
eAPPENDIX  

 

LASSO SHRINKAGE LOGISTIC REGRESSION  

1. Model 

Let p be the number of exposures, q the number of adjustment variables, n the number of 

subjects, yi the binary response variable for subject i, coded as 1 for cases and 0 for controls, 

xi=(xi1, …, xip) a vector where xij is the j-th exposure for the i-th subject, coded as 1 for 

exposed and 0 for unexposed and zi=(zi1, …, ziq) a vector where zik is the k-th adjustment 

variable for the i-th subject. Let D={(xi, zi, yi)} i=1, …, n be the observed data. 

In ordinary logistic regression, we write the probability of observing the event given the 

values of the exposure and adjustment variables for subject i as 
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where j and k are the regression coefficients corresponding to the log-odds ratio of the j-th 

exposure-outcome association and the log-odds ratio of the k-th adjustment variable-outcome 

association, respectively, and 0 is the intercept. The parameter vector (,)=(0, 1, …, q, 

1, …, p) is usually estimated by maximizing the log-likelihood function  
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2. Estimation 

In ordinary logistic regression, the parameter vector (,)=(0, 1, …, q, 1, …, p) is usually 

estimated by maximizing the log-likelihood function  
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The general idea behind maximum likelihood estimation is to find the population that is more 

likely than any other to produce the observed data. The lasso method applied to logistic 

regression consists in maximizing the log-likelihood penalized by the sum of coefficients in 

absolute value (the L1 norm) corresponding to exposures: 
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where  is the positive tuning constant which controls the amount of shrinkage. The lasso 

penalty shrinks each j and sets some of them to zero, leading to parsimonious models, and 

enabling continuous model selection. Adjustment variables and the intercept are not penalized 

and thus forced into the model. Adjustment variables are potential confounders found to be 

associated with responsibility in the crash (according to 95% confidence intervals from 

univariate logistic models) including crash-related and socio-demographic factors and the 

presence of chronic diseases (Table 1). We forced them into the model to ensure that the 

apparent differences between exposed and unexposed to drugs are not misleadingly created by 

confounding covariates and to enhance the comparability of models constructed from the two 

different strategies or within the same strategy.   

It should be noted that, even if exposures are in the same units already (as in the case of 

binary exposures), it is useful to standardize since penalization techniques based on norms are 

sensitive to scaling. Without scaling, the lasso estimate has a tendency to disregard exposures 

with small variability on the sample used for estimation, corresponding here to rarely 

prescribed drugs, which are as important regarding inference as more commonly prescribed 

ones. 

 

 

 



3. Selection of the tuning constant  

The positive tuning constant  controls the amount of shrinkage. In general, the smaller , the 

more the penalty is relaxed, and the more exposures are selected. Inversely, the higher , the 

more exposures are eliminated. The regularization path is the continuous trace of the 

shrinkage estimates of the regression coefficients obtained when varying  from 0 (the 

maximum-likelihood solution for the full logistic model) to a certain threshold, which 

depends on data, beyond which no exposures are retained in the model. 

To select the proper amount of shrinkage, we conducted a grid-search with cross-validation. 

We considered a log-scale grid of 50 -values ranging from 0 to the (data derived) smallest 

value for which all coefficients are zero. Then, we applied the 10-fold cross-validated area 

under the curve (AUC) criteria. The data set D is first randomly chunked into K=10 disjoint 

blocks of approximately equal size. For each value, the logistic regression coefficients are 

estimated K times, one for each union of (K-1) blocks of data used for estimation, thus each 

time leaving out one block, which is then used to compute the AUC from data that were not 

used in the estimation process.  

Shrinkage estimation goes through the introduction of a bias on the estimated coefficients. To 

correct bias, we fitted the unpenalized logistic regression model with the adjustment variables 

and the exposures retained in the model (those having a nonzero point estimate of log-odds 

ratio). 
28

  

 

4. Confidence intervals  

To account for uncertainty in selection, we built 95% bootstrap percentile confidence 

intervals, using 5000 replicates. 
26

 The bootstrap distribution of each bias-corrected 

coefficient was computed, and the 2.5th and 97.5th percentiles of the empirical distribution 

formed the limits for the 95% bootstrap percentile confidence interval.  



5. Computation and software  

Several algorithms have been proposed for solving the lasso shrinkage logistic regression. 

Here we used the R package glmnet since it has been shown to be faster than competing 

methods. 
12,13

 Also, practical options are available, for example, sparse data matrices, 

resulting from rare exposures, can be stored in sparse format; exposures (penalized) and 

adjustment (unpenalized) variables can be specified; model selection is performed by several 

criteria; when variable standardization is performed prior to fitting, the coefficients are 

returned on the original scale.  



 

eTABLE: Adjusted Odds Ratio Lasso Estimates and 95% Bootstrap Percentile Confidence 

Intervals, Using 5000 Replicates, for Potential Traffic Crash and Socio-demographic Confounders 

Showing the Most Relevant Associations.   

Adjustment variable Category Adjusted OR lasso estimates and 

95% bootstrap CIs 

Age (y) <18 1.67 (1.51-1.86) 

 18-24 1.61 (1.52-1.71) 

 25-34 1.23 (1.17-1.30) 

 35-44 1.02 (0.97-1.08) 

 45-54 1.00 

 55-64 1.01 (0.93-1.08) 

 65-74 1.40 (1.23-1.58) 

 >=75 2.68 (2.33-3.09) 

Alcohol level (g/L)  <0.5 1.00 

 [0.5-0.8[ 4.29 (3.49-5.35) 

 [0.8-1.2[ 7.58 (6.18-9.60) 

 [1.2-2.0] 11.04 (9.19-13.67) 

 > 2 13.21 (10.88-16.73) 



 

eFIGURE. Odds ratio point estimates and 95% bootstrap confidence intervals obtained with the lasso method (due to space constraints, only 

some of them are represented), when the cutoff for responsibility varies around the selected cutoff value: 15 (this choice is based on the 

concordance with decision maker experts). Values above the drug names indicate the number (and percentage) of exposed subjects. Only 

exposures appearing associated with responsibility (from confidence intervals) for at least one of the cutoff values are presented. Point estimates 

equal to 1, without confidence intervals, correspond to exposures not selected in the corresponding model. 


