eAppendix of "Conditional and Unconditional Infectiousness Effects in Vaccine Trials"

Proofs of Results 1 and 2

To prove Results 1 and 2, it is enough to show that

$$
\mathrm{E}\left[Y_{i 2}\left(a_{i 1}, Y_{i 1}(1)\right)\right]=\mathrm{E}\left[Y_{i 2}\left(a_{i 1}\right) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right] \times \operatorname{Pr}\left(Y_{i 1}=1 \mid A_{i 1}=1\right)
$$

holds under Assumptions 1 and 2. Under these assumptions, $\mathrm{E}\left[Y_{i 2}\left(a_{i 1}, Y_{i 1}(1)\right)\right]$ can be expressed as follows:

$$
\begin{align*}
\mathrm{E}\left[Y_{i 2}\left(a_{i 1}, Y_{i 1}(1)\right)\right]= & \sum_{s=0}^{1} \sum_{t=0}^{1} \mathrm{E}\left[Y_{i 2}\left(a_{i 1}, Y_{i 1}(1)\right) \mid Y_{i 1}(1)=s, Y_{i 1}(0)=t\right] \operatorname{Pr}\left(Y_{i 1}(1)=s, Y_{i 1}(0)=t\right) \\
= & \mathrm{E}\left[Y_{i 2}\left(a_{i 1}, Y_{i 1}(1)\right) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right] \operatorname{Pr}\left(Y_{i 1}(1)=1, Y_{i 1}(0)=1\right) \\
& +\mathrm{E}\left[Y_{i 2}\left(a_{i 1}, Y_{i 1}(1)\right) \mid Y_{i 1}(1)=0, Y_{i 1}(0)=1\right] \operatorname{Pr}\left(Y_{i 1}(1)=0, Y_{i 1}(0)=1\right) \\
& +\mathrm{E}\left[Y_{i 2}\left(a_{i 1}, Y_{i 1}(1)\right) \mid Y_{i 1}(1)=0, Y_{i 1}(0)=0\right] \operatorname{Pr}\left(Y_{i 1}(1)=0, Y_{i 1}(0)=0\right) \\
= & \mathrm{E}\left[Y_{i 2}\left(a_{i 1}, 1\right) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right] \operatorname{Pr}\left(Y_{i 1}(1)=1, Y_{i 1}(0)=1\right) \\
& +\mathrm{E}\left[Y_{i 2}\left(a_{i 1}, 0\right) \mid Y_{i 1}(1)=0, Y_{i 1}(0)=1\right] \operatorname{Pr}\left(Y_{i 1}(1)=0, Y_{i 1}(0)=1\right) \\
& +\mathrm{E}\left[Y_{i 2}\left(a_{i 1}, 0\right) \mid Y_{i 1}(1)=0, Y_{i 1}(0)=0\right] \operatorname{Pr}\left(Y_{i 1}(1)=0, Y_{i 1}(0)=0\right) \\
= & \mathrm{E}\left[Y_{i 2}\left(a_{i 1}, 1\right) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right] \operatorname{Pr}\left(Y_{i 1}(1)=1\right), \tag{A1}
\end{align*}
$$

where the second equation is by Assumption 2 and the fourth is by Assumptions 1 and 2 . In the last equation, $\mathrm{E}\left[Y_{i 2}\left(a_{i 1}, 1\right) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right]$ can be expressed as:

$$
\begin{align*}
\mathrm{E}\left[Y_{i 2}\left(a_{i 1}, 1\right) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right] & =\mathrm{E}\left[Y_{i 2}\left(a_{i 1}, Y_{i 1}\left(a_{i 1}\right)\right) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right] \\
& =\mathrm{E}\left[Y_{i 2}\left(a_{i 1}\right) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right], \tag{A2}
\end{align*}
$$

and $\operatorname{Pr}\left(Y_{i 1}(1)=1\right)$ can be expressed as:

$$
\begin{equation*}
\operatorname{Pr}\left(Y_{i 1}(1)=1\right)=\operatorname{Pr}\left(Y_{i 1}(1)=1 \mid A_{i 1}=1\right)=\operatorname{Pr}\left(Y_{i 1}=1 \mid A_{i 1}=1\right) \tag{A3}
\end{equation*}
$$

by random assignment to person 1 and the consistency assumption. Substituting (A2) and (A3) into (A1) completes the proof.

Outlines of Methods for the Inference of the Conditional Infectiousness Effect

Marginal Structural Model

To yield a CIE estimate by the marginal structural model under Assumption 2 and the assumption that $Y_{i 2}\left(a_{i 1}\right)$ is independent of $A_{i 1}$ conditional on $Y_{i 1}$ and C_{i}, we need only data for households with $Y_{i 1}=1$. The analysis can be conducted using a weighted regression model of $A_{i 1}$ on $Y_{i 2}$ with the weights $w_{i}=1$ for households with $A_{i 1}=1$ and $w_{i}=\operatorname{Pr}\left(A_{i 1}=1 \mid Y_{i 1}=1, C_{i}\right) / \operatorname{Pr}\left(A_{i 1}=0 \mid Y_{i 1}=1, C_{i}\right)$ for households with $A_{i 1}=0 .{ }^{7}$ The following is an SAS code, which was applied to the data in Table. Note that the data file "IPW" contains only data for households with $Y_{i 1}=1$ in the original data file.

```
/* Estimation of Predicted Values */
proc logistic data=IPW descending;
    model A1=X;
    output out=PRED p=P;
run;
/* Calculation of the Weights */
data CIE;
    set PRED;
    if A1=1 then WEIGHT=1; else WEIGHT=P/(1-P);
run;
/* Weighted Analysis */
proc genmod data=CIE;
    class i;
    model Y2=A1/dist=poisson link=log;
    weight WEIGHT;
    repeated sub=i/type=ind;
    estimate 'beta' A1 1/exp;
run;
```

Bounds

Under Assumption 2, $E_{11}\left(a_{i 1}\right) \equiv \mathrm{E}\left[Y_{i 2}\left(a_{i 1}\right) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right]$ can be expressed as:

$$
\begin{aligned}
\mathrm{E}\left[Y_{i 2}\left(a_{i 1}\right) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right] & =\mathrm{E}\left[Y_{i 2}\left(a_{i 1}\right) \mid Y_{i 1}(1)=1\right] \\
& =\mathrm{E}\left[Y_{i 2}\left(a_{i 1}\right) \mid A_{i 1}=1, Y_{i 1}=1\right] .
\end{aligned}
$$

For $a_{i 1}=1$,

$$
\mathrm{E}\left[Y_{i 2}(1) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right]=\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=1, Y_{i 1}=1\right]
$$

by the consistency assumption, and for $a_{i 1}=0$,

$$
\mathrm{E}\left[Y_{i 2}(0) \mid A_{i 1}=1, Y_{i 1}=1\right] \leq \frac{\operatorname{Pr}\left(Y_{i 1}=1 \mid A_{i 1}=0\right)}{\operatorname{Pr}\left(Y_{i 1}=1 \mid A_{i 1}=1\right)} \mathrm{E}\left[Y_{i 2} \mid A_{i 1}=0, Y_{i 1}=1\right],
$$

because under Assumption 2,

$$
\begin{aligned}
\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=0, Y_{i 1}=1\right]= & \mathrm{E}\left[Y_{i 2}(0) \mid A_{i 1}=0, Y_{i 1}=1\right] \\
= & \mathrm{E}\left[Y_{i 2}(0) \mid Y_{i 1}(0)=1\right] \\
= & \mathrm{E}\left[Y_{i 2}(0) \mid Y_{i 1}(1)=0, Y_{i 1}(0)=1\right] \operatorname{Pr}\left(Y_{i 1}(1)=0 \mid Y_{i 1}(0)=1\right) \\
& +\mathrm{E}\left[Y_{i 2}(0) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right] \operatorname{Pr}\left(Y_{i 1}(1)=1 \mid Y_{i 1}(0)=1\right) \\
\geq & \mathrm{E}\left[Y_{i 2}(0) \mid Y_{i 1}(1)=1, Y_{i 1}(0)=1\right] \operatorname{Pr}\left(Y_{i 1}(1)=1 \mid Y_{i 1}(0)=1\right) \\
= & \frac{\operatorname{Pr}\left(Y_{i 1}(1)=1\right)}{\operatorname{Pr}\left(Y_{i 1}(0)=1\right)} \mathrm{E}\left[Y_{i 2}(0) \mid Y_{i 1}(1)=1\right] \\
= & \frac{\operatorname{Pr}\left(Y_{i 1}=1 \mid A_{i 1}=1\right)}{\operatorname{Pr}\left(Y_{i 1}=1 \mid A_{i 1}=0\right)} \mathrm{E}\left[Y_{i 2}(0) \mid A_{i 1}=1, Y_{i 1}=1\right] .
\end{aligned}
$$

Therefore, under Assumption 1, the lower bound for $\mathrm{CIE}_{\mathrm{r}} \equiv E_{11}(1) / E_{11}(0)$ becomes

$$
\begin{aligned}
\mathrm{CIE}_{\mathrm{r}} & \geq \frac{\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=1, Y_{i 1}=1\right]}{\frac{\operatorname{Pr}\left(Y_{i 1}=1 \mid A_{i 1}=0\right)}{\operatorname{Pr}\left(Y_{i 1}=1 \mid A_{i 1}=1\right)} \mathrm{E}\left[Y_{i 2} \mid A_{i 1}=0, Y_{i 1}=1\right]} \\
& =\frac{\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=1, Y_{i 1}=1\right] \operatorname{Pr}\left(Y_{i 1}=1 \mid A_{i 1}=1\right)+\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=1, Y_{i 1}=0\right] \operatorname{Pr}\left(Y_{i 1}=0 \mid A_{i 1}=1\right)}{\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=0, Y_{i 1}=1\right] \operatorname{Pr}\left(Y_{i 1}=1 \mid A_{i 1}=0\right)+\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=0, Y_{i 1}=0\right] \operatorname{Pr}\left(Y_{i 1}=0 \mid A_{i 1}=0\right)} \\
& =\frac{\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=1\right]}{\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=0\right]} .
\end{aligned}
$$

Under the assumption that $\mathrm{E}\left[Y_{i 2}(0) \mid A_{i 1}=1, Y_{i 1}=1\right] \geq \mathrm{E}\left[Y_{i 2}(0) \mid A_{i 1}=0, Y_{i 1}=1\right]$,

$$
\mathrm{CIE}_{\mathrm{r}} \leq \frac{\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=1, Y_{i 1}=1\right]}{\mathrm{E}\left[Y_{i 2}(0) \mid A_{i 1}=0, Y_{i 1}=1\right]}=\frac{\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=1, Y_{i 1}=1\right]}{\mathrm{E}\left[Y_{i 2} \mid A_{i 1}=0, Y_{i 1}=1\right]} .
$$

