 5% 5.2  

+ 10% 6.5  
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