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eAppendix 
 
Proposed formula of the sample size calculation for the case cohort design 
We will start from the following well-known conventional formula of the sample size of the 
cohort study for a binary exposure variable. 

  (1) 
where N1full is the size of the exposed in the full cohort study, Zc denotes (1-c)th standard 
normal quantile and RR is the relative risk or the ratio of the risk (incidence proportion) in 
the exposed (P1) to that in the unexposed (P0) (i.e., RR=P1/P0).  In Eq.(1) K and PD are 
defined by using the size of the unexposed, N0full: K is defined as the ratio of the unexposed 
to the exposed or K=N0full/N1full and PD is the best common estimate of the incidence 
proportion under the null hypothesis defined as PD=(N1fullP1+N0fullP0)/Nfull = 
P0(RR+K)/(1+K) 1,2.  The total cohort size including both of the exposed and unexposed, 
Nfull, can be expressed as 

       (2) 

where N1full is given in (1). 
In the article, we have proposed a sample size formula for the case-cohort study for a 
binary exposure variable as for (1) and (2).  The exposed subjects (N1) and total subjects 
(N) in the entire cohort for the case-cohort study with the same α, β, K, RR and P0 as in (1) 
and (2) are formulated as 

 

      (3) 

In (3), N1full and Nfull are given in (1) and (2), respectively, and m is the ratio of the number 
of subjects in the subcohort to the expected number of cases in the entire cohort.  The 
value of m should be assigned by a researcher who is planning the study.  In most 
occasions, Nfull in (2) rather than N1full in (1) in the full cohort study and N rather than N1 in 
(3) in the case-cohort study may be more important as the exposure status is not normally 
known prior to the start of the study.  The expected number of cases in the entire cohort 
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for the case-cohort study is P1N1+P0N0=P0N1(RR+K)=PDN and the required size of the 
subcohort, n, is 

       (4) 

where N1 and N are given in (3). 
For example, imagine that we are designing the study on multiple adverse drug reactions of 
a new statin, a drug used for patients with hypercholesterolemia.  According to Jacobson3., 
for most statins, the muscle event characterized by the blood creatinine phosphokinase 
(CPK)>10ULN (where ULN means 'upper limit of normal range') may occur with the 
incidence proportion of 0.1 to 0.5% while the most serious type of muscle event, 
rhabdomyolysis occurs at most 15 in million users.  In addition, statins may cause liver 
function abnormality and both of the increase of the blood alanine aminotrasferase (ALT) 
level>3ULN and the increase of the blood asparate aminotransferase (AST) level>3ULN 
occur in 0.1% or more of the users.  Statins also precipitate renal events and the incidence 
proportion is more than 0.4% for proteinuria and more than 2% for hematuria.  Imagine 
that a case-cohort study is designed to detect the increase of the incidence proportions for 
one or more of those adverse events except for rhabdomyolysis which may be judged to be 
too rare to estimate in this type of the study.  The 5 target adverse events (CPK increase, 
ALT increase, AST increase, proteinuria and hematuria) have then the incidence proportion 
of 0.1% or higher.  It is also assumed that the new statin is compared with the old statins 
as a whole and the ratio of the unexposed (those who use one of the old statins) to the 
exposed (those who use the new statin) (K) is, at the best guess, 3.  When P0=0.001 and 
K=3 are used, the required sample size of Nfull in (2) to detect at least four times increase of 
the incidence proportion (i.e., RR=4) is 9986.  The estimates of N in Eq.(3) for m=1, 2 and 
5 will be then 19,972, 14,979 and 11,984, respectively where m is assigned by the 
researcher.  The expected number of cases NPD (where PD=0.00175) for m=1, 2 and 5 
will be 35, 27 and 21 so that the required size for the subcohort (n) will be estimated as 35, 
54 and 105, respectively.  As the event is relatively rare, most cases will occur outside the 
subcohort and in such a case, the expected number of ndetail will be 70, 81 and 126, for m=1, 
2 and 5, respectively.  Thus, the combination of the required sample size of the entire 
cohort (N) and those classified as a subcohort member or case (ndetail) expressed as (N, 
ndetail) will be (19,971, 70) for m=1, (14,979, 81) for m=2 and (11,983, 126) for m=5.  
From those 3 sets (or more sets if appropriate), the researcher may choose the best value of 
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m in terms of the available N and the cost needed to have the detailed information from 
ndetail subjects. 
In the next section, we will show that Eq.(3) can be given as an approximation to a more 
accurate formula.  The empirical power and type I empirical error of the formula in (3) is 
then compared with the nominal power and type I error by simulations in section 4.  
Before moving to the next 2 sections, however, we may emphasize that Eq.(3) is intuitively 
appealing as the case-cohort study can be regarded as a case-control study where controls 
are randomly selected from the non-cases at the beginning of the study.  Indeed, Kim et 
al.4 showed that the conventional sample size formula for the case-control study yields the 
empirical power similar to those by Cai and Zeng5. It is known that the ratio of the variance 
of an estimate for the log odds ratio from a case-control study to that from a cohort study 
yielding the same number of cases is given as (1+1/m) 6.  This indicates that the variance 
of a full cohort study is equal to that of a case-control or case-cohort study conducted 
within the (1+1/m) times larger entire cohort.  Therefore, it may be intuitively understood 
that N is (1+1/m) times larger than Nfull as given in (3). 
 
Theoretical consideration 
Assume that from an entire cohort with N members consisting of N1 exposed and N0 
unexposed subjects (N=N1+N0), n subjects are randomly selected as subcohort members at 
the beginning of the study of which n is the quantity equal to m times the number of the 
expected cases or n=mNPD.  When q is defined as the sampling fraction of the subcohort 
(n=qN), the relation between q and m may be given as q=mPD.  When the observed 
number of the exposed cases in the entire cohort is defined as a, that of the unexposed as b, 
the observed number of the exposed subcohort as n1 and that of the unexposed subcohort as 
n0, (n0=n-n1) the estimate of the risk (incidence proportion) in the exposed and that in the 
unexposed may be given as )/(/ˆ

11 NnnaP = and )/(/ˆ
00 NnnbP = , respectively. 

To estimate the variance of the risk difference ]ˆ,ˆ[2]ˆ[]ˆ[]ˆˆ[ 100101 PPCovPVPVPPV −+=− , 

where )/(/ˆ
11 NnnaP =  and )/(/ˆ

00 NnnbP = , a, b and n1 may be regarded as variables 

and n, N and N1 as constants.  It may be noted that a and n1 (and b and n0) may be 
considered to be independent of each other, as the procedure of selecting subcohort 
members done at the beginning of the study is independent of the event occurrence some 
time during the study.  The distribution of a and b may be described by the binomial 
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distribution and that of n1 and n0 may be described by the hypergeometric distribution.  
Therefore, E[a]= N1P1 , E[b]= N0P0 , V[a]= N1P1(1-P1), V[b]= N0P0(1-P0), E[n1]= n/(1+K), 
E[n0]= nK/(1+K) and V[n1]= V[n0]= nK/(1+K)2[(N-n)/(N-1)] where E[x] and V[x] denote 
the mean and variance of x, respectively.  Using the delta method, 
V[f(x)]≈[df(mx)/dx]2V[x] where mx = E[x], assuming x=n1 for a function f(x)=1/x, V[1/n1] 
may be expressed as )]1/()][(/)1([]/1[ 32

1 −−+≈ NnNnKKnV .  Similarly, assuming x=n0, 

V[1/n0] may be expressed as )]1/())][(/()1[(]/1[ 332
0 −−+≈ NnNKnKnV .  Using the 

relationship, ]/1[][][/][]/[ 22 yVxEyExVyxV +≈  where x is independent of y, 

2
11 )/](/[]ˆ[ NnnaVPV = , 2

00 )/](/[]ˆ[ NnnbVPV =  and qNnN −≈−− 1)1/()( ,  ]ˆ[ 1PV  

and ]ˆ[ 0PV  may be given, respectively, as 
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(6) 
From the relationship m(N0P0+N1P1)=n, Eqs (5) and (6) may be rewritten respectively as 
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The estimate for the covariance for 1̂P  and 0̂P  , ]ˆ,ˆ[ 11 PPCov , given as 
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general, using the first three terms of a Taylor’s expansion of f(x) about the point E[x]= mx,  
f(x) = f(mx) + (x-mx)f(1)(mx) + [(x-mx)2/2]f(2)(mx) +…, where f(1) and f(2) are the first and 
second derivatives of f(x) defined as f(x)=1/x, we may have the relationship E[f(x)] ≈ 
(V[x]/mx

2+1)/mx.   Assuming x=n1, we may have E[1/n1] ≈ (K+1)/n[1+(1-q)K/n] and 
assuming x=n0, we may have E[1/n0]≈ (K+1)/(nK)[1+(1-q)/(nK)].  As 1/(n1n0) can be 
expressed as 1/(n1n0) =1/(n1(n-n1)) =[(1/n1)+(1/(n-n1))]/n, E[1/(n1n0)] is given as E[1/(n1n0)] 
=(E[1/n1] +E[1/n0])/n ≈ (K+1)2/(n2K) +(1-q)(K+1)(K3+1)/(n3K2).  On the other hand, 
E[1/n1]E[1/n0] is given as E[1/n1]E[1/n0]  ≈ (K+1)2/(n2K) +(1-q)(K+1)2(K2+1)/(n3K2) + 
(1-q)2(K+1)2/(n4K), where  the contribution of the last term ((1-q)2(K+1)2/(n4K)) to this 
quantity is minor and may be ignored.   We may then have the relationships, E[1/(n1n0)]- 
E(1/n1)E(1/n0) ≈-(1-q)(K+1)2/(n3K). As E[a]=N1P1 and E[b]=N0P0, the following equation 
is derived. 
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From the relation ]ˆ,ˆ[2]ˆ[]ˆ[]ˆˆ[ 100101 PPCovPVPVPPV −+=−  and Eqs. (7) to (9), the variance of 
the risk difference ]ˆ,ˆ[2]ˆ[]ˆ[]ˆˆ[ 010101 PPCovPVPVPPV −+=−  is given as: 

 

where 

 
            (10) 

Under the null hypothesis, RR=1, the variance of the risk difference is given as: 

 
 where 

 
              (11) 
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Using the relationship, δ=SE0Zα/2+SE1Zβ, where δ is the risk difference representing the 
worthwhile effect or P0(RR-1), SE1 is 

1v , where v1 is given as ]ˆˆ[ 01 PPV −  in (10) and SE0 is 

0v  where v0 is given as ]ˆˆ[ 01 PPV −  in (11), the following relation is derived. 

(12) 

The value of f0 in (11) does not depend on K or RR, and provided that the event is rare and 
both (1-PD) and (1-q) are near 1, f0 may be approximated by 1.  Similarly, supposing a rare 
event occurrence, f1 in (10) may be approximated by 1 provided that either K or RR is close 
to 1.  The sample size in (3) can be obtained when replacing both of f0 and f1 in (12) by 1. 
 
Monte Carlo simulation 
For a number of sets of β, K, P0, RR and m, the values of N1 in (3) and (12) and N 
(estimated as N1(1+K)) were calculated (α was fixed as 0.05 through the simulations) to 
estimate the empirical power.  Using the same α, β, K and m, the simulation assuming 
RR=1 and P0=P1=PD was also performed to know Type I empirical error.  The entire 
cohort with N subjects was assumed to consist of the N0 unexposed (subject 0,2,1 NL ) and 
the N1 exposed (subject NNN L,2,1 00 ++ ).  The size of the subcohort, n was calculated 
as an integer obtained by rounding up the quantity, mNPD.  In the first step of the 
simulation, n subjects were randomly selected from the entire cohort with N members.  In 

the next step, N uniform random numbers between (0,1), ),,2,1( Njx j L= , were generated 

and the j-th subject was regarded as a case if ),,2,1( 00 NjPx j L=<  or 

),,2,1( 001 NNNjPx j L++=<  but otherwise as a non-case.  For the cases, the time of the 

event occurrence, t, was defined as t=-log(1-xj)/λi where λi=-log(1-Pi) (i=0,1) assuming 
that the constant hazard (i.e., exponential distribution) over the fixed observation period tobs, 
which is set as unity (tobs=1).  In addition, to know whether the alteration of the 
assumption of the constant hazard affects the results, some simulations were made where 
the event was assumed to occur according to the Weibull distribution.  With this 
assumption, the cumulative probability of the event occurrence till time, t, or Pr(t) may be 
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given as Pr(t)=1-exp[-(λit)s] where λi is the reciprocal of the scale parameter for the 
unexposed (i=0) and that for the exposed (i=1) and s is the shape parameter where s in the 
exposed is assumed to be the same as that in the unexposed.  Using tobs=1, λi may be given 

as s
ii P

1

)]1[log( −−=λ .   For the cases, using the relationship xj=Pr(t), t may be given as 

s
ij Pxt

1

)]1log(/)1[log( −−= .  When s=1 the hazard is constant (and the distribution is 

exponential) while when s<1 the event rate decreases over time and when s>1 the rate 
increases over time.  When P0 or P1 is in the range between 0.001 and 0.3, as employed in 
the current simulation studies, 80% or more of the events are expected to occur during the 
first half of the observation period when s=0.3 while 80% or more will occur during the 
last half of the period when s=2.5.  To compare the empirical power and type I empirical 
error of the current article with that by Cai and Zeng5, their equation (11) 

))1(/(~
DD PBnnBPn −−=  where n~  and n correspond to n and N in this study, 

respectively, has been converted, using the relationship DmnPn =~  (or DmNPn =~  by the 
symbols in this article), to: 

 
where 

                 (13) 
In the above equation, Zα/2 was used for the two-sided test instead of Zα employed in the 
paper by Cai and Zeng5.  Using the ratio of the unexposed to exposed (K) defined in this 
study, the quantities p1 and p2, the proportion of the exposed and that of the unexposed in 
the entire cohort, are given as p1=1/(1+K) and p2=K/(1+K), respectively, and θ is defined 
as θ=log(Λ0/Λ1), where Λ1 and Λ0 are the cumulative hazard in the exposed and unexposed, 
respectively, and given as Λi =-log(1-Pi) by using the cumulative incidence proportion, P1 
and P0 in the entire cohort defined in this study.  It may be noted that in equation (11) in 
Cai and Zeng5, the size of the subcohort is formulated as a function of the given size of the 
entire cohort while in Eq.(13) above, both of the entire cohort size (N) and subcohort size, n 
(given as n=mNPD), are formulated explicitly as a function of m which is assigned by the 
researcher as in (3) and (4).  In addition, to compare the empirical power and type I 
empirical error with those by Kim et al.4, the formula for the power 
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given as their equation (2) has been converted, using the relationship nD=PDn/q=PDN, 
nC=n(1-PD)=mnD(1-PD)= mPDN(1-PD), to: 

 
where 

 
 

and 

 
(14) 

N1, N0 and n are estimated as N1=N/(1+K), N0=KN1 and n=NmPD using N estimated in (14).  
It may be noted that in equation (2) in Kim et al.4, the power is estimated for a subcohort 
sampled from a given size of the entire cohort with a sampling fraction of q.  In Eq. (14) 
above, however, both of the size of the entire cohort, N, and that of the subcohort, n, are 
formulated explicitly as a function of m as in (3) and (4).  The simulation data were 
analyzed by the Cox model as in the paper by Self and Prentice7 using SAS 9.1 (SAS, 
North Carolina) with the program obtained through Statlib 
(http://lib.stat.cmu.edu/general/robphreg)8. 
 
Results of simulation 
eTable 1 shows the values of N1 estimated by (3) and (12) as well as empirical power levels 
estimated as the fraction of the trials where the null hypothesis (RR=1) was rejected in 
10,000 iterations for each combination of α (fixed as 0.05, two-sided), β(0.1 or 0.2), K (0.25, 
0.5, 1, 2 or 4), P0 (0.001, 0.01 or 0.01) and m (1 or 5 [for P0=0.001 and 0.01] and 1 or 3 [for 
P0=0.1]) for RR=2.  eTable 2 shows the estimates for N1 and empirical power levels for 
RR=3 using the same combination of α, β, P0, K and m as in eTable 1.  The estimates of N1 
(dotted lines) and N (solid lines) in Eq.(3) for RR=3 (as in eTable 2) are shown in eFigure 1 
and the empirical power in eTable 2 are shown in eFigure 2.  As shown in eFigure 1, for 
the particular combination of α, β, P0, RR and m, N is the smallest when K=1.  When m=1, 
the sample size estimated by (3) is larger than that by (12) when K<1 (open versus closed 
circles (for β=0.1) and open versus closed triangles (for β=0.2) in eFigure 1).  However, 
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the estimate by (3) is smaller than that by (12) when K>1.  The estimate by (3) also differs 
from that by (12) when m=5 (for P0=0.001 and 0.01) or m=3 (for P0=0.1), though the 
difference is less remarkable.  As shown in eTables 1 and 2 and eFigure 2, Eq.(12) (closed 
circles (β=0.1) and closed triangles (β=0.2) in eFigure 2) gives the empirical power that is 
relatively stable and near to the nominal power, (1-β).  The empirical power obtained by 
Eq.(3) (open circles (β=0.1) and open triangles (β=0.2) in eFigure 2) tends to decrease with 
the increase of K.  The empirical power by Eq.(3) is however larger than or near to the 
nominal power in general as long as the parameters are in the range examined in eTables 1 
and 2 and eFigure 2.  In eTable 3, results for some additional simulations are shown for a 
selected combination of parameters where α, β, RR and m are fixed as α=0.05, β=0.2, RR=3 
and m=1.  As shown in eTable 3, the Type I empirical error is near to the nominal error 
(0.05) irrespective of the method used.  When the Weibull distribution is assumed for the 
occurrence of events estimated by the model in (12), the empirical power for s=0.3 and 
s=2.5 (s is the shape parameter) is similar to that for s=1 where the hazard is constant.  
Eq.(13) derived from the formula from Cai and Zeng5 tends to give an empirical power less 
than nominal power (i.e., underpower) when K<1 but show the opposite (overpower) when 
K>1.  Eq. (14) derived from the formula for a case-control study in Kim et al.4 provides 
the empirical power close to the nominal power when P0=0.01 and 0.001 but tends to yield 
too large estimate of N when P0=0.1. 
 
Discussion and conclusion 
In Eq.(3) or (12) m but not q (sampling fraction) is assigned by the researcher as the key 
quantity though it is q that is often mentioned in the case-cohort study such as 'a 10% 
random sample of subjects was selected from the entire cohort to serve as the subcohort'9..  
Though q and m are simply related as q=mPD, the use of m may make the researcher realize 
that the particular value of q (e.g., 10%) can be either too large, optimal or too small 
depending on PD.  There may be no single answer about what is the best value of m.  If 
the estimation for all or some of co-variates is quite costly, (e.g., expensive laboratory test 
is required), the value of ndetail may be minimized.  For a single event, the expected 
number of cases and the size of the subcohort are given as (1+1/m)NfullPD and 
m(1+1/m)NfullPD, respectively.  The expected number of cases who have been selected as a 
subcohort member is m(1+1/m)NfullPD

2. The expected value of ndetail may be therefore given 

as (1+1/m)(m+1-PD)NfullPD and the smallest when DPm −= 1/1 .  For multiple events, 
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values of Nfull may be calculated for each kind of the events of interest and the largest Nfull 
(defind as Nfullmax) may be adopted.  When PD for the event used to estimate Nfullmax is 
defined as PDmin, the expected number of the cases for that event may be given as 
(1+1/m)NfullmaxPDmin.  If the total number of the cases for all kinds of the events of interest 
is r times larger than this quantity, or r(1+1/m)NfullmaxPDmin, ndetail may be given as 

(1+1/m)(m-mrPDmin+r)NfullmaxPDmin which will be the smallest when )1/( minDrPrm −=  

where ndetail is minmax
2

min )1( DfullD PNrPr −+ .  For the scenario of the statin study (see 

the paragraph following Eq.(4)), the incidence proportion in the unexposed is 0.1% for one 
of the 3 muscle or hepatic events (the increase of CPK>10ULN, that of AST>3ULN, and 
that of ALT>3ULN), 0.4% for proteinuria and 2% for hematuria.  If the actual risk is 
increased by a factor of 4 for all of these 5 target events, r may be given as 27 (3 for the 3 
events with the incidence of 0.1% plus 4 for the event with the incidence of 0.4% plus 20 

for the incidence of 2%) and )1/( minDrPr −  may be around 5.  The incidence of the 

event in the real study is however difficult to predict in advance.  For instance, the 
incidence may not be in fact affected by the exposure as opposed to the (alternative) 
hypothesis.  In the imaginary statin study, the possible range of P0 is 0.1-0.5% for the 
muscle event and 0.1% or more for the two hepatic events.  The incidence in the actual 
study can be higher (e.g., 0.2% or more) than that used in the sample size estimation 
because the smallest value of the possible range of the incidence (i.e., 0.1%) may be used 
for the sample size estimation.   We believe however that in many occasions m=3 to 5 
may be chosen as an optimal value of m.  This is because the entire cohort size is just 1.2 
to 1.3 (the value of 1+1/m when m=3 to 5) times larger than its minimum value (the size of 
the full cohort) while the ratio of ndetail to its smallest quantity 

2
minmin )1/())(/11( DD rPrrmrPmm −++−+  is less than 2 irrespective of the value of r 

provided that r>1.  For an existing cohort with a specific sample size defined as Navailable 
(which should be greater than Nfull), the possible smallest number of m defined as mmin 
(which is not necessarily an integer) is given as mmin=Nfull/(Navailable-Nfull) because the 
relationship Navailable=(1+1/mmin)Nfull should hold.  If Navailable is much larger than Nfull and 
mmin<1, the use of mmin may result in too many cases and too small subcohort.  For 
example, if a large cohort of half million subjects is available for our imaginary statin study 



11 
 

where Nfull=9,986, mmin is calculated as 0.02.  The resultant case-cohort study is obviously 
inefficient as the expected number of cases (NPD where N=500,000 and PD=0.00175) is 
875 and the required sample size of the subcohort (NmminPD) is 18. One possible option for 
such occasion is to use a fraction of the available cohort as the entire cohort of which the 
size is estimated as in the earlier parts of this manuscript.  As in eTable 3, several different 
approaches for sample size estimation can yield similar results as noted by Kim et al.4  
The best approach may depend on the circumstance where the sample size formula is used.  
For the full cohort study, for instance, instead of the conventional formula of the sample 
size (Eq.(1)), simplified formulae such as that shown by Schulz and Grimes10 or that by 
Torgerson and Miles11 may be useful when no guidance from a statistician is available.  In 
such a circumstance, Eq.(3) may be advantageous particularly when a case-cohort study is a 
candidate among others (such as a full cohort study or nested case-control study) because 
the comparison between different designs is straightforward.  Eq.(3) provides a 
satisfactory estimate in general though Eq.(3) may somewhat underestimate the sample size 
when both K and RR are larger than 1. 
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eFigure 1. Size of the exposed subjects (dotted lines) and that of the entire cohort (solid 
lines). Open symbols (circles and triangles) indicate estimates by Eq.(3) while closed 
symbols indicate estimates by Eq.(12). Open (Eq.3) and closed (Eq.12) circles are estimates 
for = 0.1 and open (Eq.3) and closed (Eq.12) triangles are estimates for = 0.2. The figures 
are shown for six combinations of P0 and m. Other parameter values are set as = 0.05 and 
RR=3. 
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eFigure 2. Empirical powers of Eq.(3) and Eq.(12). Open symbols (circles and triangles) 
indicate empirical powers by Eq.(3) while closed symbols indicate those by Eq.(12). Open 
(Eq.3) and closed (Eq.12) circles are empirical powers for = 0.1 and open (Eq.3) and closed 
(Eq.12) triangles are those for = 0.2. The figures are shown for six combinations of P0 and 
m. Other parameter values are set as = 0.05 and RR = 3. 
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eTable 1. Empirical power of the case-cohort study (RR=2) 
    K=0.25 K=0.5 K=1 K=2 K=4 

P0 β m method N1 Power N1 Power N1 Power N1 Power N1 Power 
0.001 0.2 1 Eq.3 125921 0.834 73470 0.825 47021 0.818 33612 0.793 26795 0.776 

   Eq.12 120283 0.818 71391 0.816 47022 0.818 34950 0.811 29024 0.806 
    5 Eq.3 75553 0.819 44082 0.818 28213 0.804 20167 0.796 16077 0.795 
   Eq.12 74368 0.805 43626 0.809 28185 0.814 20419 0.806 16519 0.799 
 0.1 1 Eq.3 162420 0.921 96331 0.912 62946 0.909 45974 0.908 37317 0.900 
   Eq.12 152707 0.900 92715 0.905 62948 0.910 48365 0.915 41345 0.924 
    5 Eq.3 97452 0.906 57799 0.907 37768 0.909 27584 0.903 22390 0.905 
   Eq.12 95445 0.897 57024 0.900 37730 0.907 28041 0.910 23191 0.914 
              
0.01 0.2 1 Eq.3 12402 0.831 7240 0.825 4637 0.816 3317 0.795 2645 0.778 

   Eq.12 11841 0.819 7034 0.818 4638 0.817 3451 0.815 2869 0.813 
    5 Eq.3 7441 0.821 4344 0.816 2782 0.803 1990 0.804 1587 0.800 
   Eq.12 7249 0.808 4257 0.809 2754 0.814 1998 0.805 1618 0.806 
 0.1 1 Eq.3 16003 0.920 9494 0.916 6206 0.914 4534 0.905 3681 0.894 
   Eq.12 15036 0.901 9135 0.900 6208 0.916 4775 0.919 4085 0.924 
    5 Eq.3 9602 0.903 5697 0.911 3724 0.909 2721 0.910 2209 0.908 
   Eq.12 9309 0.897 5566 0.904 3687 0.905 2742 0.910 2270 0.911 
              

0.1 0.2 1 Eq.3 1050 0.850 617 0.840 398 0.826 287 0.809 230 0.788 
   Eq.12 997 0.831 598 0.831 400 0.833 301 0.831 253 0.831 
    3 Eq.3 700 0.854 412 0.852 266 0.842 192 0.835 154 0.827 
   Eq.12 614 0.801 367 0.813 243 0.807 180 0.813 149 0.813 
 0.1 1 Eq.3 1361 0.932 810 0.931 532 0.918 390 0.913 318 0.904 
   Eq.12 1269 0.907 777 0.914 534 0.924 416 0.929 359 0.934 
    3 Eq.3 907 0.934 540 0.932 355 0.935 260 0.927 212 0.922 
   Eq.12 791 0.895 480 0.901 324 0.911 246 0.914 208 0.920 
Empirical power calculated as the proportion of the trials with hazard ratio estimated by the Cox regression analysis is 
significantly different from 1 (α=0.05, two-sided) in 10,000 iterations shown for each combination of K, β, P0, and m.  The 
data for RR=2 are shown.  Nominal power is (1-β). 
Note; K= ratio of the unexposed to exposed; N1= size of the exposed in the entire cohort; β= value of β in Eqs. (3) and (12);  
P0=probability of failure in the unexposed; RR=relative risk (incidence proportion ratio) in the exposed to unexposed; m=ratio 
of the subcohort to the expected number of cases in the entire cohort; 
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eTable 2. Empirical power of the case-cohort study (RR=3) 
    K=0.25 K=0.5 K=1 K=2 K=4 

P0 β m method N1 Power N1 Power N1 Power N1 Power N1 Power 
0.001 0.2 1 Eq.3 43080 0.861 24918 0.846 15664 0.833 10899 0.799 8430 0.778 

   Eq.12 40577 0.830 23943 0.834 15666 0.834 11614 0.829 9692 0.829 
    5 Eq.3 25848 0.822 14951 0.817 9399 0.815 6540 0.799 5058 0.794 
   Eq.12 25324 0.809 14738 0.814 9387 0.813 6677 0.809 5314 0.807 
 0.1 1 Eq.3 54550 0.928 32337 0.924 20969 0.919 15074 0.910 11996 0.893 
   Eq.12 50283 0.909 30652 0.919 20971 0.927 16360 0.931 14310 0.943 
    5 Eq.3 32730 0.914 19403 0.910 12582 0.914 9045 0.911 7198 0.910 
   Eq.12 31854 0.904 19044 0.907 12565 0.913 9294 0.921 7666 0.921 
              
0.01 0.2 1 Eq.3 4214 0.854 2441 0.849 1537 0.829 1071 0.804 829 0.772 

   Eq.12 3967 0.834 2345 0.832 1538 0.837 1143 0.836 956 0.828 
    5 Eq.3 2529 0.820 1465 0.823 922 0.814 643 0.811 497 0.785 
   Eq.12 2441 0.810 1424 0.805 910 0.811 649 0.811 518 0.809 
 0.1 1 Eq.3 5339 0.928 3168 0.928 2056 0.929 1479 0.912 1177 0.893 
   Eq.12 4917 0.904 3002 0.916 2058 0.927 1609 0.938 1410 0.945 
    5 Eq.3 3204 0.915 1901 0.915 1234 0.920 888 0.912 707 0.907 
   Eq.12 3074 0.903 1841 0.907 1217 0.912 902 0.921 745 0.923 
              

0.1 0.2 1 Eq.3 328 0.859 193 0.859 124 0.840 88 0.820 68 0.784 
   Eq.12 306 0.841 185 0.834 125 0.845 96 0.856 82 0.854 
    3 Eq.3 219 0.874 129 0.871 83 0.864 59 0.847 46 0.838 
   Eq.12 178 0.777 108 0.791 73 0.820 54 0.821 45 0.819 
 0.1 1 Eq.3 418 0.934 251 0.933 164 0.928 119 0.922 95 0.906 
   Eq.12 381 0.913 237 0.919 167 0.935 134 0.946 120 0.959 
    3 Eq.3 279 0.949 167 0.948 110 0.944 80 0.940 64 0.927 
   Eq.12 226 0.891 140 0.901 96 0.910 75 0.920 64 0.928 
Empirical power calculated as in eTable 1.  The data for RR=3 are shown.    
Note; see footnotes to eTable 1 for an explanation of the abbreviations. 
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eTable 3 Empirical power and Type I error of the case-cohort study (RR=3) 
    K=0.25 K=1 K=4 
P0 β m Method N Power Type I error N Power Type I error N Power Type I error 
0.001 0.2 1 Eq.3 (s=1) 53850 0.852 0.045 31328 0.826 0.047 42150 0.775 0.044 
   Eq.12 (s=0.3) 50720 0.824 0.046 31330 0.824 0.051 48460 0.814 0.045 
   Eq.12 (s=1) 50720 0.834 0.042 31330 0.830 0.050 48460 0.821 0.045 
   Eq.12 (s=2.5) 50720 0.835 0.045 31330 0.818 0.050 48460 0.817 0.043 
   Eq.13 (s=1) 31168 0.609 0.041 25938 0.764 0.049 57915 0.881 0.048 
   Eq.14 (s=1) 47143 0.805 0.043 28864 0.805 0.045 45435 0.805 0.044 
0.01 0.2 1 Eq.3 (s=1) 5268 0.857 0.046 3072 0.833 0.047 4140 0.763 0.047 
   Eq.12 (s=0.3) 4958 0.815 0.045 3074 0.818 0.044 4775 0.811 0.044 
   Eq.12 (s=1) 4958 0.838 0.044 3074 0.831 0.045 4775 0.827 0.043 
   Eq.12 (s=2.5) 4958 0.833 0.045 3074 0.826 0.045 4775 0.819 0.045 
   Eq.13 (s=1) 3030 0.606 0.040 2528 0.755 0.045 5660 0.884 0.046 
   Eq.14 (s=1) 4763 0.826 0.043 2912 0.814 0.049 4575 0.808 0.040 
0.1 0.2 1 Eq.3 (s=1) 409 0.865 0.043 248 0.847 0.050 340 0.787 0.041 
   Eq.12 (s=0.3) 381 0.805 0.044 248 0.824 0.048 405 0.837 0.044 
   Eq.12 (s=1) 381 0.844 0.044 248 0.848 0.049 405 0.850 0.046 
   Eq.12 (s=2.5) 381 0.834 0.044 248 0.853 0.048 405 0.849 0.046 
   Eq.13 (s=1) 221 0.584 0.041 190 0.742 0.045 440 0.881 0.047 
   Eq.14 (s=1) 541 0.941 0.044 322 0.930 0.048 495 0.916 0.047 

Empirical power calculated as in eTable 1.  The data for RR=3 are shown.   Eq.3=Eq. (3); Eq.12=Eq.(12); Eq.13=Eq.(13) 
converted from the equation by Cai and Zeng (2004); Eq.14=Eq.(14) converted from the equation by Kim et al. 
(2006);s=shape parameter in the Weibull distribution.  Note; see footnotes to eTable 1 for an explanation for other 
abbreviations. 
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/************************************************************************ 

* Simulation program for sample size for case-cohort design             * 

*                                                                       * 

* distribution for time to event data: Exponential                      * 

*                                                                       * 

*                                                            2009/09/30 * 

*************************************************************************/ 

 

/* option ------------------------------------------------------------ */ 

  options nodate nocenter pageno=1 /* nonotes */;title; 

 

  %macro new_sim_ex(lotnum); 

 

/* Kubota and Wakana simple formula ---------------------------------- */ 

  data d2(keep=type formula n0 n1 n k m p0 p1 rr alpha beta nite);set d1; 

    pd=p0*(rr+k)/(1+k);p1=p0*rr; 

    n1=round(((probit(1-alpha/2)*sqrt((1+1/k)*pd*(1-pd)) 

      +probit(1-beta)*sqrt(p1*(1-p1)+p0*(1-p0)/k))**2)/((p0-p1)**2)*(1+1/m)); 

    n0=round(n1*k);n=n0+n1; 

    formula=1; 

  run; 

 

/* Kubota and Wakana hypergeometric formula -------------------------- */ 

  data d3(keep=type formula n0 n1 n k m p0 p1 rr alpha beta nite);set d1; 

    pd=p0*(rr+k)/(1+k);p1=p0*rr;q=m*pD; 

    f0=(1-q)/(1-pd);f1=((k*rr+1)**2)*(1-q)/((k+rr)*(k*rr*(1-p1)+(1-p0))); 

    n1=round(((probit(1-alpha/2)*sqrt((1+1/k)*pd*(1-pd)*(1+1/m*f0)) 

      +probit(1-beta)*sqrt((p1*(1-p1)+p0*(1-p0)/k)*(1+1/m*f1)))**2)/((p0-p1)**2)); 

    n0=round(n1*k);n=n0+n1; 

    formula=2; 

  run; 

 

/* Cai and Zeng ------------------------------------------------------ */ 
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  data d4(keep=type formula n0 n1 n k m p0 p1 rr alpha beta nite);set d1; 

    pd=p0*(rr+k)/(1+k);p1=p0*rr;pr1=1/(1+k);pr2=k/(1+k); 

    lamda1=-log(1-p1);lamda2=-log(1-p0); 

    theta=log(lamda2/lamda1); 

    b=((probit(1-alpha/2)+probit(1-beta))**2)/((theta**2)*pr1*pr2*pd); 

    n1=round(b*(1+m*(1-pd))/(m*(1+k)));n0=round(n1*k);n=n0+n1; 

    formula=3; 

  run; 

 

/* Kim et al. -------------------------------------------------------- */ 

  data d5(keep=type formula n0 n1 n k m p0 p1 rr alpha beta nite);set d1; 

    pd=p0*(rr+k)/(1+k);p1=p0*rr; 

    pec=1/(1+k);ped=(rr*pec)/(1+pec*(rr-1));pbar=(ped+m*(1-pd)*pec)/(1+m*(1-pd)); 

    ft=sqrt(pbar*(1-pbar)*(1+1/(m*(1-pd))));st=sqrt(ped*(1-ped)+pec*(1-pec)/(m*(1-pd))); 

    n1=round(((probit(1-alpha/2)*sqrt(pbar*(1-pbar)*(1+1/(m*(1-pd)))) 

      +probit(1-beta)*sqrt(ped*(1-ped)+pec*(1-pec)/(m*(1-pd))))**2)/(pd*(ped-pec)**2*(1+k))); 

    n0=round(n1*k);n=n0+n1; 

    formula=4; 

  run; 

 

  data d6;set d2 d3 d4 d5;run; 

  proc sort data=d6 out=d6;by type formula;run; 

  proc means data=d6 noprint;var n;output out=d7 max=nall;run; 

  data d8;set d7;call symput('nallmax',compress(nall));run; 

 

/* subcohort members ------------------------------------------------ */ 

  data d9(keep=type formula lm ite id scr nite);set d6; 

    lm=round((n1*p1+n0*p0)*m+.5,1);do ite=1 to nite;do id=1 to n;scr=ranuni(0);output;end;end; 

  run; 

  proc sort data=d9 out=d9;by type formula lm nite ite id;run; 

  proc rank data=d9 out=d9;by type formula lm nite ite;var scr;ranks scr_r;run; 

  data d9(keep=type formula nite lm ite id scr);set d9;by type formula nite lm ite id; 

    if (.<scr_r<=lm) then scr=1;else scr=0; 
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  run; 

  proc transpose data=d9 out=d10 prefix=sc;by type formula nite lm ite;var scr;run; 

  data d11;merge d10 d6;by type formula;run; 

  proc sort data=d11 out=d11;by type formula ite;run; 

 

/* Exponential distribution ----------------------------------------- */ 

  data d12(keep=type formula nite ite event startime survtime lwgt id exps);set d11;by type formula ite; 

    array sc{*} sc1-sc&nallmax; 

    obs_t=1;lambda0=-log(1-p0)/obs_t;lambda1=-log(1-p1)/obs_t; 

    exps=1;do id=1 to n1; 

      x=ranuni(0);time=round(-log(1-x)/lambda1,.0001); 

      if ((x<=p1)&(sc{id}=1)) then do;     event=1;startime=time-0.00005;survtime=time;        lwgt=0;  output; 

                                           event=0;startime=0;           survtime=time-0.00005;lwgt=0;  

output;end; 

      else if ((x<=p1)&(sc{id}=0)) then do;event=1;startime=time-0.00005;survtime=time;        lwgt=-10;output;end; 

      else if ((x>p1)&(sc{id}=1))  then do;event=0;startime=0;           survtime=9;           lwgt=0;  output;end; 

    end; 

    exps=0;do id=n1+1 to n; 

      x=ranuni(0);time=round(-log(1-x)/lambda0,.0001); 

      if ((x<=p0)&(sc{id}=1)) then do;     event=1;startime=time-0.00005;survtime=time;        lwgt=0;  output; 

                                           event=0;startime=0;           survtime=time-0.00005;lwgt=0;  

output;end; 

      else if ((x<=p0)&(sc{id}=0)) then do;event=1;startime=time-0.00005;survtime=time;        lwgt=-10;output;end; 

      else if ((x>p0)&(sc{id}=1))  then do;event=0;startime=0;           survtime=9;           lwgt=0;  output;end; 

    end; 

  run; 

 

/* proportional hazard model (Self and Prentice) --------------------- */ 

  proc phreg data=d12 outest=d13 covsandwich(aggregate) covout noprint;by type formula ite; 

    model (startime,survtime)*event(0)=exps /ties=breslow offset=lwgt;id id;run; 

  data d13(keep=type formula ite est vari);set d13;by type formula ite; 

    if (first.ite) then do;est=.;vari=.;end;retain est vari; 

    select; 
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      when(lowcase(_type_)='parms') est=exps; 

      when((lowcase(_type_)='cov')&(lowcase(_name_)='exps')) vari=exps; 

      otherwise; 

    end; 

    if (last.ite) then output; 

  run; 

  data d14;merge d13 d6;by type formula;run; 

  data d14(keep=type formula n0 n1 p0 p1 rr m alpha beta nite k lot ite sig est vari);set d14;by type formula ite; 

    p=2*(1-probnorm(abs(est/sqrt(vari))));if (.<p<=alpha) then sig=1;else sig=0;lot=&lotnum; 

  run; 

  data d15;infile fname1;input type formula n0 n1 p0 p1 rr m alpha beta nite k lot ite sig est vari;run; 

  data d16;set d15 d14;run; 

  data _null_;set d16; 

    file fname1 noprint; 

    put @1 type 6.0 @11 formula 1.0 @13 n0 8.0 @23 n1 8.0 @33 p0 6.4 @40 p1 6.4 @47 rr 6.4 @54 m 2.0 

        @57 alpha 5.3 @63 beta 5.3 @70 nite 7.0 @80 k 5.3 @86 lot 3.0 @90 ite 7.0 @99 sig 1.0 @101 est 8.3 @111 vari 

8.3; 

  run; 

 

  proc datasets;delete d2-d15;run;quit; 

 

  %mend new_sim_ex; 

 

  %macro summary; 

 

/* compute power mean percentile ------------------------------------- */ 

  proc sort data=d16 out=d16;by type formula n0 n1 p0 p1 rr m alpha beta k;run; 

  proc univariate data=d16 noprint;by type formula n0 n1 p0 p1 rr m alpha beta k; 

    var sig est vari;output out=d17 n=total_n xxx_n xxx_nn 

                     mean=power est_m vari_m median=xxx est_md vari_md 

                     pctls pctlpts=2.5 97.5 pctlpre=xxx_ est_ vari_; 

  run; 

  data d17;set d17;by type formula n0 n1 p0 p1 rr m alpha beta k; 
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    ex_est_m=exp(est_m);ex_est_md=exp(est_md);ex_est_2_5=exp(est_2_5);ex_est_97_5=exp(est_97_5); 

  run; 

  data _null_;set d17; 

    file fname2 noprint; 

    put @1 type 6.0 @11 formula 1.0 @13 n0 8.0 @23 n1 8.0 @33 p0 6.4 @40 p1 6.4 @47 rr 6.4 @54 m 2.0 

        @57 alpha 5.3 @63 beta 5.3 @70 total_n 7.0 @80 k 5.3 @87 power 5.3 @93 ex_est_m 8.3 @102 ex_est_2_5 8.3 

        @111 ex_est_md 8.3 @120 ex_est_97_5 8.3 @129 vari_m 8.3; 

  run; 

 

  proc datasets;delete d16-d17;run;quit; 

 

  %mend summary; 

 

/* output file ------------------------------------------------------- */ 

  filename fname1 'C:\sp_each_ex.out'; 

  filename fname2 'C:\sp_power_ex.out'; 

  

/* Note: there will be an error message on the log window at the first 

 running of this SAS code since the output file is appended to an 

 existing file which has the same file name. If the file is not prepared, 

 a new file is created. You can disregard the error message.           */ 

 

/* input simulation condition parameters ----------------------------- */ 

 data d1; 

    input type k m p0 rr alpha beta nite; 

    cards; 

       1  4  1 0.001 3 0.05 0.2 1000 

       2  4  5 0.001 3 0.05 0.2 1000 

       3  4  1 0.01  3 0.05 0.2 1000 

       4  4  5 0.01  3 0.05 0.2 1000 

       5  4  1 0.1   3 0.05 0.2 1000 

       6  4  3 0.1   3 0.05 0.2 1000 

    ; 
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  run; 

 

  %new_sim_ex(1); 

  %summary; 
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/************************************************************************ 

* Simulation program for sample size for case-cohort design             * 

*                                                                       * 

* distribution for time to event data: Weibull                          * 

*                                                                       * 

*                                                            2009/09/29 * 

*************************************************************************/ 

 

/* option ------------------------------------------------------------ */ 

  options nodate nocenter pageno=1 /* nonotes */;title; 

 

/* macro ------------------------------------------------------------- */ 

 

  %macro new_sim_we(lotnum); 

 

/* Kubota and Wakana simple formula ---------------------------------- */ 

  data d2(keep=type formula n0 n1 n k m p0 p1 rr alpha beta nite gamma);set d1; 

    pd=p0*(rr+k)/(1+k);p1=p0*rr; 

    n1=round(((probit(1-alpha/2)*sqrt((1+1/k)*pd*(1-pd)) 

      +probit(1-beta)*sqrt(p1*(1-p1)+p0*(1-p0)/k))**2)/((p0-p1)**2)*(1+1/m)); 

    n0=round(n1*k);n=n0+n1; 

    formula=1; 

  run; 

 

/* Kubota and Wakana hypergeometric formula -------------------------- */ 

  data d3(keep=type formula n0 n1 n k m p0 p1 rr alpha beta nite gamma);set d1; 

    pd=p0*(rr+k)/(1+k);p1=p0*rr;q=m*pD; 

    f0=(1-q)/(1-pd);f1=((k*rr+1)**2)*(1-q)/((k+rr)*(k*rr*(1-p1)+(1-p0))); 

    n1=round(((probit(1-alpha/2)*sqrt((1+1/k)*pd*(1-pd)*(1+1/m*f0)) 

      +probit(1-beta)*sqrt((p1*(1-p1)+p0*(1-p0)/k)*(1+1/m*f1)))**2)/((p0-p1)**2)); 

    n0=round(n1*k);n=n0+n1; 

    formula=2; 

  run; 



25 
 

 

/* Cai and Zeng ------------------------------------------------------ */ 

  data d4(keep=type formula n0 n1 n k m p0 p1 rr alpha beta nite gamma);set d1; 

    pd=p0*(rr+k)/(1+k);p1=p0*rr;pr1=1/(1+k);pr2=k/(1+k); 

    lamda1=-log(1-p1);lamda2=-log(1-p0);theta=log(lamda2/lamda1); 

    b=((probit(1-alpha/2)+probit(1-beta))**2)/((theta**2)*pr1*pr2*pd); 

    n1=round(b*(1+m*(1-pd))/(m*(1+k)));n0=round(n1*k);n=n0+n1; 

    formula=3; 

  run; 

 

/* Kim et al. -------------------------------------------------------- */ 

  data d5(keep=type formula n0 n1 n k m p0 p1 rr alpha beta nite gamma);set d1; 

    pd=p0*(rr+k)/(1+k);p1=p0*rr;pec=1/(1+k);ped=(rr*pec)/(1+pec*(rr-1)); 

    pbar=(ped+m*(1-pd)*pec)/(1+m*(1-pd));ft=sqrt(pbar*(1-pbar)*(1+1/(m*(1-pd)))); 

    st=sqrt(ped*(1-ped)+pec*(1-pec)/(m*(1-pd))); 

    n1=round(((probit(1-alpha/2)*sqrt(pbar*(1-pbar)*(1+1/(m*(1-pd)))) 

      +probit(1-beta)*sqrt(ped*(1-ped)+pec*(1-pec)/(m*(1-pd))))**2)/(pd*(ped-pec)**2*(1+k))); 

    n0=round(n1*k);n=n0+n1; 

    formula=4; 

  run; 

 

  data d6;set d2 d3 d4 d5;run;proc sort data=d6 out=d6;by type formula;run; 

  proc means data=d6 noprint;var n;output out=d7 max=nall;run; 

  data d8;set d7;call symput('nallmax',compress(nall));run; 

 

/* subcohort members ------------------------------------------------- */ 

  data d9(keep=type formula lm ite id scr nite);set d6; 

    lm=round((n1*p1+n0*p0)*m+.5,1);do ite=1 to nite;do id=1 to n;scr=ranuni(0);output;end;end; 

  run; 

  proc sort data=d9 out=d9;by type formula lm nite ite id;run; 

  proc rank data=d9 out=d9;by type formula lm nite ite;var scr;ranks scr_r;run; 

  data d9(keep=type formula nite lm ite id scr);set d9;by type formula nite lm ite id; 

    if (.<scr_r<=lm) then scr=1;else scr=0; 
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  run; 

  proc transpose data=d9 out=d10 prefix=sc;by type formula nite lm ite;var scr;run; 

  data d11;merge d10 d6;by type formula;run; 

  proc sort data=d11 out=d11;by type formula ite;run; 

 

/* Weibull distribution ---------------------------------------------- */ 

  data d12(keep=type formula nite ite event startime survtime lwgt id exps);set d11;by type formula ite; 

    array sc{*} sc1-sc&nallmax; 

    obs_t=1;lambda0=(-log(1-p0)/obs_t)**(1/gamma);lambda1=(-log(1-p1)/obs_t)**(1/gamma); 

    exps=1;do id=1 to n1; 

      x=ranuni(0);time=round(((-log(1-x))**(1/gamma))/lambda1,.0001); 

      if ((x<=p1)&(sc{id}=1)) then do;     event=1;startime=time-0.00005;survtime=time;        lwgt=0;  output; 

                                           event=0;startime=0;           survtime=time-0.00005;lwgt=0;  

output;end; 

      else if ((x<=p1)&(sc{id}=0)) then do;event=1;startime=time-0.00005;survtime=time;        lwgt=-10;output;end; 

      else if ((x>p1)&(sc{id}=1))  then do;event=0;startime=0;           survtime=9;           lwgt=0;  output;end; 

    end; 

    exps=0;do id=n1+1 to n; 

      x=ranuni(0);time=round(((-log(1-x))**(1/gamma))/lambda0,.0001); 

      if ((x<=p0)&(sc{id}=1)) then do;     event=1;startime=time-0.00005;survtime=time;        lwgt=0;  output; 

                                           event=0;startime=0;           survtime=time-0.00005;lwgt=0;  

output;end; 

      else if ((x<=p0)&(sc{id}=0)) then do;event=1;startime=time-0.00005;survtime=time;        lwgt=-10;output;end; 

      else if ((x>p0)&(sc{id}=1))  then do;event=0;startime=0;           survtime=9;           lwgt=0;  output;end; 

    end; 

  run; 

 

/* proportional hazard model (Self and Prentice) --------------------- */ 

  proc phreg data=d12 outest=d13 covsandwich(aggregate) covout noprint;by type formula ite; 

    model (startime,survtime)*event(0)=exps /ties=breslow offset=lwgt;id id;run; 

  data d13(keep=type formula ite est vari);set d13;by type formula ite; 

    if (first.ite) then do;est=.;vari=.;end;retain est vari; 

    select; 
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      when(lowcase(_type_)='parms') est=exps; 

      when((lowcase(_type_)='cov')&(lowcase(_name_)='exps')) vari=exps; 

      otherwise; 

    end; 

    if (last.ite) then output; 

  run; 

  data d14;merge d13 d6;by type formula;run; 

  data d14(keep=type formula n0 n1 p0 p1 rr m alpha beta nite k lot ite sig est vari gamma);set d14;by type formula 

ite; 

    p=2*(1-probnorm(abs(est/sqrt(vari)))); 

    if (.<p<=alpha) then sig=1;else sig=0; 

    lot=&lotnum; 

  run; 

  data d15;infile fname1;input type formula n0 n1 p0 p1 rr m alpha beta nite k lot ite sig est vari gamma;run; 

  data d16;set d15 d14;run; 

  data _null_;set d16; 

    file fname1 noprint; 

    put @1 type 6.0 @11 formula 1.0 @13 n0 8.0 @23 n1 8.0 @33 p0 6.4 @40 p1 6.4 @47 rr 6.4 @54 m 2.0 

        @57 alpha 5.3 @63 beta 5.3 @70 nite 7.0 @80 k 5.3 @86 lot 3.0 @90 ite 7.0 @99 sig 1.0 

        @101 est 8.3 @111 vari 8.3 @121 gamma 5.3; 

  run; 

 

  proc datasets;delete d2-d15;run;quit; 

 

  %mend new_sim_we; 

 

  %macro summary; 

 

/* compute power mean percentile ------------------------------------- */ 

  proc sort data=d16 out=d16;by type formula n0 n1 p0 p1 rr m alpha beta k gamma;run; 

  proc univariate data=d16 noprint;by type formula n0 n1 p0 p1 rr m alpha beta k gamma; 

    var sig est vari;output out=d17 n=total_n xxx_n xxx_nn 

                   mean=power est_m vari_m median=xxx est_md vari_md 
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                   pctls pctlpts=2.5 97.5 pctlpre=xxx_ est_ vari_; 

  run; 

  data d17;set d17;by type formula n0 n1 p0 p1 rr m alpha beta k gamma; 

    ex_est_m=exp(est_m);ex_est_md=exp(est_md);ex_est_2_5=exp(est_2_5);ex_est_97_5=exp(est_97_5); 

  run; 

  data _null_;set d17; 

    file fname2 noprint; 

    put @1 type 6.0 @11 formula 1.0 @13 n0 8.0 @23 n1 8.0 @33 p0 6.4 @40 p1 6.4 @47 rr 6.4 @54 m 2.0 @57 alpha 5.3 

@63 beta 5.3 

        @70 total_n 7.0 @80 k 5.3 @87 power 5.3 @93 ex_est_m 8.3 @102 ex_est_2_5 8.3 @111 ex_est_md 8.3 @120 ex_est_97_5 

8.3 

        @129 vari_m 8.3 @138 gamma 5.3; 

  run; 

  proc datasets;delete d16-d17;run;quit; 

 

  %mend summary; 

 

/* output file ------------------------------------------------------- */ 

  filename fname1 'C:\sp_each_we.out'; 

  filename fname2 'C:\sp_power_we.out'; 

 

/* Note: there will be an error message on the log window at the first 

 running of this SAS code since the output file is appended to an 

 existing file which has the same file name. If the file is not prepared, 

 a new file is created. You can disregard the error message.           */ 

 

/* input simulation condition parameters ----------------------------- */ 

  data d1; 

    input type k m p0 rr alpha beta nite gamma; 

    cards; 

       1 4    1 0.001 3 0.05 0.2 1000 0.3 

       2 4    1 0.001 3 0.05 0.2 1000 1 

       3 4    1 0.001 3 0.05 0.2 1000 2.5 
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       4 1    1 0.001 3 0.05 0.2 1000 0.3 

       5 1    1 0.001 3 0.05 0.2 1000 1 

       6 1    1 0.001 3 0.05 0.2 1000 2.5 

       7 0.25 1 0.001 3 0.05 0.2 1000 0.3 

       8 0.25 1 0.001 3 0.05 0.2 1000 1 

       9 0.25 1 0.001 3 0.05 0.2 1000 2.5 

    ; 

  run; 

 

  %new_sim_we(1); 

  %summary; 


