	Observed days	Mean (SD)	Minimum	Maximum	IQR
$PM_{10} (\mu g/m^3), 2$	24-h average				
Renai	224	41.8 (18.8)	14.0	108.0	26.2
Sinjhuang	61	51.1 (27.4)	14.6	138.9	42.3
Nantou	817	60.2 (30.2)	6.1	208.7	41.5
Puli	757	58.9 (27.9)	1.0	165.1	37.2
Jushan	798	63.9 (31.6)	8.5	210.9	46.4
Renwu	91	43.1 (23.2)	16.8	116.2	32.6
SO ₂ (ppb), 24-	h average				
Renai	224	4.3 (4.1)	0.2	48.8	3.9
Sinjhuang	61	3.7 (2.9)	0.6	15.7	2.8
Nantou	807	2.8 (1.5)	0.1	11.4	2.1
Puli	705	1.9 (1.0)	0.2	7.7	1.4
Jushan	777	2.3 (1.2)	0.2	8.0	1.6
Renwu	91	6.9 (4.8)	0.9	25.2	5.3
NO ₂ (ppb), 24-	h average				
Renai	239	17.2 (7.5)	2.5	43.5	11.2
Sinjhuang	60	26.1 (7.8)	11.7	47.2	7.5
Nantou	787	22.0 (9.0)	4.1	49.1	17.0
Puli	704	13.9 (7.0)	2.5	34.3	11.5
Jushan	776	16.9 (8.8)	1.3	42.0	15.1
Renwu	90	17.4 (6.7)	8.2	36.8	7.4
CO (ppm), 1-h	maximum				
Renai	244	1.1 (0.4)	0.4	2.9	0.5
Sinjhuang	61	1.5 (0.7)	0.5	4.1	0.6
Nantou	820	1.0 (0.4)	0.2	4.4	0.6
Puli	779	1.0 (0.4)	0.2	2.9	0.5
Jushan	790	0.8 (0.4)	0.1	3.7	0.5
Renwu	91	0.9 (0.3)	0.3	1.5	0.4
O3 (ppb), 1-h n	naximum				
Renai	243	52.0 (21.6)	10.3	112.7	27.5
Sinjhuang	61	56.9 (26.1)	30.3	138.8	27.1
Nantou	811	73.3 (28.4)	2.9	160.4	39.7
Puli	767	72.5 (29.4)	5.4	167.6	40.0
Jushan	796	77.6 (27.4)	8.4	167.9	38.0
Renwu	91	59.1 (24.8)	21.2	140.1	36.1

eTABLE 1. Summary Statistics of Air Pollution and Meteorological Data among Six Townships^a during the Study Period^b.

Temperature (°C)							
Renai	244	25.9 (3.4)	17.3	31.5	4.8		
Sinjhuang	61	22.7 (3.3)	16.2	29.4	4.9		
Nantou	822	24.6 (5.0)	9.3	32.4	7.7		
Puli	797	22.6 (4.6)	8.7	31.7	6.9		
Jushan	802	24.3 (4.7)	9.3	31.0	7.0		
Renwu	91	27.3 (1.7)	22.0	30.5	2.1		
Dew point (°C)							
Renai	244	20.9 (3.4)	6.5	25.4	3.8		
Sinjhuang	61	16.0 (3.5)	6.3	20.6	3.7		
Nantou	822	19.3 (4.9)	1.1	26.0	7.7		
Puli	797	17.4 (4.8)	1.9	29.4	7.1		
Jushan	802	19.1 (4.8)	1.3	25.3	7.7		
Renwu	91	23.8 (1.8)	18.2	26.8	2.5		

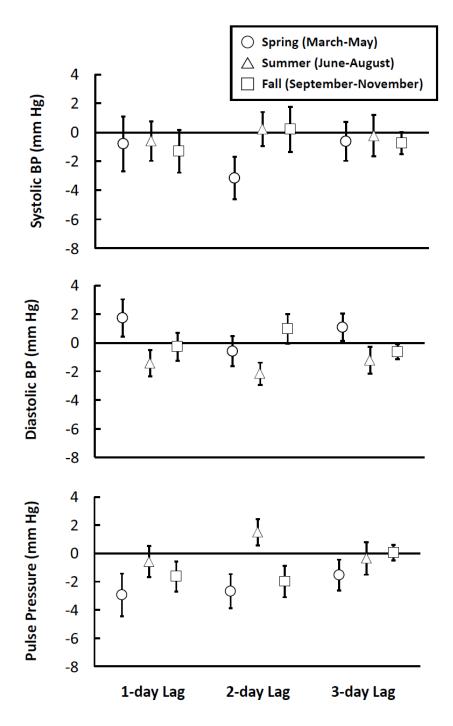
^a According to the township type and potential emission sources, these six townships were classified into following four categories: seaport (Renai), urban (Sinjhuang), rural (Nantou, Puli, and Jushan), and industrial (Renwu) sites.

^b Seaport site, 1 April to 30 November 2002 (244 days); urban site, 1 October to 30 November 2002 (61 days); rural sites, 1 June 2003 to 31 August 2005 (822 days); industrial site, 1 April to 30 June 2002 (91 days).

SD, standard deviation; IQR, interquartile range.

Reference	Study Design	City	PM Size and Mean Concentrations (µg/m ³⁾	Subjects	Main Findings
Ibald –Mulli	Observational	Amsterdam	PM _{2.5}	131 patients	$10 \ \mu\text{g/m}^3$ increase in PM _{2.5} over previous 5
et al.		Helsinki	Amsterdam: 20	with CVDs	days was associated with decreases in SBP
$(2004)^{11}$		Erfurt	Helsinki: 12.7		(-0.36 mm Hg [95% CI: -0.99 to -0.27]) and
			Erfurt: 23.1		DBP (-0.39 mm Hg [95% CI: -0.75 to -0.03])
Zanobetti et	Panel	Boston	PM _{2.5} : 8.8	62 elderly	10.4 μ g/m ³ increase in PM _{2.5} in previous 120
al. (2004) ²				subjects	hours was associated with increases in DBP
					(2.82 mmHg [95% CI: 1.26-4.41]) and SBP
					(2.68 mmHg [95% CI: 0.04-5.38])
Mar et al.	Panel	Seattle	PM _{2.5}	88 subjects	$10 \ \mu g/m^3$ increase in PM _{2.5} in same day was
$(2005)^{12}$			Healthy: 14.5		associated with decreases in SBP (-0.81
			CVDs: 18		mmHg [95% CI: -2.34 to 0.73]) and DBP
			COPD: 14.3		(-0.46 mmHg [95% CI: -1.49 to 0.57])
Ebelt et al.	Panel	Vancouver	PM ₁₀ , PM _{2.5}	16 COPD	Decreased SBP associated with same day
$(2005)^{10}$			Ambient: 17	patients	each PM size fraction exposure
			Personal: 10.3		
Dales et al.	Panel	Ottawa	PM _{2.5}	39 healthy	SBP and DBP were not associated with PM _{2.5}
$(2007)^{17}$			Bus stop 1: 40	volunteers	during the 2-h exposure
			Bus stop 2: 10		
Auchincloss	Observational	Six U.S.	PM _{2.5} : 10.3-21.8	5,112	$10 \ \mu g/m^3$ increase in PM _{2.5} 30-day mean was
et al. (2008) ⁵		communities		subjects	associated with increase in SBP (0.99 mm
					Hg; [95% CI, -0.15 to 2.03])

eTABLE 2. Comparisons of Human Studies on the Blood Pressure Changes in Response to Short-term Exposure to PM.


Dvonch et al. (2009) ⁶	Observational	Detroit	PM _{2.5} : 15.0	347 subjects	10 μ g/m ³ increase in PM ₁₀ was associated with a 3.2 mm Hg increase in SBP
Chuang et al. (2010) ⁸	Observational	Taiwan	PM _{10:} 55.27	7,578 subjects	An 34 μ g/m ³ increase in PM ₁₀ was associated with elevated SBP (0.47 mmHg; [95% CI, -0.09 to 1.02])
Brook et al. (2011) ⁹	Observational	Detroit	PM _{2.5} Community:21.9 Personal: 15.4	120 non-smoking subjects	$10 \ \mu\text{g/m}^3$ increase in personal-level PM _{2.5} was associated with a 1.41 mm Hg increase in SBP and trends towards vasoconstriction at lag 2 day
Hampel et al. (2011) ¹³	Observational	France	PM ₁₀ : 19.1	1,500 pregnant women	PM_{10} was associated with a positive change in diastolic BP (1.1% [0.3-1.8%]) during the first trimester
Chen et al. (Our study)	observational	Taiwan	PM ₁₀ : 58.6	9,238 non-smoking adults	The systolic BP and pulse pressure were decreased by PM_{10}
Nightingale et al. (2000) ¹⁴	Experimental	N/A	DE: 200	10 non-smoking healthy adults	BP was not affected following 2-h exposures
Brook et al. (2002) ¹⁵	Experimental	N/A	PM _{2.5} CAPs: 150	25 healthy adults	BP was not affected following 2-h exposures
Gong et al. (2003) ¹⁶	Experimental	Los Angeles	PM _{2.5} : 174	12 non-smoking healthy; 12 asthmatic	PM _{2.5} decreased SBP in asthmatics, but increased SBP in healthy subjects

volunteers

Urch et al.	Experimental	N/A	PM _{2.5} CAPs: 150	23 healthy	A significant 9.3 % increase in DBP among
$(2005)^3$				adults	healthy adults prior to the end of a 2-h
					exposure
Mills et al.	Experimental	N/A	DE: 300	30 healthy	1-h exposure DE increased 6 mmHg in DBP,
$(2005)^4$				men	with a marginal statistical significance
					compared to filtered air control
Tornqvist et	Experimental	N/A	DE: 330	15 healthy	Changes in BP 24 h following DE exposure
al. (2007) ¹⁸				men	was not observed
Peretz et al.	Experimental	N/A	DE: 100, 200	10 healthy	Changes in SBP or DBP in either healthy
$(2008)^{19}$				and 17 MetS	adults or adults with metabolic syndrome
				volunteers	following a 2-h exposure were not observed
Lundback et	Experimental	N/A	DE: 350	12 healthy	Changes in BP 24 h following DE exposure
al. (2009) ²⁰				volunteers	was not observed, but an increased in arterial
					stiffness was noted.
Fakhri et al.	Experimental	N/A	CAPs: 121.6	50 subjects	A significant increase in DBP by 2.0 mm Hg
$(2009)^7$					with exposure to CAPs combined O ₃
					exposure

PM, particulate matters; $PM_{2.5}$, particulate matters with diameter <2.5 μ m; PM_{10} , particulate matters with diameter <10 μ m; BC, black carbon; CAPs, concentrated ambient particles; DE, Diesel exhaust; CVDs, cardiovascular diseases; COPD, chronic obstructive pulmonary disease; MetS, metabolic syndrome; BP, blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; N/A, not available.

eFIGURE. Associations of systolic and diastolic BP and pulse pressure with PM_{10} : stratified by season. The effect estimates and 95% CIs are for an interquartile range increase in PM_{10} , adjusted for the same variables as in Table 2 except the stratified covariate.

