Appendix. Proofs.

Residual association in situation 3

If $\mathrm{M}^{*}=\mathrm{M}+\gamma_{0}+\gamma_{1} \mathrm{X}+\mathrm{U}$ where U is normally distributed with mean 0 and variance σ_{u}^{2}, the observed regression coefficient for X is approximately $\beta_{1}^{*}=\beta_{1}-\beta_{2}^{*} \gamma_{1}+\beta_{2}^{*}(1-\lambda) \alpha_{1} / \lambda$, where λ is the reliability ratio(5).

Proof. First ignore the random error term U and write $\tilde{M}=\gamma_{0}+M+\gamma_{1} X$. When we consider the model $\operatorname{logit}(\operatorname{Pr}(\mathrm{Y}=1 \mid \tilde{\mathrm{M}}, \mathrm{X}, \mathrm{C}))=\tilde{\beta}_{0}+\widetilde{\beta}_{1} \mathrm{X}+\tilde{\beta}_{2} \tilde{\mathrm{M}}+\tilde{\beta}_{\mathrm{C}}^{\mathrm{t}} \mathrm{C}$, it immediately follows that $\tilde{\beta}_{2}=\beta_{2}, \quad \tilde{\beta}_{\mathrm{C}}^{\mathrm{t}}=\beta_{\mathrm{c}}^{\mathrm{t}}, \tilde{\beta}_{0}=\beta_{0}-\beta_{2} \gamma_{0}$ and $\tilde{\beta}_{1}=\beta_{1}-\beta_{2} \gamma_{1}$, with $\beta_{0}, \beta_{1}, \beta_{2}$ and β_{C} the coefficients from the true logistic model (1). The measured intermediate then is $M^{*}=\tilde{M}+U$, with U normally distributed with mean 0 , and variance σ_{u}^{2}. Using the formulas of Carrol et al ${ }^{3, \mathrm{p} 52}$ for bias in the regression coefficients for random measurement error, yields that the regression coefficients for exposure and intermediate in the model $\operatorname{logit}\left(\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{M}^{*}, \mathrm{X}, \mathrm{C}\right)\right)=\beta_{0}^{*}+\beta_{1}^{*} \mathrm{X}+\beta_{2}^{*} \mathrm{M}^{*}+\beta_{\mathrm{C}}^{*} \mathrm{C}$, are equal to $\beta_{2}^{*}=\lambda \beta_{2}$ and
$\beta_{1}^{*}=\beta_{1}-\beta_{2} \gamma_{1}+\beta_{2}(1-\lambda)\left(E\left[M^{*} \mid X=1, C\right]-E\left[M^{*} \mid X=0, C\right]\right)$.
Using that $E\left[M^{*} \mid X=1, C\right]-E\left[M^{*} \mid X=0, C\right]=\alpha_{1}+\gamma_{1}$, yields the required result.

Residual association in situation 5

Suppose there is an interacting trigger T , which interacts with X such that $M=\mathrm{c}_{0}+M^{*}+$ $\mathrm{c}_{1} T X$, with M^{*} the measured intermediate. It can be shown that in case of a rare disease $\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{M}^{*}, \mathrm{X}, \mathrm{C}\right) \approx \exp \left(\beta_{0}+\beta_{1} \mathrm{X}+\beta_{2}\left(\mathrm{c}_{0}+\mathrm{M}^{*}\right)+\beta_{\mathrm{C}}^{\mathrm{t}} \mathrm{C}\right) \int \exp \left(\beta_{2} \mathrm{c}_{1} \mathrm{tX}\right) \mathrm{dF}(\mathrm{t})$,
with $\mathrm{F}(\mathrm{t})$ the distribution function of T .

Proof: Because logit $(\operatorname{Pr}(\mathrm{Y}=1 \mid \mathrm{M}, \mathrm{X}, \mathrm{C}))=\beta_{0}+\beta_{1} \mathrm{X}+\beta_{2} \mathrm{M}+\beta_{\mathrm{C}}^{\mathrm{t}} \mathrm{C}$, it follows that logit $\left(\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{M}^{*}, \mathrm{X}, \mathrm{T}, \mathrm{C}\right)\right)=\beta_{0}+\beta_{1} \mathrm{X}+\beta_{2}\left(\mathrm{c}_{0}+M^{*}+\mathrm{c}_{1} T X\right)+\beta_{\mathrm{C}}^{\mathrm{t}} \mathrm{C}$.
Note that we do not observe T. If we perform a logistic regression analysis with M^{*} and X as covariates, we model $\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{M}^{*}, \mathrm{X}, \mathrm{C}\right)$. This probability is equal to
$\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{M}^{*}, \mathrm{X}, \mathrm{C}\right)=\int \operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{M}^{*}, \mathrm{X}, \mathrm{C}, \mathrm{T}=\mathrm{t}\right) \mathrm{dF}\left(\mathrm{t} \mid \mathrm{M}^{*}, \mathrm{X}, \mathrm{C}\right)$,
with $F\left(t \mid M^{*}, X, C\right)$ the distribution function of T given M^{*}, X and C. If the trigger is not affected by the confounders, then, because T is unconditionally independent of M^{*} and X , $F\left(t \mid M^{*}, X, C\right)=F(t)$. When the disease prevalence is low, odds ratios and relative risks are nearly equivalent and logistic models can be approximate by relative risk models. Then
$\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{M}^{*}, \mathrm{X}, \mathrm{C}, \mathrm{T}\right) \approx \exp \left(\beta_{0}+\beta_{1} \mathrm{X}+\beta_{2}\left(\mathrm{c}_{0}+M^{*}+\mathrm{c}_{1} T X\right)+\beta_{\mathrm{C}}^{\mathrm{t}} \mathrm{C}\right)$.
It then follows that:
$\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{M}^{*}, \mathrm{X}, \mathrm{C}\right) \approx \exp \left(\beta_{0}+\beta_{1} \mathrm{X}+\beta_{2}\left(\mathrm{c}_{0}+\mathrm{M}^{*}\right)+\beta_{\mathrm{C}}^{\mathrm{t}} \mathrm{C}\right) \int \exp \left(\beta_{2} \mathrm{c}_{1} \mathrm{t} \mathrm{X}\right) \mathrm{dF}(\mathrm{t})$.

The integral in this expression can be simplified for several different distributions for T . For example if the trigger is binary with $\mathrm{p}_{\mathrm{T}}=\operatorname{Pr}(\mathrm{T}=1)$, then
$\int \exp \left(\beta_{2} \mathrm{c}_{1} \mathrm{t} \mathrm{X}\right) \mathrm{dF}(\mathrm{t})=\exp \left(\beta_{2} \mathrm{c}_{1} \mathrm{X}\right) \mathrm{p}_{\mathrm{T}}+\left(1-\mathrm{p}_{\mathrm{T}}\right)$. In this case,
$\exp \left(\beta_{1}^{*}\right)=\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{M}^{*}, \mathrm{X}=1, \mathrm{C}\right) /\left(\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{M}^{*}, \mathrm{X}=0, \mathrm{C}\right)\right.$
$\approx \exp \left(\beta_{1}\right)\left[\exp \left(\beta_{2} c_{1}\right) p_{T}+\left(1-p_{T}\right)\right]$, which leads to the result in (9).

In case of additional random measurement error, assume that $\mathrm{M}^{*}=\tilde{\mathrm{M}}+\mathrm{U}$, with $\mathrm{U} \sim \mathrm{N}\left(0, \sigma_{\mathrm{u}}^{2}\right)$ and $M=\mathrm{c}_{0}+\tilde{\mathrm{M}}+\mathrm{c}_{1} T X$. Because $\mathrm{E}[\mathrm{M} \mid \mathrm{X}, \mathrm{C}]=\alpha_{0}+\alpha_{1} \mathrm{X}+\alpha_{2}^{\mathrm{t}} \mathrm{C}$, it follows that $\mathrm{E}[\tilde{\mathrm{M}} \mid \mathrm{X}, \mathrm{C}]=\alpha_{0}+\alpha_{1} \mathrm{X}+\alpha_{2}^{\mathrm{t}} \mathrm{C}-\mathrm{c}_{0}-\mathrm{p}_{\mathrm{T}} \mathrm{c}_{1} \mathrm{X}$. When using M^{*} instead of $\tilde{\mathrm{M}}$ in a logistic model, the formulas of Carrol et $\mathrm{al}^{3, \mathrm{p} 52}$ for bias in the regression coefficients for classical measurement error, yield that $\beta_{1}^{*}=\widetilde{\beta}_{1}+\beta_{2}^{*}(1-\lambda)\left(\alpha_{1}-p_{T} c_{1}\right) / \lambda$ and $\beta_{2}^{*}=\lambda \widetilde{\beta}_{2}$. Combining this with (9) gives
$\beta_{1}^{*}=\beta_{1}+\log \left[\exp \left(\beta_{2}^{*} \mathrm{c}_{1} / \lambda\right) \mathrm{p}_{\mathrm{T}}+\left(1-\mathrm{p}_{\mathrm{T}}\right)\right]+\beta_{2}^{*}(1-\lambda)\left(\alpha_{1}-\mathrm{p}_{\mathrm{T}} \mathrm{c}_{1}\right) / \lambda$

Residual association in situation 6

If there is a post-hoc phenomenon, such that $M^{*}=M+\gamma_{0}+\gamma_{1} Y+U$, where $\mathrm{U} \sim \mathrm{N}\left(0, \sigma_{\mathrm{u}}^{2}\right)$, then approximately:

$$
\begin{aligned}
& \beta_{2}^{*} \approx \lambda \beta_{2}+\frac{\gamma_{1}}{\sigma_{\mathrm{M}}^{2}+\sigma_{\mathrm{U}}^{2}} \text { and } \\
& \beta_{1}^{*}=\beta_{1}-\frac{\gamma_{1} \alpha_{1}}{\sigma_{\mathrm{M}}^{2}+\sigma_{\mathrm{U}}^{2}}+\left(\beta_{2}^{*}-\frac{\gamma_{1}}{\sigma_{\mathrm{M}}^{2}+\sigma_{\mathrm{U}}^{2}}\right)(1-\lambda) \alpha_{1} / \lambda
\end{aligned}
$$

Proof: First ignore the random error term U and write $M^{*}=\gamma_{0}+M+\gamma_{1} Y$. Bayes' theorem gives that
$\operatorname{odds}\left(\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{X}, \mathrm{M}^{*}=\mathrm{m}^{*}, \mathrm{C}\right)\right)=\frac{\mathrm{f}_{\mathrm{X}, \mathrm{C}, \mathrm{M}^{*}}\left(\mathrm{X}, \mathrm{m}^{*}, \mathrm{C} \mid \mathrm{Y}=1\right)}{\mathrm{f}_{\mathrm{X}, \mathrm{C}, \mathrm{M}^{*}}\left(\mathrm{X}, \mathrm{m}^{*}, \mathrm{C} \mid \mathrm{Y}=0\right)} \frac{\operatorname{Pr}[\mathrm{Y}=1]}{\operatorname{Pr}[\mathrm{Y}=0]}$,
where f indicates the density function.
Note that $\mathrm{f}_{\mathrm{X}, \mathrm{C}, \mathrm{M}^{*}}\left(\mathrm{X}, \mathrm{m}^{*}, \mathrm{C} \mid \mathrm{Y}=1\right)=\mathrm{f}_{\mathrm{X}, \mathrm{C}, \mathrm{M}}\left(\mathrm{X}, \mathrm{m}^{*}-\gamma_{0}-\gamma_{1}, \mathrm{C} \mid \mathrm{Y}=1\right)$ and $\mathrm{f}_{\mathrm{X}, \mathrm{C}, \mathrm{M}^{*}}\left(\mathrm{X}, \mathrm{m}^{*}, \mathrm{C} \mid \mathrm{Y}=0\right)=\mathrm{f}_{\mathrm{X}, \mathrm{C}, \mathrm{M}}\left(\mathrm{X}, \mathrm{m}^{*}-\gamma_{0}, \mathrm{C} \mid \mathrm{Y}=0\right)$. Applying again Bayes' theorem yields:
$\operatorname{odds}\left(\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{X}, \mathrm{M}^{*}=\mathrm{m}^{*}, \mathrm{C}\right)\right)=\frac{\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{X}, \mathrm{M}=\mathrm{m}^{*}-\gamma_{0}-\gamma_{1}, \mathrm{C}\right)}{\operatorname{Pr}\left(\mathrm{Y}=0 \mid \mathrm{X}, \mathrm{M}=\mathrm{m}^{*}-\gamma_{0}, \mathrm{C}\right)} \frac{\mathrm{f}_{\mathrm{M\mid X,C}}\left(\mathrm{~m}^{*}-\gamma_{0}-\gamma_{1} \mid \mathrm{X}, \mathrm{C}\right) \mathrm{f}(\mathrm{X}, \mathrm{C})}{\mathrm{f}_{\mathrm{M} \mid \mathrm{X}, \mathrm{C}}\left(\mathrm{m}^{*}-\gamma_{0} \mid \mathrm{X}, \mathrm{C}\right) \mathrm{f}(\mathrm{X}, \mathrm{C})}$

Because $\mathrm{M} \mid \mathrm{X}, \mathrm{C}$ is normally distributed with constant variance, it is straightforward to show that

$$
\frac{\mathrm{f}_{\mathrm{M} \mid \mathrm{X}, \mathrm{C}}\left(\mathrm{~m}^{*}-\gamma_{0}-\gamma_{1} \mid \mathrm{X}, \mathrm{C}\right)}{\mathrm{f}_{\mathrm{M\mid X,C}}\left(\mathrm{~m}^{*}-\gamma_{0} \mid \mathrm{X}, \mathrm{C}\right)}=\exp \left(\frac{1}{\sigma_{\mathrm{M}}^{2}}\left[-0.5 \gamma_{1}^{2}-\gamma_{0} \gamma_{1}-\gamma_{1} \alpha_{0}-\gamma_{1} \alpha_{1} \mathrm{X}-\gamma_{1} \alpha_{2}^{\mathrm{t}} \mathrm{C}+\gamma_{1} \mathrm{~m}^{*}\right]\right)
$$

Using that, in case of a rare disease, $\operatorname{Pr}(\mathrm{Y}=0 \mid \mathrm{X}, \mathrm{M}, \mathrm{C}) \approx 1$, and that in case of a rare disease $\operatorname{Pr}(\mathrm{Y}=1 \mid \mathrm{X}, \mathrm{M}, \mathrm{C})$ can be approximate by a relative risk model, yields
$\operatorname{odds}\left(\operatorname{Pr}\left(\mathrm{Y}=1 \mid \mathrm{X}=1, \mathrm{M}^{*}=\mathrm{m}^{*}, \mathrm{C}\right)\right) \approx$
$\exp \left(\beta_{0}-\frac{0.5 \gamma_{1}^{2}+\gamma_{0} \gamma_{1}+\gamma_{1} \alpha_{0}}{\sigma_{M}^{2}}+\beta_{2}\left(-\gamma_{0}-\gamma_{1}\right)+\left(\beta_{1}-\frac{\gamma_{1} \alpha_{1}}{\sigma_{M}^{2}}\right) \mathrm{X}+\left(\beta_{\mathrm{c}}^{\mathrm{t}}-\frac{\gamma_{1} \alpha_{2}^{\mathrm{t}}}{\sigma_{\mathrm{M}}^{2}}\right) \mathrm{C}+\left(\beta_{2}+\frac{\gamma_{1}}{\sigma_{\mathrm{M}}^{2}}\right) \mathrm{m}^{*}\right)$

This gives $\beta_{1}^{*} \approx \beta_{1}-\frac{\gamma_{1} \alpha_{1}}{\sigma_{M}^{2}}$ and $\beta_{2}^{*} \approx \beta_{2}+\frac{\gamma_{1}}{\sigma_{M}^{2}}$
In case of random measurement error, with $\mathrm{M}^{*}=\mathrm{M}+\gamma_{0}+\gamma_{1} \mathrm{Y}+\mathrm{U}$, assume first that $\tilde{M}=M+U$. If \tilde{M} is used instead of M in the logistic model, the formulas of Carrol et al ${ }^{3}$, ${ }^{\mathrm{p} 52}$ for bias in the regression coefficients for classical measurement error, yield $\widetilde{\beta}_{1}=\beta_{1}+\beta_{2}(1-\lambda) \alpha_{1}$ and $\tilde{\beta}_{2}^{*}=\lambda \beta_{2}$. Since $M^{*}=\gamma_{0}+\tilde{M}+\gamma_{1} Y$, we have $\beta_{1}^{*} \approx \tilde{\beta}_{1}-\frac{\gamma_{1} \alpha_{1}}{\sigma_{\tilde{\mathrm{M}}}^{2}}$ and $\beta_{2}^{*} \approx \tilde{\beta}_{2}+\frac{\gamma_{1}}{\sigma_{\tilde{\mathrm{M}}}^{2}}$. This leads to the final results: $\beta_{2}^{*} \approx \lambda \beta_{2}+\frac{\gamma_{1}}{\sigma_{\tilde{\mathrm{M}}}^{2}}$
and $\beta_{1}^{*} \approx \beta_{1}-\gamma_{1} \alpha_{1} / \sigma_{\tilde{M}}^{2}+\beta_{2}(1-\lambda) \alpha_{1}=\beta_{1}-\gamma_{1} \alpha_{1} / \sigma_{\tilde{M}}^{2}+\left(\beta_{2}^{*}-\frac{\gamma_{1}}{\sigma_{\widetilde{M}}^{2}}\right)(1-\lambda) \alpha_{1} / \lambda$.

