
Supplemental Appendix to
Specifying the correlation structure

in inverse-probability-weighted estimation for repeated measures

For brevity, we focus the discussion on a simple two-occasion dropout example. The observed

data is given by (X; Y1; R;RY2) where (X; Y1; R) is observed on all individuals and R indicates

whether Y2 is observed. X is a vector of baseline variables, Yj is the continuous outcome at occasion

j = 1; 2: In the following, we let X� = (1; XT )T : We wish to estimate � in the marginal mean

regression model:

E (Yj) = �
TX� , j = 1; 2 (1)

under the standard assumption that dropout is ignorable, that is:

Pr (R = 1jX;Y1; Y2) = � (X;Y1)

only depends on the observed past. We further simplify the presentation by assuming that � (X; Y1)

is known. Additionally, suppose that the conditional correlation function � = corr(Y1; Y2jX) and

the conditional variance function �2 = var(YjjX) both do not depend on X. Nowadays, a number

of statistical software packages, including SAS, R and Stata, have capabilities for incorporating

inverse-probability weights into generalized estimating equations. Proc GENMOD in SAS is ar-

guably the most common software package used in epidemiologic practice to achieve this task

and the software package is very well documented. For this reason we chose to focus primar-

ily on the method implemented in Proc Genmod. In our example, the approach entails �rst

computing occasion-speci�c weights, with the weight for the �rst occasion set equal to W1 = 1

since Y1 is observed on all individuals; whereas for the second occasion, the weight is set equal to
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W2 = � (X; Y1)
�1, which accounts for the dependence of R on Y1:1�3 Under our assumptions, the

correlation matrix for the pair of observations (Y1; Y2) is guaranteed to be exchangeable. Below,

we provide a technical description of the weighted-least squares estimator b� (��; ��) computed in
the Proc GENMOD procedure in SAS for a �xed (possibly incorrect) value (��; ��) :4 A reason for

the speci�c approach used by Proc GENMOD to incorporate weights W1;i and W2;i is to ensure

that the interpretation of �� = � and �� = � is retained irrespective of weighting, as respectively

the correlation and the standard deviation for the original outcomes (Y1;i; Y2;i); this is essentially

achieved by pre-multiplying the standard deviation �� of the �rst and second measurement, by

W
�1=2
1;i and W�1=2

2;i respectively (see equation (4) below) . However, this property only holds when

the weights strictly depend on covariates also included in the main regression function. Unfortu-

nately, the weighting strategy implemented in Proc GENMOD can induce bias, when the weights

are used to account for dependent dropout by incorporating information on variables not included

in the regression model. In fact, below we establish the following result:

Result : b� (��; ��) generally converges (in probability) to a vector �� 6= �; and is therefore biased
unless at least one of the following conditions holds:

Condition 1. �� = 0 and therefore Y1 and Y2 are assumed to be uncorrelated, or

Condition 2. � (X; Y1) = � (X) does not depend on Y1 and therefore W2 does not depend on

Y1:

Below, we further establish that the above result applies to a larger class of weighted-generalized

estimating equations, which includes the weighted-least squares estimator as a special case, but

which generally allows for the nonlinear link functions typically used for binary or count outcomes.

Thus, we establish that weighted-generalized estimating equations as implemented in Proc GEN-

MOD can fail to produce a consistent estimator of the coe¢ cients of a mean regression function.

The result states that this can happen whenever occasion-speci�c weights are used in conjunction
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with a working correlation matrix to construct generalized estimating equations in Proc GENMOD

irrespective of the choice of a link function: According to the more general result, bias in coe¢ cient

estimates of such weighted-generalized estimating equations is likely to be present unless at least

one of conditions 1 or 2 holds.

Next, we consider two straightforward strategies that allow more careful use of estimating equations

to obtain an asymptotically unbiased estimate of �. The �rst approach simply entails imposing

condition 1 of the Result and altogether ignoring the correlation structure for point estimation,

i.e. by setting �� = 0 in equation (3) ; to obtain b� (0; ��) : Although the independence correlation
structure is likely mis-speci�ed in the longitudinal context, according to the result, this approach

leads to a consistent estimate of �:1;2 The approach is akin to pooling together multiple arti�cial

studies, each study ending at a di¤erent follow-up time with corresponding dropout weights, and

ignoring for the purposes of point estimation the fact that the same individual may contribute

to multiple such arti�cial studies. An alternative equally simple approach only uses data on

individuals with fully observed follow-up, i.e. Ri = 1 and sets W1;i = W2;i:
1;2 This approach is

equivalent to applying a single weight, proportional to W2;i; to all person-time contributions of an

individual i with complete follow-up. In both strategies outlined above, robust standard errors or

the bootstrap can be used for inference. Both strategies easily extend to a more general longitudinal

study in which an individual�s maximum follow-up includes J > 2 consecutive measurements

(details omitted). However, because the �nite sample is restricted to individuals with complete

follow-up, the performance of the second strategy will generally be inferior to that of the �rst,

particularly in studies with lengthy follow-up and substantial attrition.

Implications for related weighted-longitudinal analyses

Our results can be extended to the estimation of the parameters of marginal structural mean model

for a repeated measures outcome from longitudinal data. A marginal structural mean model is

3



a model for the mean of a counterfactual outcome as a function of exposure history. Using the

well-known relation between the potential outcome or counterfactual theory of causal inference and

missing or coarsened data theory1;2;5 Robins and Tchetgen Tchetgen6 show that results analogous

to those above apply when estimating marginal structural mean models via inverse-probability-of-

treatment-weighting in Proc GENMOD. Like us, they describe two classes of consistent estimators.

One class of estimators, introduced in Robins5, applies the same weight to all of a subject�s person-

time contributions. This weight is equal to the inverse-probability-of-treatment actually received

by the individual throughout the entire followup (or a stabilized version there of). Robins5 shows

one can then specify a non-independence working correlation matrix without inducing bias. This

re�ects the fact that in the re-weighted sample (i.e. pseudo-population), as in an ordinary ran-

domized experiment, the treatment process is external or ancillary - that is, neither past outcome

nor past covariate history are predictors of current treatment. Robins5 and Robins et al7 (see

Section 4) prove that standard generalized estimating equations are valid if the treatment process

is ancillary.

The second-class of estimators uses occasion-speci�c weights and an "independence" work-

ing covariance matrix. When occasion-speci�c weights are used, the treatment process in the

weighted pseudo-population is no longer ancillary, essentially because individuals are di¤erentially

re-weighted at di¤erent times. Robins et al7 show that for non-ancillary treatments processes, gen-

eralized estimating equations are inconsistent, unless an independence working correlation matrix

is used. It follows that the occasion-speci�c weighted-generalized estimating equations estimators

proposed by Hernán et al8 are therefore inconsistent, except, when, as in their empirical examples,

an "independence" working covariance matrix is used

Finally, we note that unless one of the two strategies outlined above is followed, the poten-

tial for bias in using a non-independence working correlation structure, remains even under the
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sharp null hypothesis that the exposure history does not have a causal e¤ect on the longitudinal

outcome. Somewhat surprisingly, although estimators that use occasion-speci�c weights with an

"independence" working covariance matrix do not explicitly incorporate an estimate of the true

correlation structure of the outcomes, nonetheless, the information contained in these correlations

can ultimately be recovered via the estimated inverse-probability weights. Indeed, Robins et al6

prove that both our classes of consistent estimators contain a fully e¢ cient estimator. A careful

study of the �nite sample relative e¢ ciency of the two strategies will be published elsewhere.
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Proofs

In the simple linear model (1), Proc GENMOD solves the weighted-generalized estimating

equations

0 =
X
i

X��
i Qi (�

�; ��)�1 "i (�) (2)

"i (�)
T = ("1;i (�) ; "2;i (�)) = (Y1;i � �TX�

i ; Ri
�
Y2;i � �TX�

i

�
)

to produce the weighted least squares estimator:

b� (��; ��) = (X
i

X��
i Qi (�

�; ��)�1X�T
i

)�1(X
i

X��
i Qi (�)

�1 Y obs

)

where Y obs = (Y1; RY2)
T ; and if Ri = 1

X��
i = (X�

i ; X
�
i )

Qi (�
�; ��) = Pi ( �

�)Si (�
� )Pi ( �

�)T (3)

Pi ( �
�) =

0BB@ �� 0

0 ��

1CCA
0BB@ W

�1=2
1;i 0

0 W
�1=2
2;i

1CCA (4)

Si (�
�) =

0BB@ 1 ��

�� 1

1CCA
otherwise, if Ri = 0;

X��
i = X�

i

Qi (�
�; ��) = ��2W�1

1;i
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We prove that the Result holds in a more general model in which �j;i (�) is the mean function of

[Yj;ijXi] such that

g(�j;i (�)) = �
Thj(Xi); j = 1; 2:

where hj (X�
i ) is a known function of X and time; and g is a known link function. Let

"i (�)
T = ("1;i (�) ; "2;i (�)) = (Y1;i � �j;i (�) ; Ri (Y2;i � �j;i (�)));

Hi = (h1(Xi); h2(Xi))

if Ri = 1; and

Hi = (h1(Xi))

if Ri = 0:Thus we wish to show the Result holds for b� that solves the weighted-generalized-
estimating-equations:

0 =
X
i

HiQ
�1
i (��; ��) "i (�)

It is su¢ cient to show that the estimating function on the right-hand side of the above display is

generally unbiased only if condition 1 or 2 holds. Some algebra gives

Q�1i (��; ��) "i (�) =
���2

(1� ��2)

0BB@ "1;i (�)W1;i

"2;i (�)W2;i

1CCARi

� ���2

(1� ��2)

0BB@ "2;i (�)W
1=2
1;i W

1=2
2;i �

�

"1;i (�)W
1=2
1;i W

1=2
2;i �

�

1CCARi
+ ���2W1;i"1;i (�) (1�Ri)
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and therefore

E
�
HiQ

�1
i (��; ��) "i (�)

	
= E

�
� (Xi; Y1;i)

�
���2��2

(1� ��2)h1(Xi)"1;i (�)W1;i +
���2

(1� ��2)h2(Xi)"2;i (�)W2;i

�
���2 ��W

1=2
1;i W

1=2
2;i

(1� ��2) (h1(Xi)"2;i (�) + h2(Xi)"1;i (�))

)

+���2W1;i"1;i (�)
�

= E

�
� (Xi; Y1;i)

�
���2��2

(1� ��2)h1(Xi)"1;i (�)W1;i

�
���2 ��W

1=2
1;i W

1=2
2;i

(1� ��2) (h1(Xi)"2;i (�) + h2(Xi)"1;i (�))

)#

is equal to zero provided that either �� = 0 or � (Xi; Y1;i) does not depend on Y1;i. In the �rst case,

the proof is immediate; in the second case, the proof follows from the fact that E ("j;i (�) jXi) = 0,

j = 1; 2:
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