
eAppendix of "Bias formulas for sensitivity analysis for direct and indirect e¤ects."

1. Bias Formulas for Sensitivity Analysis for an Unmeasured Confounder of the Exposure, Mediator

and Outcome.

Here the setting is considered in which the unmeasured confounding variable U a¤ects exposure A, mediator

M and outcome Y so that U confounds both the exposure-outcome, mediator-outcome and exposure-mediator

relationships as in Figure 2 in the text. Bias formulas for sensitivity analysis are given for controlled direct e¤ects

and for natural direct and indirect e¤ects in this setting.

Theorem 3. Suppose that for all a and m, Yam
`
AjfC;Ug and Yam

`
M jfA;C;Ug then for any reference level

u0 of U we have that the di¤erences between the average controlled direct e¤ect E[Yam � Ya�m] and the biased

estimator
X

c
fE[Y ja;m; c]� E[Y ja�;m; c]gP (c) is given by Bias(CDEa;a�(m)) =

X
c

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (ujc)gP (c)

�
X

c

X
u
fE[Y ja�;m; c; u]� E[Y ja�;m; c; u0]gfP (uja�;m; c)� P (ujc)gP (c):

Under certain simplifying assumptions, the bias formula in Theorem 3 reduces to a simpler expression, given in

Corollary 3, that is relatively straightforward to use in sensitivity analysis.

Corollary 3. Suppose that for all a and m, Yam
`
AjfC;Ug and Yam

`
M jfA;C;Ug. Suppose further that U

is binary, that E[Y ja;m; c; U = 1] � E[Y ja;m; c; U = 0] is constant across strata of a; c so that E[Y ja;m; c; U =

1] � E[Y ja;m; c; U = 0] =  and that P (U = 1ja;m; c) � P (U = 1ja�;m; c) is constant across strata of c so that

P (uja;m; c)� P (uja�;m; c) = � then

Bias(CDEa;a�(m)) = �:

Note that Corollary 3 does not require the assumption that U
`
AjC in Corollary 1. Theorem 4 and Corollary

4 give bias formulas for sensitivity analysis for natural direct and indirect e¤ects allowing for U to a¤ect A, M and

Y . All of the no-unmeasured-confounding assumptions in Theorem 4 and Corollary 4 would be satis�ed conditional

on fC;Ug, in the causal diagram in Figure 2 of the text.

Theorem 4. Suppose that for all a, a�, and m, Yam
`
AjfC;Ug, Yam

`
M jfA;C;Ug, Ma

`
AjfC;Ug and

Yam
`
Ma� jfC;Ug then for any reference level u0 of U the bias formula for the natural direct e¤ect is given by
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Bias(NDEa;a�(a
�)) =

X
c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (uja

�;m; c)P (ujc)
P (uja�; c) gP (mja�; c)P (c)

�
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja�; c)� P (ujc)gP (mja�; c; u)P (c)

and the bias formula for the natural direct e¤ect is given by Bias(NIEa;a�(a)) =

X
c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja; c;m)� P (ujc)

P (uja; c)P (uja;m; c)gP (mja; c)P (c)

�
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (ujc)

P (uja�; c)P (uja
�;m; c)gP (mja�; c)P (c)

As before, under certain simplifying assumptions, the bias formulas in Theorem 4 reduce to simpler expressions

that are relatively straightforward to use in sensitivity analysis. Corollary 4 below gives these simple expressions

and uses the same simplifying assumptions for natural direct and indirect e¤ects.

Corollary 4. Suppose that for all a, a�, and m, Yam
`
AjfC;Ug, Yam

`
M jfA;C;Ug, Ma

`
AjfC;Ug and

Yam
`
Ma� jfC;Ug. Suppose further that U is binary, that E[Y ja;m; c; U = 1] � E[Y ja;m; c; U = 0] is constant

across strata of a;m; c so that E[Y ja;m; c; U = 1] � E[Y ja;m; c; U = 0] =  and that P (U = 1ja;m; c) � P (U =

1ja�;m; c) is constant across strata of c so that P (U = 1ja;m; c)� P (U = 1ja�;m; c) = �m then

Bias(NDEa;a�(a
�)) = 

X
c

X
m
�mP (mja�; c)P (c)

Bias(NIEa;a�(a
�)) = 

X
c

X
m
P (U = 1ja;m; c)fP (mja; c)� P (mja�; c)gP (c)

If �m = P (U = 1ja;m; c)�P (U = 1ja�;m; c) is constant across strata ofm taking value � thenBias(NDEa;a�(a�)) =

� and Bias(NIEa;a�(a�)) = �� � 
X

c
fP (U = 1ja; c)� P (U = 1ja�; c)gP (c).

Note that Corollary 4 gives the same bias formula for natural direct e¤ects as Corollary 2 in the paper and

thus the same approach as described in the paper for sensitivity analysis for natural direct e¤ects may be used

under the more general setting in which the unmeasured confounding variable U a¤ects A, M and Y . However,

for sensitivity analysis for natural indirect e¤ects when U also a¤ects A, the bias for natural indirect e¤ects is not

simply the negation of the bias for natural direct e¤ects. This is because when U a¤ects not just M and Y but

also A, the total e¤ect of A on Y is also confounded and thus
X

c
fE[Y ja; c] � E[Y ja�; c]gP (c) will be biased for

the total e¤ect.
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2. General Bias Formulas for Controlled Direct E¤ect and Natural Direct and Indirect E¤ect Risk

Ratios.

The following results generalize the simple bias formulas given in Appendix 1 concerning controlled direct e¤ect

and natural direct and indirect e¤ect risk ratios.

Theorem 5. Suppose that for all a and m, Yam
`
AjC and Yam

`
M jfA;C;Ug then for any reference level u0

of U we have that

Bias(CDERRa;a�jc(m)) =

P
u
E(Y ja;m;c;u)
E(Y ja;m;c;u0)P (uja;m; c)P
u
E(Y ja;m;c;u)
E(Y ja;m;c;u0)P (uja; c)

=

P
u
E(Y ja�;m;c;u)
E(Y ja�;m;c;u0)P (uja

�;m; c)P
u
E(Y ja�;m;c;u)
E(Y ja�;m;c;u0)P (uja�; c)

:

It follows from this, as noted in Appendix 1, that if U is binary, if U
`
AjC, and if P (Y ja;m;c;U=1)P (Y ja;m;c;U=0) =  is constant

across strata of a then

Bias(CDERRa;a�jc(m)) =
1 + ( � 1)P (U = 1ja;m; c)
1 + ( � 1)P (U = 1ja�;m; c) :

Theorem 6. If Figure 1 represents a causal directed graph then for all a, a�, andm, Yam
`
AjC, Yam

`
M jfA;C;Ug,

Ma

`
AjC and Yam

`
Ma� jfC;Ug and U

`
AjC and for any reference level u0 of U and any reference level m0 of

M we have that

Bias(NDERRa;a�jc(a
�)) =

X
m

X
u

E[Y ja;m;c;u]
E[Y ja;m;c;u0]P (uja;m; c)

E[Y ja;m;c;u0]
E[Y ja;m0;c;u0]P (mja

�; c)X
m

X
u

E[Y ja;m;c;u]
E[Y ja;m;c;u0]P (uja�;m; c)

E[Y ja;m;c;u0]
E[Y ja;m0;c;u0]P (mja�; c)

Bias(NIERRa;a�jc(a)) = 1=Bias(NDERRa;a�jc(a
�))

It follows from this, as noted in Apendix 1, that if U is binary and if P (Y ja;m;c;U=1)P (Y ja;m;c;U;=0) =  is constant across strata

of m then

Bias(NDERRa;a�jc(a
�)) =

X
m
f1 + ( � 1)�a;mgvmP (mja�; c)X

m
f1 + ( � 1)�a�;mgvmP (mja�; c)

Bias(NIERRa;a�jc(a)) = 1=Bias(NDERRa;a�jc(a
�)):

where �a;m = P (U = 1ja;m; c), �a�;m = P (U = 1ja�;m; c) and vm = E[Y ja;m;c;U=0]
E[Y ja;m0;c;U=0] . If �a;m and �a�;m are

constant across m so that �a;m = �a and �a�;m = �a� and if vm = 1 for all m then

Bias(NDERRa;a�jc(a
�)) =

1 + ( � 1)�a
1 + ( � 1)�a�

Bias(NIERRa;a�jc(a)) =
1 + ( � 1)�a�
1 + ( � 1)�a

:
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3. Bias Formulas for Sensitivity Analysis for Principal Strata Direct E¤ects.

Suppose that the exposure A and the mediator M are binary. The principal strata direct e¤ects are de�ned

by PSDE(m) = E(Y1 � Y0jM1 = M0 = m) i.e. the principal strata direct e¤ect for principal strataum (M1 =

m;M0 = m) is de�ned as what the e¤ect of the exposure on the outcome would be amongst those individuals for

whom the mediator level would be m irrespective of whether the exposure was A = 1 or A = 0:

If the e¤ect of A on M is monotonic in the sense that M0 � M1 for all individuals in the population and if

for all a; a�;m, fYam;Ma;Ma�g
`
AjC as would hold if A were randomized and if assumption (2) in the text holds

that Yam
`
M jfA;Cg then principal strata direct e¤ects are identi�ed as stated in the following Theorem which

also gives bias formulas for the principal strata direct e¤ect if there is an unmeasured confounding variable U .

Theorem 7. IfM0 �M1 for all individuals in the population and if for all a; a�;m we have fYam;Ma;Ma�g
`
AjC

and Yam
`
M jfA;Cg then

E(Y1 � Y0jM1 =M0 = m;C = c) = E(Y jA = 1;M = m;C = c)� E(Y jA = 0;M = m;C = c):

If there is an unmeasured confounder U such that fYam;Ma;Ma�g
`
AjfC;Ug and Yam

`
M jfA;C;Ug then for

any reference level u0 we have that

E(Y1 � Y0jM1 =M0 = m;C = c) = E(Y jA = 1;m; c)� E(Y jA = 0;m; c)

� [
X

u
fE[Y jA = 1;m; c; u]� E[Y jA = 1;m; c; u0]gfP (ujA = 1;m; c)� P (ujc)g

�
X

u
fE[Y jA = 0;m; c; u]� E[Y jA = 0;m; c; u0]gfP (ujA = 0;m; c)� P (ujc)g]:

Moreover if U is binary with E[Y ja;m; c; U = 1] � E[Y ja;m; c; U = 0] constant across strata of a; c so that

E[Y ja;m; c; U = 1] � E[Y ja;m; c; U = 0] =  and P (U = 1jA = 1;m; c) � P (U = 1jA = 0;m; c) constant across

strata of c so that P (ujA = 1;m; c)� P (ujA = 0;m; c) = � then

E(Y1 � Y0jM1 =M0 = m;C = c) = E(Y jA = 1;m; c)� E(Y jA = 0;m; c)� �:

As shown in the proof of Theorem 7 below if we wish to avoid making reference to counterfactuals of the

form Yam, the identi�cation formula in Theorem 7 also holds if instead of assuming fYam;Ma;Ma�g
`
AjC and

Yam
`
M jfA;Cg we assume fYa;Ma�g

`
AjC and Ya

`
AjfM = a;Cg. The bias formulas in Theorem 7 will still

hold if instead of assuming fYam;Ma;Ma�g
`
AjfC;Ug and Yam

`
M jfA;C;Ug we assume fYa;Ma�g

`
AjfC;Ug

and Ya
`
AjfM = a;C; Ug.

4



4. Example using Bias Formulas for Direct E¤ect Risk Ratios.

We give an example employing the bias formula results for direct e¤ect risk ratios illustrating a case in which

the unmeasured mediator-outcome confounder may completely explain away the apparent direct e¤ect. Empirical

studies have found that when controlling for birth weight, M , for the group of infants with the lowest birth

weight (M = 0), maternal smoking, A, is associated with a lower risk of infant mortality, Y , seemingly suggesting

a protective e¤ect for maternal smoking amongst infants weighing the least; this somewhat puzzling �nding is

commonly referred to as the "birth weight paradox"25;45;46. Hernández-Díaz et al.25 point out that although

analyses that document this association control for a number of maternal demographic factors, C, the analyses do

not in general control for birth defects or malnutrition, U (i.e. other causes of low birth weight), which would serve

as a confounder of the birth weight (mediator) - mortality (outcome) relationship. Estimates of the controlled

direct e¤ect are thus biased because control is not made for such mediator-outcome confounders. Essentially

infants might be low birth weight either because of smoking or because of say a birth defect or malnutrition. If an

infant is not low birth weight because of smoking it is more likely that the low birth weight is because of a birth

defect or malnutrition or some other cause. Thus, if control is not made for these other causes of low birth weight

and comparison is made between the groups with and without maternal smoking it looks as if the e¤ect of smoking

is protective for the infants of lowest birth weight; this is simply because for this group of low birth weight infants,

control is not made for other causes of low birth weight and thus no smoking and low birth weight together is

likely indicative of the presence of a birth defect or malnutrition. Using the sensitivity analysis techniques we can

assess the degree of confounding required to completely explain away the birth weight paradox. Hernández-Díaz

et al.25 use 1991 US linked birth/infant-death data sets from the National Center for Health Statistics and they

de�ne the lowest birth weight category (M = 0) as birth weight less than 2,000g. They control for maternal

age, gravidity, education, marital status, race/ethnicity, and prenatal care (denoted by C). They �nd that if a

naive estimate is used of the controlled direct e¤ect risk ratio, one obtains P (Y=1jA=1;M=0;c)
P (Y=1jA=0;M=0;c) = 0:79, suggesting

a protective e¤ect of smoking for the birth weight in stratum M = 0. Suppose, for sensitivity analysis, that we

take U to be other causes of low birth weight then using the bias formulas for risk ratios presented in Appendix

1, we �nd that if U = 1 were to conditionally increases the risk of infant mortality three-and-a-half-fold so that

P (Y ja;m;c;U=1)
P (Y ja;m;c;U=0) = 3:5 and if the prevalence of U for low-birth weight infants whose mothers smoke is 0.025 but

the prevalence of U for low-birth weight infants whose mothers do not smoke is 0.14 (smoking is ruled out as an

explanation of low-birth weight rendering other causes more likely) then this would indicate the bias produced by

the unmeasured mediator-outcome confounder U , namely 1+(3:5�1)(0:03)
1+(3:5�1)(0:14) = 0:79, is su¢ cient to completely explain

the apparent protective e¤ect. See Whitcomb et al.46 for a related simulation-based analysis of the birth-weight

paradox.
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5. Proofs.

Proofs of Theorem 3 and Corollary 3.

The proof of Theorem 3 proceeds exactly as Theorem 1 but with both the expressions P (uja; c) and P (uja�; c)

replaced by P (ujc) throughout the proof. The proof of Corollary 3 proceeds in a similar manner to that of Corollary

1. Note because in bias expressions given in Theorem 3, the terms P (uja; c) and P (uja�; c) are both replaced by

P (ujc), we do not have to make the assumption that U
`
AjC in Corollary 3.

Proofs of Theorems 2 and 4.

Note that in the causal directed acyclic graph in Figure 1 in the paper, the conditions of Theorem 4 are satis�ed.

For the natural direct e¤ect we have that, Bias(NDEa;a�(a�))

=
X

c

X
m
fE[Y ja;m; c]� E[Y ja�;m; c]gP (mja�; c)P (c)� E[YaMa� � Ya�Ma� ]

=
X

c

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)P (c)�

X
c

X
m

X
u
E[Y ja�;m; c; u]P (uja�;m; c)P (mja�; c)P (c)

�
X

c

X
m

X
u
E[Y ja;m; c; u]P (mja�; c; u)P (ujc)P (c) +

X
c

X
m

X
u
E[Y ja�;m; c; u]P (mja�; c; u)P (ujc)P (c)

=
X

c

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)P (c)�

X
c

X
m

X
u
E[Y ja�;m; c; u]P (mja

�;c;u)P (uja�;c)
P (mja�;c) P (mja�; c)P (c)

�
X

c

X
m

X
u
E[Y ja;m; c; u]P (uja

�;m;c)P (mja�;c)
P (uja�;c) P (ujc)P (c)+

X
c

X
m

X
u
E[Y ja�;m; c; u]P (mja�; c; u)P (ujc)P (c)

=
X

c

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)P (c)�

X
c

X
m

X
u
E[Y ja�;m; c; u]P (mja�; c; u)P (uja�; c)P (c)

�
X

c

X
m

X
u
E[Y ja;m; c; u]P (uja

�;m;c)P (ujc)
P (uja�;c) P (mja�; c)P (c)+

X
c

X
m

X
u
E[Y ja�;m; c; u]P (mja�; c; u)P (ujc)P (c)

=
X

c

X
m

X
u
E[Y ja;m; c; u]fP (uja;m; c)� P (uja�;m;c)P (ujc)

P (uja�;c) gP (mja�; c)P (c)

�
X

c

X
m

X
u
E[Y ja�;m; c; u]fP (uja�; c)� P (ujc)gP (mja�; c; u)P (c)

=
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (uja�;m;c)P (ujc)

P (uja�;c) gP (mja�; c)P (c)

�
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja�; c)� P (ujc)gP (mja�; c; u)P (c):

where the second equality follows because Yam
`
AjfC;Ug, Yam

`
M jfA;C;Ug,Ma

`
AjfC;Ug and Yam

`
Ma� jfC;Ug

(see for example Pearl3 or the eAppendix in VanderWeele21). This proves the part of Theorem 4 concerning natural

direct e¤ects. To prove the part of Theorem 2 concerning natural direct e¤ects, note that in the causal directed

acyclic graph in Figure 1 we have that U
`
AjC and thus Bias(NDEa;a�(a�))

=
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (uja

�;m; c)P (ujc)
P (ujc) gP (mja�; c)P (c)

�
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (ujc)� P (ujc)gP (mja�; c; u)P (c)

=
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (uja�;m; c)gP (mja�; c)P (c):

For the natural indirect e¤ects we have that, Bias(NIEa;a�(a))

=
X

c

X
m
E[Y ja;m; c]fP (mja; c)� P (mja�; c)gP (c)� E[YaMa

� YaMa� ]

=
X

c

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)fP (mja; c)� P (mja�; c)gP (c)
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�
X

c

X
m

X
u
E[Y ja;m; c; u]P (mja; c; u)P (ujc)P (c) +

X
c

X
m

X
u
E[Y ja;m; c; u]P (mja�; c; u)P (ujc)P (c)

=
X

c

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja; c)P (c)�

X
c

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)gP (c)

�
X

c

X
m

X
u
E[Y ja;m; c; u]P (uja;m;c)P (uja;c) P (mja; c)P (ujc)P (c)+

X
c

X
m

X
u
E[Y ja;m; c; u]P (uja

�;m;c)
P (uja�;c) P (mja

�; c)P (ujc)P (c)

=
X

c

X
m

X
u
E[Y ja;m; c; u]fP (uja;m; c)� P (ujc)

P (uja;c)P (uja;m; c)gP (mja; c)P (c)

�
X

c

X
m

X
u
E[Y ja;m; c; u]fP (uja;m; c)� P (ujc)

P (uja�;c)P (uja
�;m; c)gP (mja�; c)P (c)

=
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (ujc)

P (uja;c)P (uja;m; c)gP (mja; c)P (c)

�
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (ujc)

P (uja�;c)P (uja
�;m; c)gP (mja�; c)P (c)

where the second equality follows because Yam
`
AjfC;Ug, Yam

`
M jfA;C;Ug,Ma

`
AjfC;Ug and Yam

`
Ma� jfC;Ug

(see for example Pearl3 or the eAppendix in VanderWeele21). This proves the part of Theorem 4 concerning natural

indirect e¤ects. To prove the part of Theorem 2 concerning natural indirect e¤ects, note that if U
`
AjC and thus

Bias(NIEa;a�(a))

=
X

c

X
m

X
u
E[Y ja;m; c; u]fP (uja;m; c)� P (ujc)

P (ujc)P (uja;m; c)gP (mja; c)P (c)

�
X

c

X
m

X
u
E[Y ja;m; c; u]fP (uja;m; c)� P (ujc)

P (ujc)P (uja
�;m; c)gP (mja�; c)P (c)

= �
X

c

X
m

X
u
E[Y ja;m; c; u]fP (uja;m; c)� P (uja�;m; c)gP (mja�; c)P (c)

= �
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (uja�;m; c)gP (mja�; c)P (c):

This completes the proof.

Proof of Corollary 4.

From Theorem 4, we have that Bias(NDEa;a�(a�))

=
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (uja

�;m; c)P (ujc)
P (uja�; c) gP (mja�; c)P (c)

�
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja�; c)� P (ujc)gP (mja�; c; u)P (c)

=
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (uja

�;m; c)P (ujc)
P (uja�; c) gP (mja�; c)P (c)

�
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja�; c)� P (ujc)gP (uja

�;m; c)

P (uja�; c) P (mja�; c)P (c)

=
X

c

X
m
fP (U = 1ja;m; c)� P (U = 1ja

�;m; c)P (U = 1jc)
P (U = 1ja�; c) gP (mja�; c)P (c)

�
X

c

X
m
fP (U = 1ja�; c)� P (U = 1jc)gP (U = 1ja

�;m; c)

P (U = 1ja�; c) P (mja�; c)P (c)

= 
X

c

X
m
fP (U = 1ja;m; c)� P (U = 1ja�;m; c)gP (mja�; c)P (c)

= 
X

c

X
m
�mP (mja�; c)P (c):

7



If for allm, �m = P (U = 1ja;m; c)�P (U = 1ja�;m; c) takes value � thenBias(NDEa;a�(a�)) = 
X

c

X
m
�P (mja�; c)P (c) =

�. This gives the result for natural direct e¤ects. From Theorem 4 we have for natural indirect e¤ects that,

Bias(NIEa;a�(a))

=
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (ujc)

P (uja; c)P (uja;m; c)gP (mja; c)P (c)

�
X

c

X
m

X
u
fE[Y ja;m; c; u]� E[Y ja;m; c; u0]gfP (uja;m; c)� P (ujc)

P (uja�; c)P (uja
�;m; c)gP (mja�; c)P (c)

= 
X

c

X
m
fP (U = 1ja;m; c)� P (U = 1jc)

P (U = 1ja; c)P (U = 1ja;m; c)gP (mja; c)P (c)

� 
X

c

X
m
fP (U = 1ja;m; c)� P (U = 1jc)

P (U = 1ja�; c)P (U = 1ja
�;m; c)gP (mja�; c)P (c)

= 
X

c

X
m
P (U = 1ja;m; c)P (mja; c)P (c)� 

X
c

X
m
P (U = 1jc)P (mja; c; U = 1)P (c)

� 
X

c

X
m
P (U = 1ja;m; c)P (mja�; c)P (c)� 

X
c

X
m
P (U = 1jc)P (mja�; c; U = 1)P (c)

= 
X

c

X
m
P (U = 1ja;m; c)fP (mja; c)� P (mja�; c)gP (c):

If for all m, �m = P (U = 1ja;m; c)� P (U = 1ja�;m; c) takes value � then we have that Bias(NIEa;a�(a))

= 
X

c

X
m
P (U = 1ja;m; c)fP (mja; c)� P (mja�; c)gP (c)

= 
X

c

X
m
fP (U = 1ja;m; c)� �gfP (mja; c)� P (mja�; c)gP (c)

= 
X

c

X
m
fP (U = 1ja;m; c)� �gP (mja; c)P (c)

� 
X

c

X
m
fP (U = 1ja�;m; c)gP (mja�; c)P (c)

= 
X

c
P (U = 1ja; c)P (c)� �

� 
X

c
P (U = 1ja�; c)P (c)

= �� � 
X

c
fP (U = 1ja; c)� P (U = 1ja�; c)gP (c)

This completes the proof.
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Proof of Theorem 5 and the Simple Formula in Appendix 1.

We have for any reference level u0 that

Bias(CDERRa;a�(m)) =
E(Y ja;m; c)=E(Y ja�;m; c)
E(Yamjc)=E(Ya�mjc)

=

P
uE(Y ja;m; c; u)P (uja;m; c)P

uE(Yamjc; u)P (uja; c)
=

P
uE(Y ja�;m; c; u)P (uja�;m; c)P

uE(Ya�mjc; u)P (uja�; c)

=

P
uE(Y ja;m; c; u)P (uja;m; c)P
uE(Y ja;m; c; u)P (uja; c)

=

P
uE(Y ja�;m; c; u)P (uja�;m; c)P
uE(Y ja�;m; c; u)P (uja�; c)

=

P
u
E(Y ja;m;c;u)
E(Y ja;m;c;u0)P (uja;m; c)P
u
E(Y ja;m;c;u)
E(Y ja;m;c;u0)P (uja; c)

=

P
u
E(Y ja�;m;c;u)
E(Y ja�;m;c;u0)P (uja

�;m; c)P
u
E(Y ja�;m;c;u)
E(Y ja�;m;c;u0)P (uja�; c)

:

This proves the general formula in Theorem 5. To derive the simple bias formula for controlled direct e¤ect risk

ratios given in Appendix 1, if U
`
AjC and we let u0 = 0 then we have

Bias(CDERRa;a�(m)) =

P
u
E(Y ja;m;c;u)
E(Y ja;m;c;u0)P (uja;m; c)P
u
E(Y ja;m;c;u)
E(Y ja;m;c;u0)P (ujc)

=

P
u
E(Y ja�;m;c;u)
E(Y ja�;m;c;u0)P (uja

�;m; c)P
u
E(Y ja�;m;c;u)
E(Y ja�;m;c;u0)P (ujc)

=
P

u

E(Y ja;m; c; u)
E(Y ja;m; c; u0)P (uja;m; c)=

P
u

E(Y ja�;m; c; u)
E(Y ja�;m; c; u0)P (uja

�;m; c)

=
P (U = 1ja;m; c) + P (U = 0ja;m; c)
P (U = 1ja�;m; c) + P (U = 0ja�;m; c)

=
1 + ( � 1)P (U = 1ja;m; c)
1 + ( � 1)P (U = 1ja�;m; c) :

This completes the proof.

Proof of Theorem 6 and the Simple Formulas in Appendix 1.

We have for any reference level u0 that Bias(NDERRa;a�jc(a
�))

=

X
m
P (Y ja;m; c)P (mja�; c)=

X
m
P (Y ja�;m; c)P (mja�; c)

P (YaMa� jc)=P (Ya�Ma� jc)

=

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)=

X
m

X
u
E[Y ja�;m; c; u]P (uja�;m; c)P (mja�; c)X

m

X
u
E[Y ja;m; c; u]P (mja�; c; u)P (ujc)=

X
m

X
u
E[Y ja�;m; c; u]P (mja�; c; u)P (ujc)

=

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)=

X
m

X
u
E[Y ja�;m; c; u]P (mja

�;c;u)P (uja�;c)
P (mja�;c) P (mja�; c)X

m

X
u
E[Y ja;m; c; u]P (uja�;m;c)P (mja�;c)P (uja�;c) P (ujc)=

X
m

X
u
E[Y ja�;m; c; u]P (mja�; c; u)P (ujc)

=

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)=

X
m

X
u
E[Y ja�;m; c; u]P (mja�; c; u)P (ujc)X

m

X
u
E[Y ja;m; c; u]P (uja�;m; c)P (mja�; c)=

X
m

X
u
E[Y ja�;m; c; u]P (mja�; c; u)P (ujc)

=

X
m

X
u

E[Y ja;m;c;u]
E[Y ja;m;c;u0]P (uja;m; c)

E[Y ja;m;c;u0]
E[Y ja;m0;c;u0]P (mja

�; c)X
m

X
u

E[Y ja;m;c;u]
E[Y ja;m;c;u0]P (uja�;m; c)

E[Y ja;m;c;u0]
E[Y ja;m0;c;u0]P (mja�; c)
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where the second equality follows because Yam
`
AjfC;Ug, Yam

`
M jfA;C;Ug,Ma

`
AjfC;Ug and Yam

`
Ma� jfC;Ug

and the fourth equality follows because U
`
AjC. For the natural indirect e¤ect we have that Bias(NIERRa;a�jc(a))

=

X
m
P (Y ja;m; c)P (mja; c)=

X
m
P (Y ja;m; c)P (mja�; c)

P (YaMa
jc)=P (YaMa� jc)

=

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja; c)=

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)X

m

X
u
E[Y ja;m; c; u]P (mja; c; u)P (ujc)=

X
m

X
u
E[Y ja;m; c; u]P (mja�; c; u)P (ujc)

=

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja; c)=

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)X

m

X
u
E[Y ja;m; c; u]P (uja;m;c)P (uja;c) P (mja; c)P (ujc)=

X
m

X
u
E[Y ja;m; c; u]P (uja�;m;c)P (uja�;c) P (mja�; c)P (ujc)

=

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja; c)=

X
m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)X

m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja; c)=

X
m

X
u
E[Y ja;m; c; u]P (uja�;m; c)P (mja�; c)

=

X
m

X
u
E[Y ja;m; c; u]P (uja�;m; c)P (mja�; c)X

m

X
u
E[Y ja;m; c; u]P (uja;m; c)P (mja�; c)

=

X
m

X
u

E[Y ja;m;c;u]
E[Y ja;m;c;u0]P (uja

�;m; c) E[Y ja;m;c;u
0]

E[Y ja;m0;c;u0]P (mja
�; c)X

m

X
u

E[Y ja;m;c;u]
E[Y ja;m;c;u0]P (uja;m; c)

E[Y ja;m;c;u0]
E[Y ja;m0;c;u0]P (mja�; c)

= 1=Bias(NDERRa;a�jc(a
�))

This proves the general formulas in Theorem 6. To derive the simple bias formula for the natural direct e¤ect risk

ratio given in Appendix 1, let u0 = 0 then we have

Bias(NDERRa;a�jc(a
�)) =

X
m

X
u

E[Y ja;m;c;u]
E[Y ja;m;c;U=0]P (uja;m; c)vmP (mja

�; c)X
m

X
u

E[Y ja;m;c;u]
E[Y ja;m;c;U=0]P (uja�;m; c)vmP (mja�; c)

=

X
m
fP (U = 1ja;m; c) + P (U = 0ja;m; c)gvmP (mja�; c)X

m
fP (U = 1ja�;m; c) + P (U = 0ja;m; c)gvmP (mja�; c)

=

X
m
f1 + ( � 1)P (U = 1ja;m; c)gvmP (mja�; c)X

m
f1 + ( � 1)P (U = 1ja�;m; c)gvmP (mja�; c)

=

X
m
f1 + ( � 1)�a;mgvmP (mja�; c)X

m
f1 + ( � 1)�a�;mgvmP (mja�; c)

:

Furthermore if �a;m and �a�;m are constant across m and if vm = 1 for all m then this reduces to

=
1 + ( � 1)�a
1 + ( � 1)�a�

:

This completes the proof.

10



Proof of Theorem 7.

If If M0 �M1 for all individuals in the population and fYam;Ma;Ma�g
`
AjC and Yam

`
M jfA;Cg then

E(Y jA = 1;M = 0; c) = E(Y10jA = 1;M = 0; c) = E(Y10jA = 1;M1 = 0; c) = E(Y10jM1 = 0; c) =

= E(Y10jM1 =M0 = 0; c) = E(Y1M1
jM1 =M0 = 0; c) = E(Y1jM1 =M0 = 0; c)

where the �rst and second equalities follow by consistency, the third by the assumption fYam;Ma;Ma�g
`
AjC,

the fourth by monotonicity and the �nal one by composition. We also have that

E(Y jA = 0;M = 0; c) = E(Y00jA = 0;M = 0; c) = E(Y00jA = 0; c) = E(Y00jA = 1; c) = E(Y00jA = 1;M = 0; c)

= E(Y00jA = 1;M1 = 0; c) = E(Y00jA = 1;M1 =M0 = 0; c) = E(Y00jM1 =M0 = 0; c)

= E(Y0M0
jM1 =M0 = 0; c) = E(Y0jM1 =M0 = 0; c)

where the �rst and the �fth equalities follow by consistency, the second and fourth by the assumption Yam
`
M jfA;Cg,

the third and the seventh by the assumption fYam;Ma;Ma�g
`
AjC, the sixth by monotonicity and the �nal one

by composition. Similarly,

E(Y jA = 1;M = 1; c) = E(Y11jA = 1;M = 1; c) = E(Y11jA = 1; c) = E(Y11jA = 0; c) = E(Y11jA = 0;M = 1; c)

= E(Y11jA = 0;M0 = 1; c) = E(Y11jA = 0;M1 =M0 = 1; c) = E(Y11jM1 =M0 = 1; c)

= E(Y1M1
jM1 =M0 = 1; c) = E(Y1jM1 =M0 = 1; c):

E(Y jA = 0;M = 1; c) = E(Y01jA = 0;M = 1; c) = E(Y01jA = 0;M0 = 1; c) = E(Y01jM0 = 1; c)

= E(Y01jM1 =M0 = 1; c) = E(Y0M0 jM1 =M0 = 1; c) = E(Y0jM1 =M0 = 1; c):

Note that if instead of fYam;Ma;Ma�g
`
AjC and Yam

`
M jfA;Cg we assume that fYa;Ma�g

`
AjC and Ya

`
AjfM =

a;Cg then we still have:

E(Y jA = 1;M = 0; c) = E(Y1jA = 1;M = 0; c) = E(Y1jA = 1;M1 = 0; c) = E(Y1jM1 = 0; c)

= E(Y1jM1 =M0 = 0; c)

where the �rst and second equalities follow by consistency, the third by the assumption that fYa;Ma�g
`
AjC and
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the fourth by monotonicity. We also have that

E(Y jA = 0;M = 0; c) = E(Y0jA = 0;M = 0; c) = E(Y0jA = 1;M = 0; c) = E(Y0jA = 1;M1 = 0; c)

= E(Y0jM1 = 0; c) = E(Y0jM1 =M0 = 0; c)

where the �rst and third equalities follows by consistency, the second by the assumption that Y0
`
AjfM = 0; Cg,

the fourth by the assumption that fYa;Ma�g
`
AjC and the �fth by monotonicity. Similarly,

E(Y jA = 1;M = 1; c) = E(Y1jA = 1;M = 1; c) = E(Y1jA = 0;M = 1; c) = E(Y1jA = 0;M0 = 1; c)

= E(Y1jM0 = 1; c) = E(Y1jM1 =M0 = 1; c):

E(Y jA = 0;M = 1; c) = E(Y0jA = 0;M = 1; c) = E(Y0jA = 0;M0 = 1; c) = E(Y0jM0 = 1; c)

= E(Y0jM1 =M0 = 1; c):

We have established the identi�cation result under the assumptions fYam;Ma;Ma�g
`
AjC and Yam

`
M jfA;Cg

(or alternatively under fYa;Ma�g
`
AjC and Ya

`
AjfM = a;Cg). Now suppose there is an unmeasured confound-

ing variable such that fYam;Ma;Ma�g
`
AjfC;Ug and Yam

`
M jfA;C;Ug (or such that fYa;Ma�g

`
AjfC;Ug and

Ya
`
AjfM = a;C; Ug) then we would have

E(Y1�Y0jM1 =M0 = m;C = c; U = u) = E(Y jA = 1;M = m;C = c; U = u)�E(Y jA = 0;M = m;C = c; U = u):

By exactly the same derivation in Theorem 3 and Corollary 3 we have for any reference level u0 that

E(Y1 � Y0jM1 =M0 = m;C = c) = E(Y jA = 1;m; c)� E(Y jA = 0;m; c)

� [
X

u
fE[Y jA = 1;m; c; u]� E[Y jA = 1;m; c; u0]gfP (ujA = 1;m; c)� P (ujc)g

�
X

u
fE[Y jA = 0;m; c; u]� E[Y jA = 0;m; c; u0]gfP (ujA = 0;m; c)� P (ujc)g]

and if U is binary with E[Y ja;m; c; U = 1]�E[Y ja;m; c; U = 0] constant across strata of a; c so that E[Y ja;m; c; U =

1] � E[Y ja;m; c; U = 0] =  and P (U = 1jA = 1;m; c) � P (U = 1jA = 0;m; c) constant across strata of c so that

P (ujA = 1;m; c)� P (ujA = 0;m; c) = � then

E(Y1 � Y0jM1 =M0 = m;C = c) = E(Y jA = 1;m; c)� E(Y jA = 0;m; c)� �:

This completes the proof.
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