Appendix. Proofs.

Residual association in situation 3

If $M^* = M^- + \gamma_0 + \gamma_1 X + U^-$ where U is normally distributed with mean 0 and variance σ_u^2 , the observed regression coefficient for X is approximately $\beta_1^* = \beta_1 - \beta_2^* \gamma_1 + \beta_2^* (1 - \lambda) \alpha_1 / \lambda$, where λ is the reliability ratio(5).

Proof. First ignore the random error term U and write $\widetilde{M} = \gamma_0 + M + \gamma_1 X$. When we consider the model logit(Pr(Y=1| \widetilde{M} , X, C)) = $\widetilde{\beta}_0 + \widetilde{\beta}_1 X + \widetilde{\beta}_2 \widetilde{M} + \widetilde{\beta}_C^t C$, it immediately follows that $\widetilde{\beta}_2 = \beta_2$, $\widetilde{\beta}_C^t = \beta_C^t$, $\widetilde{\beta}_0 = \beta_0 - \beta_2 \gamma_0$ and $\widetilde{\beta}_1 = \beta_1 - \beta_2 \gamma_1$, with β_0 , β_1 , β_2 and β_C the coefficients from the true logistic model (1). The measured intermediate then is $M^* = \widetilde{M} + U$, with U normally distributed with mean 0, and variance σ_u^2 . Using the formulas of Carrol et al^{3, p 52} for bias in the regression coefficients for random measurement error, yields that the regression coefficients for exposure and intermediate in the model logit(Pr(Y=1| M^* , X, C)) = $\beta_0^* + \beta_1^* X + \beta_2^* M^* + \beta_C^* C$, are equal to $\beta_2^* = \lambda \beta_2$ and

$$\begin{split} \beta_1^* &= \beta_1 - \beta_2 \gamma_1 + \beta_2 (1 - \lambda) (E[M^* \mid X = 1, C] - E[M^* \mid X = 0, C]) \,. \end{split}$$
 Using that $E[M^* \mid X = 1, C] - E[M^* \mid X = 0, C] = \alpha_1 + \gamma_1$, yields the required result.

Residual association in situation 5

Suppose there is an interacting trigger T, which interacts with X such that $M = c_0 + M^* + c_1 TX$, with M^* the measured intermediate. It can be shown that in case of a rare disease $\Pr\left(Y = 1 \mid M^*, X, C\right) \approx \exp(\beta_0 + \beta_1 X + \beta_2 (c_0 + M^*) + \beta_C^t C) \int \exp(\beta_2 c_1 tX) dF(t) \, ,$ with F(t) the distribution function of T.

Proof: Because logit (Pr (Y=1| M, X, C)) = $\beta_0 + \beta_1 X + \beta_2 M + \beta_C^t C$, it follows that logit (Pr (Y=1| M*, X, T, C)) = $\beta_0 + \beta_1 X + \beta_2 (c_0 + M* + c_1 TX) + \beta_C^t C$.

Note that we do not observe T. If we perform a logistic regression analysis with M^* and X as covariates, we model Pr (Y=1| M^* , X, C). This probability is equal to

$$Pr\left({Y = 1\,|\,M^* ,X,C} \right) = \int {Pr\left({Y = 1\,|\,M^* ,X,C,T = t} \right)} dF(t\,|\,M^* ,X,C) \ \, ,$$

with $F(t|M^*, X, C)$ the distribution function of T given M*, X and C. If the trigger is not affected by the confounders, then, because T is unconditionally independent of M^* and X, $F(t|M^*, X, C) = F(t)$. When the disease prevalence is low, odds ratios and relative risks are nearly equivalent and logistic models can be approximate by relative risk models. Then

$$Pr\left(Y=1|\ M^{*},\ X,\ C,\ T\right)\approx exp(\beta_{0}+\beta_{1}X+\beta_{2}\ (c_{0}+\ M^{*}+c_{1}\ TX)+\ \beta_{C}^{t}C\).$$

It then follows that:

$$\Pr\left(Y=1|\ M^*,\ X,\ C\right) \ \approx \exp(\beta_0 + \beta_1 X + \beta_2 (c_0 + M^*) + \beta_C^t C) \int \exp(\beta_2 c_1 t X) dF(t) \,.$$

The integral in this expression can be simplified for several different distributions for T. For example if the trigger is binary with $p_T=Pr(T=1)$, then

$$\int \exp(\beta_2 c_1 t X) dF(t) = \exp(\beta_2 c_1 X) p_T + (1 - p_T). \text{ In this case,}$$

$$\exp(\beta_1^*) = \Pr(Y=1|M^*, X=1, C) / (\Pr(Y=1|M^*, X=0, C))$$

$$\approx \exp(\beta_1) \left[\exp(\beta_2 c_1) p_T + (1 - p_T) \right], \text{ which leads to the result in (9).}$$

In case of additional random measurement error, assume that $M^*=\widetilde{M}+U$, with $U\sim N(0,\sigma_u^2)$ and $M=c_0+\widetilde{M}+c_1$ TX. Because $E[M\mid X,C]=\alpha_0+\alpha_1X+\alpha_2^tC$, it follows that $E[\widetilde{M}\mid X,C]=\alpha_0+\alpha_1X+\alpha_2^tC-c_0-p_Tc_1X$. When using M^* instead of \widetilde{M} in a logistic model, the formulas of Carrol et al^{3, p 52} for bias in the regression coefficients for classical measurement error, yield that $\beta_1^*=\widetilde{\beta}_1+\beta_2^*(1-\lambda)(\alpha_1-p_Tc_1)/\lambda$ and $\beta_2^*=\lambda\widetilde{\beta}_2$. Combining this with (9) gives $\beta_1^*=\beta_1+\log[\exp(\beta_2^*c_1/\lambda)p_T+(1-p_T)]+\beta_2^*(1-\lambda)(\alpha_1-p_Tc_1)/\lambda$

Residual association in situation 6

If there is a post-hoc phenomenon, such that $M^*=M^*+\gamma_0+\gamma_1Y+U$, where $U\sim N(0,\sigma_u^2)$, then approximately:

$$\beta_2^* \approx \lambda \beta_2 + \frac{\gamma_1}{\sigma_M^2 + \sigma_U^2} \text{ and}$$

$$\beta_1^* = \beta_1 - \frac{\gamma_1 \alpha_1}{\sigma_M^2 + \sigma_U^2} + \left(\beta_2^* - \frac{\gamma_1}{\sigma_M^2 + \sigma_U^2}\right) (1 - \lambda) \alpha_1 / \lambda$$

Proof: First ignore the random error term U and write $M^*=\gamma_0+M+\gamma_1 Y$. Bayes' theorem gives that

$$odds(Pr(Y=1 \mid X, M^*=m^*, C)) = \frac{f_{_{X,C,M^*}}(X, m^*, C \mid Y=1)}{f_{_{X,C,M^*}}(X, m^*, C \mid Y=0)} \frac{Pr[Y=1]}{Pr[Y=0]},$$

where f indicates the density function.

Note that
$$f_{X,C,M^*}(X,m^*,C\mid Y=1)=f_{X,C,M}(X,m^*-\gamma_0-\gamma_1,C\mid Y=1)$$
 and

 $f_{X,C,M^*}(X,m^*,C\mid Y=0)=f_{X,C,M}(X,m^*-\gamma_0,C\mid Y=0).$ Applying again Bayes' theorem yields:

$$odds(Pr(Y=1 \mid X, M^*=m^*, C)) = \frac{Pr(Y=1 \mid X, M=m^*-\gamma_0 - \gamma_1, C)}{Pr(Y=0 \mid X, M=m^*-\gamma_0, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 - \gamma_1 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)f(X, C)}{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)} \\ \frac{f_{\text{M|X,C}}(m^*-\gamma_0 \mid X, C)}{f_{\text{M$$

Because M|X,C is normally distributed with constant variance, it is straightforward to show that

$$\frac{f_{\text{M}|X,C}\left(m^{*}-\gamma_{0}-\gamma_{1}\mid X,C\right)}{f_{\text{M}|X,C}\left(m^{*}-\gamma_{0}\mid X,C\right)}=exp\Bigg(\frac{1}{\sigma_{\text{M}}^{2}}\Big[-0.5\gamma_{1}^{2}-\gamma_{0}\gamma_{1}-\gamma_{1}\alpha_{0}-\gamma_{1}\alpha_{1}X-\gamma_{1}\alpha_{2}^{t}C+\gamma_{1}m^{*}\Big]\Bigg)$$

Using that, in case of a rare disease, $Pr(Y=0|X, M,C)\approx 1$, and that in case of a rare disease Pr(Y=1|X, M,C) can be approximate by a relative risk model, yields

$$\begin{split} odds(Pr(Y=1\mid X=1,M^*=m^*,C)) \approx \\ exp&\left(\beta_0 - \frac{0.5\gamma_1^2 + \gamma_0\gamma_1 + \gamma_1\alpha_0}{\sigma_M^2} + \beta_2(-\gamma_0 - \gamma_1) + (\beta_1 - \frac{\gamma_1\alpha_1}{\sigma_M^2})X + (\beta_c^t - \frac{\gamma_1\alpha_2^t}{\sigma_M^2})C + (\beta_2 + \frac{\gamma_1}{\sigma_M^2})m^*\right) \end{split}$$

This gives
$$\beta_1^* \approx \beta_1 - \frac{\gamma_1 \alpha_1}{\sigma_M^2}$$
 and $\beta_2^* \approx \beta_2 + \frac{\gamma_1}{\sigma_M^2}$

In case of random measurement error, with $\,M^*=M\,+\gamma_0+\gamma_1 Y+U$, assume first that

 \widetilde{M} =M+U. If \widetilde{M} is used instead of M in the logistic model, the formulas of Carrol et al³, for bias in the regression coefficients for classical measurement error,

yield
$$\widetilde{\beta}_1 = \beta_1 + \beta_2 (1 - \lambda) \alpha_1$$
 and $\widetilde{\beta}_2^* = \lambda \beta_2$. Since $M^* = \gamma_0 + \widetilde{M} + \gamma_1 Y$, we have

$$\beta_1^* \approx \widetilde{\beta}_1 - \frac{\gamma_1 \alpha_1}{\sigma_{\widetilde{M}}^2} \ \text{ and } \ \beta_2^* \approx \widetilde{\beta}_2 + \frac{\gamma_1}{\sigma_{\widetilde{M}}^2}. \ \text{This leads to the final results:}$$

$$\beta_2^* \approx \lambda \beta_2 + \frac{\gamma_1}{\sigma_{\widetilde{M}}^2}$$

$$\text{and } \beta_1^* \approx \beta_1 - \gamma_1 \alpha_1 / \sigma_{\widetilde{M}}^2 + \beta_2 (1 - \lambda) \alpha_1 = \beta_1 - \gamma_1 \alpha_1 / \sigma_{\widetilde{M}}^2 + \left(\beta_2^* - \frac{\gamma_1}{\sigma_{\widetilde{M}}^2}\right) (1 - \lambda) \alpha_1 / \lambda.$$