eAppendix 1: Detailed derivations

Where VanderWeele had rewritten condition (VanderWeele-9) as:

$$
(1 / 2) e^{\beta_{1}+\beta_{2}+\beta_{3}}-e^{\beta_{1}}+(1 / 2) e^{\beta_{1}+\beta_{2}+\beta_{3}}-e^{\beta_{2}}>0
$$

We rewrite condition (VanderWeele-9) as:

$$
\begin{equation*}
x e^{\beta_{1}+\beta_{2}+\beta_{3}}-e^{\beta_{1}}+(1-x) e^{\beta_{1}+\beta_{2}+\beta_{3}}-e^{\beta_{2}}>0 \quad \text { where } 0<x<1 \tag{1}
\end{equation*}
$$

This can be rewritten as:

$$
e^{\beta_{1}}\left\{x e^{\beta_{2}+\beta_{3}}-1\right\}+e^{\beta_{2}}\left\{(1-x) e^{\beta_{1}+\beta_{3}}-1\right\}>0
$$

It is easy to see the previous condition is true if both

$$
\left\{x^{\beta_{2}+\beta_{3}}-1\right\}>0 \text { and }\left\{(1-x) e^{\beta_{1}+\beta_{3}}-1\right\}>0 .
$$

These two conditions can be rewritten as

$$
\begin{aligned}
& \mathrm{e}^{\beta_{2}+\beta_{3}}>1 / \mathrm{x} \text { and } \mathrm{e}^{\beta_{1}+\beta_{3}}>1 /(1-x) \text { or as } \\
& \mathrm{e}^{\beta_{3}}>(1 / \mathrm{x}) \mathrm{e}^{-\beta_{2}} \text { and } \mathrm{e}^{\beta_{3}}>(1 /(1-x)) \mathrm{e}^{-\beta_{1}} .
\end{aligned}
$$

Whereby the conditions for $\beta_{3}>0$ to imply sufficient cause interaction become:

$$
\beta_{3}>\log (1 / x)-\beta_{2} \text { and } \beta_{3}>\log (1 /(1-x))-\beta_{1}
$$

As $\beta_{1}=\log \left(\mathrm{RR}_{10}\right)$ and $\beta_{2}=\log \left(\mathrm{RR}_{01}\right)$ this leads to

$$
\begin{align*}
& \mathbf{R} R_{01} \geq \mathbf{1} / \mathbf{x} \quad \text { and } \tag{2a}\\
& \mathbf{R R}_{10} \geq \mathbf{1} /(\mathbf{1 - x}) \tag{2b}
\end{align*}
$$

When x is chosen to be equal to $1 / \mathrm{RR}_{01}$, condition (2b) becomes:

$$
\mathrm{RR}_{10} \geq 1 /\left(1-\left(1 / \mathrm{RR}_{01}\right)\right)
$$

which can be rewritten as:

$$
\begin{align*}
& \left(1-\left(1 / R_{01}\right)\right) \times R R_{10} \geq 1 \\
& R^{2} R_{10}-\left(R_{10} / R_{01}\right) \geq 1 \\
& \left(R_{01} \times R R_{10}\right)-R_{10} \geq R_{01} \\
& R_{01} \times R R_{10} \geq R_{01}+R_{10} \tag{3}
\end{align*}
$$

Leading to the easy to remember rule that: "If the product of separate relative risks is greater than or equal to their sum, testing for $\beta_{3}>0$ implies sufficient cause interaction".

eAppendix 2

Three-Way Sufficient Cause Interaction in Log-Linear and Logistic Models

Define a saturated log-linear model like VanderWeele's model 21:

$$
\begin{aligned}
& P\left(D=1 \mid X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}\right) \\
& \quad=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{3}+\beta_{6} x_{2} x_{3}+\beta_{7} x_{1} x_{2} x_{3}
\end{aligned}
$$

Without the assumption that the effects of X_{1}, X_{2}, and X_{3} on D are monotonic, VanderWeele comes to condition (22) to imply a 3 -way sufficient cause interaction:
$e^{\beta_{1}+\beta_{2}+\beta_{4}(1 / 3} e^{\left.\beta_{3}+\beta_{5}+\beta_{6}+\beta_{7}-1\right)}+e^{\beta_{1}+\beta_{3}+\beta_{5}(1 / 3} e^{\left.\beta_{2}+\beta_{4}+\beta_{6}+\beta_{7}-1\right)}+e^{\beta_{2}+\beta_{3}+\beta_{6}(1 / 3} e^{\left.\beta_{1}+\beta_{4}+\beta_{5}+\beta_{7-1}\right)>0}$

$e^{\beta_{1}+\beta_{2}+\beta_{4}}\left(\alpha_{1} e^{\beta_{3}+\beta_{5}+\beta_{6}+\beta_{7}-1}\right)+e^{\beta_{1}+\beta_{3}+\beta_{5}}\left(\alpha_{2} e^{\beta_{2}+\beta_{4}+\beta_{6}+\beta_{7}-1}\right)+e^{\beta_{2}+\beta_{3}+\beta_{6}}\left(\alpha_{3} e^{\beta_{1}+\beta_{4}+\beta_{5}+\beta_{7}-1}\right)>0$
where $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$ and $0<\alpha_{1,2,3}<1$

It is easily verified that if: $\alpha_{1}>\mathrm{e}^{-\left(\beta_{3}+\beta_{5}+\beta_{6}+\beta_{7}\right)}$ and $\alpha_{2}>\mathrm{e}^{-\left(\beta_{2}+\beta_{4}+\beta_{6}+\beta_{7}\right)}$ and $\alpha_{3}>\mathrm{e}^{-\left(\beta_{1}+\beta_{4}+\beta_{5}+\beta_{7}\right)}$ this condition is satisfied. Condition (Ap1) also holds true if only one $\alpha>\mathrm{e}^{-(\beta \ldots)}$, and the two other α 's equal $\mathrm{e}^{-(\beta \ldots)}$, for instance if $\alpha_{1}>\mathrm{e}^{-(\beta 3+\beta 5+\beta 6+\beta 7)}$ and $\alpha_{2}=\mathrm{e}^{-(\beta 2+\beta 4+\beta 6+\beta 7)}$ and $\alpha_{3}=$. $\mathrm{e}^{-(\beta 1+\beta 4+\beta 5+\beta 7)}$. Since $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$, this first condition $\alpha_{1}>\mathrm{e}^{-(\beta 3+\beta 5+\beta 6+\beta 7)}$ can be rewritten into:

$$
1-\alpha_{2}-\alpha_{3}>\mathrm{e}^{-(\beta 3+\beta 5+\beta 6+\beta 7)}
$$

which can be derived into:
and

$$
1-\mathrm{e}^{-\left(\beta_{2}+\beta_{4}+\beta_{6}+\beta_{7}\right)}-\mathrm{e}^{-\left(\beta_{1}+\beta_{4}+\beta_{5}+\beta_{7}\right)}>\mathrm{e}^{-\left(\beta_{3}+\beta_{5}+\beta_{6}+\beta_{7}\right)}
$$

$\mathrm{e}^{-1}+$
illustrating in this phase of the derivation that it doesn't make a difference which of the α 's was initially selected $>\mathrm{e}^{-(\beta \ldots)}$.
Further derivation leads to:

$$
\begin{align*}
& \mathrm{e}^{\beta_{7}}>\mathrm{e}^{-\left(\beta_{3}+\beta_{5}+\beta_{6}\right)}+\mathrm{e}^{-\left(\beta_{2}+\beta_{4}+\beta_{6}\right)}+\mathrm{e}^{-\left(\beta_{1}+\beta_{4}+\beta_{5}\right)} \\
& \left.\frac{1}{\mathrm{e}^{\beta_{1}+\beta_{4}+\beta_{5}}}+\frac{1}{\mathrm{e}^{\beta_{2}+\beta_{4}+\beta_{6}}}+\frac{1}{\mathrm{e}^{\beta_{3}+\beta_{5}+\beta_{6}}} \leq 1 \right\rvert\, \beta_{7}>0 \tag{Ap2}
\end{align*}
$$

So when $\mathrm{e}^{-\left(\beta_{3}+\beta_{5}+\beta_{6}\right)}+\mathrm{e}^{-\left(\beta_{2}+\beta_{4}+\beta_{6}\right)}+\mathrm{e}^{-\left(\beta_{1}+\beta_{4}+\beta_{5}\right)}<1$, a test for a 3-way statistical interaction, $\beta_{7}>$ 0 , implies a 3-way sufficient cause interaction. Here also, VanderWeele's conditions [$\beta_{3}+\beta_{5}+\beta_{6}$
$>\log (3)$ and $\beta_{2}+\beta_{4}+\beta_{6}>\log (3)$ and $\left.\beta_{1}+\beta_{4}+\beta_{5}>\log (3)\right]$ describe only a selection of the possible ways to fulfill condition (Ap2).

