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Appendix. Proofs. 

 

Residual association in situation 3   

 

If UXMM 10
* +γ+γ+= where U is normally distributed with mean 0 and variance 

2
uσ  , the observed regression coefficient for X is approximately 

=β*
1 λαλ−β+γβ−β /)1( 1

*
21

*
21 , where λ is the reliability ratio(5).  

 

Proof. First ignore the random error term U and write M
~

= γ0 + M + γ1X . When we 

consider the model logit(Pr(Y=1| M
~

, X, C)) = C
~

M
~~

X
~~ t

C210 β+β+β+β   , it immediately 

follows that 22

~ β=β ,  t
C

t
C

~ β=β , 0200

~ γβ−β=β  and 1211

~ γβ−β=β , with β0 , β1 , β2 and 

βC  the coefficients from the true logistic model (1). The measured intermediate then is 

M*= M
~

+U, with U normally distributed with mean 0, and variance 2
uσ . Using the 

formulas of Carrol et al3, p 52 for bias in the regression coefficients for random 

measurement error, yields that the regression coefficients for exposure and intermediate 

in the model logit(Pr(Y=1| M*, X, C)) = CMX t*
C

**
2

*
1

*
0 β+β+β+β  , are equal to 2

*
2 λβ=β  

and  

])C,0X|*M[E]C,1X|*M[E)(1(2121
*
1 =−=λ−β+γβ−β=β . 

Using that 11]C,0X|*M[E]C,1X|*M[E γ+α==−= , yields the required result. 

 

Residual association in situation 5  

 

Suppose there is an interacting trigger T, which interacts with X such that M= c0 +  M* + 

c1 TX, with M* the measured intermediate. It can be shown that in case of a rare disease  

Pr (Y=1| M*, X, C) ∫ ββ++β+β+β≈ )t(dF)tXcexp()C)M  c(Xexp( 12
t
C

*
0210 , 

with F(t) the distribution function of T. 
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Proof: Because logit (Pr (Y=1| M, X, C)) =  β0 +  β1X +  β2M+ Ct
Cβ  , it follows that logit 

(Pr (Y=1| M*, X, T, C))   =  β0 +  β1X + β2 (c0 +  M* + c1 TX) + Ct
Cβ  .  

Note that we do not observe T. If we perform a logistic regression analysis with M* and 

X as covariates, we model Pr (Y=1| M*, X, C). This probability is equal to  

 C)X, M*, |t)dF(tTC, X, M*, |1(YPr    C) X, M*, |1(YPr ∫ ==== , 

with F(t| M*, X,C) the distribution function of T given M*, X and C. If the trigger is not 

affected by the confounders, then, because T is unconditionally independent of M* and X, 

F(t| M*, X, C) = F(t). When the disease prevalence is low, odds ratios and relative risks 

are nearly equivalent and logistic models can be approximate by relative risk models. 

Then  

Pr (Y=1| M*, X, C, T) ≈ exp(β0 + β1X + β2 (c0 +  M* + c1 TX) + Ct
Cβ ).  

It then follows that:  

Pr (Y=1| M*, X, C)  ∫ ββ++β+β+β≈ )t(dF)tXcexp()C)M  c(Xexp( 12
t
C

*
0210 . 

 

The integral in this expression can be simplified for several different distributions for T. 

For example if the trigger is binary with pT=Pr(T=1), then  

)p1(p)Xcexp()t(dF)tXcexp( TT1212 −+β=β∫ . In this case,  

=β )exp( *
1 Pr (Y=1| M*, X=1, C)/(Pr (Y=1| M*, X=0,C) 

[ ])p1(p)cexp()exp( TT121 −+ββ≈ , which leads to the result in (9). 

 

In case of additional random measurement error, assume that M*= UM
~ + , with 

),0(N~U 2
uσ  and M= c0 +  M

~
 + c1 TX . Because  CX]C,X|M[E t

210 α+α+α= , it 

follows that XcpcCX]C,X|M
~

[E 1T0
t
210 −−α+α+α= . When using M* instead of 

M
~

in a logistic model, the formulas of Carrol et al3, p 52  for bias in the regression 

coefficients for classical measurement error, yield that  λ−αλ−β+β=β /)cp)(1(
~

1T1
*
21

*
1  

and 2
*
2

~βλ=β . Combining this with (9) gives 
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*
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*
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*
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Residual association in situation 6  

 

If there is a post-hoc phenomenon, such that UYMM 10
* +γ+γ+= , where 

),0(N~U 2
uσ , then approximately:  
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Proof:  First ignore the random error term U and write M*= γ0 + M + γ1Y . Bayes’ 

theorem gives that  

 

]0YPr[

]1YPr[
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where f indicates the density function. 

Note that )1Y|C*,m,X(f *M,C,X =  = )1Y|C,*m,X(f 10M,C,X =γ−γ−  and 

)0Y|C*,m,X(f *M,C,X = = )0Y|C,*m,X(f 0M,C,X =γ− . Applying again Bayes’ theorem 

yields: 
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Because M|X,C is normally distributed with constant variance, it is straightforward to 

show that 
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Using that, in case of a rare disease, Pr(Y=0|X, M,C)≈1, and that in case of a rare disease 

Pr(Y=1|X, M,C) can be approximate by a relative risk model, yields                                              
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This gives 
2
M
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1

*
1 σ
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2
M

1
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*
2 σ

γ
+β≈β  

In case of random measurement error, with UYMM 10
* +γ+γ+= , assume first that 

M
~

=M+U. If M
~

is used instead of M in the logistic model, the formulas of Carrol et al3, 

p52  for bias in the regression coefficients for classical measurement error, 

yield 1211 )1(
~ αλ−β+β=β  and 2

*
2

~ λβ=β .  Since M* = γ0 +M
~

 + γ1Y, we have 
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+β≈β . This leads to the final results: 
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