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1 eAppendix A: Statistical methods

We consider a model for n strains assuming that an individual can be colo-

nized with up to two strains simultaneously. In a small number of samples in

each of the three datasets, simultaneous colonization of three serotypes was

found. In the analysis, the isolate with the least observations among all iso-

lates in the respective dataset was then omitted. The possible states of an

individual thus are: non-colonized, colonized with one of the n strains, and

colonized with any two of the strains simultaneously. We label the states as

(0), (1), ..., (n), (1, 2), (1, 3), ..., (n − 1, n), where (0) corresponds to the non-

colonized state, states (1), ..., (n) to the colonized states by one strain, and

states (1, 2), ..., (n−1, n) to the states in which two strains simultaneously col-

onize the same individual. Altogether, there are Nn = (n(n+ 1)/2) + 1 states

in the model. Occasionally, it is more convenient to enumerate the states as

[1], ..., [Nn], where [1] corresponds to state (0) etc.

Denote the process of colonization by Y . A Nn ×Nn stochastic transition

intensity matrix M(τ) at time τ is defined element-wise as

λ[s],[k] = lim
∆t→0

P(Y (τ +∆t) = [k] | Y (τ) = [s])

∆t
,

where [s], [k] ∈ {[1], ..., [Nn]}, s 6= k, and

λ[s],[s] = −
Nn
∑

j=1,j 6=s

λ[s],[j].
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With constant transition intensities (M(τ ) = M) the transition probability

matrix for the time interval of length t is obtained with the matrix exponential

function P
t(M) = exp(tM), with elements

P
t
[s],[k](M) = P(Y (τ + t) = [k] | Y (τ) = [s]) for all τ.

Assume that the status of individual i is observed at time points τ ji , j =

1, ..., Ki. Based on the observations from N individuals, the likelihood function

for the complete data Y = {Y (τ ji ); i = 1, ..., N, j = 1, ..., Ki} is

N
∏

i=1

P(Y (τ 1i )|M0)

Ki
∏

j=2

P(Y (τ ji )|Y (τ j−1
i ),M),

where M0 is the distribution of the first observation Y (τ 1i ). Without the

contribution of the first observations, the complete-data likelihood function is

N
∏

i=1

Ki
∏

j=2

Nn
∑

s=1

Nn
∑

k=1

P
t(i,j)
[s],[k](M)1{Y (τ ji ) = [k], Y (τ j−1

i ) = [s]},

where t(i, j) = τ ji − τ j−1
i . If the true underlying states of the individuals are

different from what is observed, this likelihood is not applicable. To allow such

possibility, we present the necessary methods in the following.

A hidden Markov model approach. To allow the possibility that the

true state of colonization is not necessarily observed, we need to specify a

model to link the observations to the true underlying process. For the non-

colonized state and for any of the n singly colonized states we assume perfect

sensitivity of detection, i.e., any of the states (0), ...., (n) is observed as such

when measured. For any of the doubly colonized states, (1, 2), ..., (n − 1, n),

we assume that the state is detected as either the true state with two strains,

or a singly colonized state with one of the two strains involved. We define

0 ≤ ν ≤ 1 as the sensitivity to detect the doubly colonized state as such. A

doubly colonized state is then detected as singly colonized with probability

1− ν so that either of the two strains is detected with probability 0.5(1− ν).
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Denote the discrete-time observations made at times τ ji byX = {X(τ ji ), i =

1, ..., N, j = 1, ..., Ki}. The likelihood function for the incomplete data X is

N
∏

i=1

Ki
∏

j=2

P(X(τ ji )|F(X(τ j−1
i ),M), (1)

where F(X(τ j−1
i )) is the observed history of colonization states of individual

i up to time point τ j−1
i . This model is a hidden Markov model because of

the Markov dependency between the underlying states (Y (τ ji )). To estimate

the transition intensities M we modify the algorithm originally presented by

Nagelkerke1 for a simple binary model to the current setting with more than

two states. The resulting algorithm is similar to the Viterbi algorithm.2

Denote the probability that the true state of individual i at time τ ji is

y ∈ S = {(0), ..., (n− 1, n)}, conditional on the observed history, by

Qj
i (y) = P(Y (τ ji ) = y|F(X(τ ji )),M).

In the following, we leave conditioning onM and the time interval t(i, j) = τ ji −

τ j−1
i from the notations, and denote the transition probability from state (s) to

(k), i.e., the element P
t(i,j)
(s),(k)(M), by p((s), (k)). For y ∈ {(1, 2), ..., (n− 1, n)},

the states with simultaneous colonization of two strains, the probability of

observation X(τ ji ), conditional on the observed history F(X(τ j−1
i )), is

P(X(τ ji ) = y|F(X(τ j−1
i )) = ν

∑

k∈S

[

Qj−1
i (k)p(k, y)

]

,

For y ∈ {(1), ..., (n)}, the states in which only one colonizing strain is present,

P(X(τ ji ) = y|F(X(τ j−1
i )) =

∑

k∈S

[

Qj−1
i (k)p(k, y)+0.5(1−ν)

∑

d∈{(y,·)}

Qj−1
i (k)p(k, d)

]

,

where {(y, ·)} is the set of states involving two simultaneous strains where the

other one is y. For (0), the non-colonized state,

P(X(τ ji ) = (0)|F(X(τ j−1
i )) =

∑

k∈S

[

Qj−1
i (k)p(k, (0))

]

.
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Next we use the Bayes theorem to obtain an expression for Qj
i (y):

Qj
i (y) =

P

(

F(X(τ j
i
)),Y (τ j

i
)=y

)

∑

s∈S

[

P

(

F(X(τ ji )), Y (τ ji ) = s

)]

=

P

(

X(τ j
i
)|Y (τ j

i
)=y,F(X(τ j−1

i
))

)

P

(

Y (τ j
i
)=y|F(X(τ j−1

i
))

)

P

(

F(X(τ j−1

i
))

)

∑

s∈S

[

P

(

X(τ ji )|Y (τ ji ) = s,F(X(τ j−1
i ))

)

P

(

Y (τ ji ) = s|F(X(τ j−1
i ))

)

P

(

F(X(τ j−1
i ))

)]

=

P

(

X(τ j
i
)|Y (τ j

i
)=y,F(X(τ j−1

i
))

)

P

(

Y (τ j
i
)=y|F(X(τ j−1

i
))

)

∑

s∈S

[

P

(

X(τ ji )|Y (τ ji ) = s,F(X(τ j−1
i ))

)

P

(

Y (τ ji ) = s|F(X(τ j−1
i ))

)] . (2)

The observation level in (2), P(X(τ ji )|Y (τ ji ),F(X(τ j−1
i ))), depends only on ν

and thus follows from the model linking observations to the underlying process.

Given observations up to time point τ j−1
i , the probability that the state at τ ji

is y can be calculated as follows:

P(Y (τ ji ) = y|F(X(τ j−1
i ))) =

∑

s∈S

[

P(Y (τ ji ) = y, Y (τ j−1
i ) = s|F(X(τ j−1

i ))

]

=
∑

s∈S

[

P(Y (τ ji ) = y | Y (τ j−1
i ) = s,F(X(τ j−1

i ))P(Y (τ j−1
i ) = s|F(X(τ j−1

i ))

]

=
∑

s∈S

[

P(Y (τ ji ) = y | Y (τ j−1
i ) = s,F(X(τ j−1

i ))Qj−1
i (s)

]

=
∑

s∈S

[

p(s, y)Qj−1
i (s)

]

,

yielding a recursive formula to calculate the transition probabilities needed in

(1). The recursion stops when the observation determines the underlying state

(either 0 or doubly colonized state) or on the first state, which for simplicity

is assumed to be the observed one.

We implemented a Markov chain Monte Carlo method with the Metropolis-

Hastings algorithm to draw samples from the posterior distribution of all (2n+

6) parameters. We assumed uniform prior distributions on [0, 10] (per month)
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for all acquisition and clearance rates (λ(0),(x) and λ(x),(0)). For all the compe-

tition parameters (θ(x),(x,y) = λ(x),(x,y)/λ(0),(y) and φ(x,y),(x) = λ(x,y),(x)/λ(y),(0)),

we assumed prior distributions proportional to z−1 on z ∈ [1/a, a], 1 < a

(a = 1000), since this prior has the property that [1/b, 1] and [1, b] have the

same probability for all 1 < b ≤ a. We monitored the convergence of the chain

by setting different initial values for the model parameters to start the chain

and calculated the potential scale reduction factor3 for the parameters of in-

terest. The detection sensitivity, ν, was not subject to estimation but used

as a control parameter with a given value. The performance of estimation

was investigated with different choices of ν. Specifically, values ν = 50% and

ν = 100% were used when estimating the model parameters.

Interpretation of the overall competition strength (1− θ/φ). Consider

one time unit spent singly colonized in absence of competition and denote by

λ the rate of acquiring double colonization while singly colonized. During the

time unit, on average λ double colonization events will occur (expectation of

the Poisson distribution). Denote by µ the rate of clearing double colonization,

so that each double colonization episode has an average duration 1/µ. Then,

per one time unit spent singly colonized the expected time spent double colo-

nized is λ/µ. Suppose then that in presence of competition the corresponding

acquisition and clearance rates are θλ and ϕµ, respectively. Then, per one

time unit spent singly colonized, the expected time spent doubly colonized is

(θλ)/(ϕµ). This means that the relative reduction in the expected time spent

doubly colonized per time unit spent singly colonized is 1− θ/ϕ, compared to

no competition.

Simulation studies. Simulated data were used to test the performance

of estimation. In these simulations, 8 equivalent strains with acquisition rates

0.15 per month, and clearance rate 0.75 per month were used. In addition,

the competition parameters (θ, φ) were one of the following combinations:

(0.1,1),(1,1),(1,5). These correspond to the overall and double colonization

prevalence as (0.63,0.07),(0.73,0.41),(0.65,0.13), respectively. The average du-

rations of doubly colonized state were 0.67,0.67,0.13 months, respectively. Four
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different combinations of the sensitivity to simulate the data (νtrue) and the

sensitivity used to estimate the model parameters (νest) were used: (0.25,1),

(0.5,1), (0.5,0.5), (1,0.5). The two first combinations correspond to analyzes

in which perfect sensitivity is assumed although the true sensitivity to detect

double colonization is poor. The last combination represents the case in which

the true sensitivity is higher than the one used in estimation.
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2 eAppendix B: Estimation results

Table 1: The Danish dataset

ν = 100% Mean 90%CI Mean 90%CI

λ(0),(23F) 0.54 (0.37, 0.76) λ(23F),(0) 1.00 (0.58, 1.41)

λ(0),(19F) 0.59 (0.35, 0.96) λ(19F),(0) 1.28 (0.81, 2.08)

λ(0),(6A) 0.17 (0.10, 0.26) λ(6A),(0) 0.67 (0.42, 0.98)

λ(0),(14) 0.23 (0.14, 0.36) λ(14),(0) 1.28 (0.81, 1.94)

λ(0),(6B) 0.32 (0.21, 0.47) λ(6B),(0) 0.93 (0.61, 1.29)

λ(0),(19A) 0.13 (0.07, 0.22) λ(19A),(0) 0.96 (0.57, 1.51)

λ(0),(15B/C) 0.23 (0.10, 0.42) λ(15B/C),(0) 1.61 (0.71, 2.77)

λ(0),(11A) 0.28 (0.14, 0.49) λ(11A),(0) 2.51 (1.44, 3.73)

λ(0),(The Rest) 0.79 (0.48, 1.19) λ(The Rest),(0) 1.28 (0.79, 1.91)

θ(x),(x,23F) 0.04 (0.01, 0.14) φ(23F,x),(x) 1.09 (0.13, 2.90)

θ(23F),(23F,x) 0.10 (0.02, 0.21) φ(x,23F),(23F) 0.61 (0.02, 1.70)

θ(x),(x,y) 0.10 (0.04, 0.21) φ(x,y),(x) 0.94 (0.49, 2.11)

ν = 50% Mean 90%CI Mean 90%CI

λ(0),(23F) 0.53 (0.30, 0.83) λ(23F),(0) 1.28 (0.74, 1.92)

λ(0),(19F) 0.48 (0.29, 0.75) λ(19F),(0) 1.15 (0.68, 1.87)

λ(0),(6A) 0.16 (0.09, 0.24) λ(6A),(0) 0.70 (0.45, 1.05)

λ(0),(14) 0.25 (0.14, 0.40) λ(14),(0) 1.62 (0.91, 2.43)

λ(0),(6B) 0.34 (0.21, 0.54) λ(6B),(0) 1.12 (0.70, 1.69)

λ(0),(19A) 0.13 (0.07, 0.21) λ(19A),(0) 1.08 (0.63, 1.67)

λ(0),(15B/C) 0.17 (0.09, 0.29) λ(15B/C),(0) 1.40 (0.69, 2.33)

λ(0),(11A) 0.28 (0.13, 0.48) λ(11A),(0) 2.74 (1.57, 4.17)

λ(0),(The Rest) 0.76 (0.46, 1.25) λ(The Rest),(0) 1.38 (0.83, 2.28)

θ(x),(x,23F) 0.09 (0.01, 0.26) φ(23F,x),(x) 0.25 (0.00, 0.88)

θ(23F),(23F,x) 0.06 (0.00, 0.17) φ(x,23F),(23F) 0.42 (0.00, 1.00)

θ(x),(x,y) 0.10 (0.05, 0.18) φ(x,y),(x) 0.32 (0.17, 0.58)

Table 1. Estimates of acquisition (λ(0,.)), clearance (λ(.,0)) and competition

parameters (θ(.,.), φ(.,.)). The posterior mean and 90% credible intervals (CI; in

parenthesis) with the detection sensitivity (ν) of double colonization assumed

either 100% or 50%. The target serotype (s) is 23F.
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Table 2: The American Indian dataset

ν = 100% Mean 90%CI Mean 90%CI

λ(0,6A) 0.08 (0.04, 0.14) λ(6A,0) 0.23 (0.10, 0.41)

λ(0,6B) 0.06 (0.04, 0.09) λ(6B,0) 0.42 (0.29, 0.55)

λ(0,23F) 0.08 (0.05, 0.11) λ(23F,0) 0.52 (0.36, 0.71)

λ(0,19F) 0.10 (0.07, 0.15) λ(19F,0) 0.99 (0.66, 1.41)

λ(0,14) 0.05 (0.03, 0.07) λ(14,0) 0.58 (0.39, 0.81)

λ(0,19A) 0.04 (0.02, 0.06) λ(19A,0) 0.52 (0.33, 0.77)

λ(0,22F) 0.03 (0.02, 0.05) λ(22F,0) 0.45 (0.29, 0.63)

λ(0,9V) 0.07 (0.04, 0.11) λ(9V,0) 1.25 (0.78, 1.85)

λ(0,The rest) 0.73 (0.57, 0.90) λ(The rest,0) 0.91 (0.70, 1.15)

θ(x),(x,y) 0.28 (0.13, 0.54) φ(x,y),(x) 2.55 (1.23, 4.96)

ν = 50% Mean 90%CI Mean 90%CI

λ(0,6A) 0.08 (0.04, 0.12) λ(6A,0) 0.42 (0.27, 0.57)

λ(0,6B) 0.06 (0.04, 0.08) λ(6B,0) 0.38 (0.27, 0.50)

λ(0,23F) 0.08 (0.05, 0.11) λ(23F,0) 0.56 (0.41, 0.79)

λ(0,19F) 0.08 (0.05, 0.13) λ(19F,0) 0.85 (0.57, 1.18)

λ(0,14) 0.04 (0.03, 0.07) λ(14,0) 0.60 (0.40, 0.80)

λ(0,19A) 0.04 (0.03, 0.06) λ(19A,0) 0.54 (0.35, 0.76)

λ(0,22F) 0.03 (0.02, 0.05) λ(22F,0) 0.48 (0.33, 0.64)

λ(0,9V) 0.05 (0.03, 0.09) λ(9V,0) 1.03 (0.57, 1.57)

λ(0,The rest) 0.64 (0.55, 0.73) λ(The rest,0) 0.82 (0.72, 0.93)

θ(x),(x,y) 0.31 (0.20, 0.45) φ(x,y),(x) 1.19 (0.75, 1.69)

Table 2. Estimates of acquisition (λ(0,.)), clearance (λ(.,0)) and competition

parameters (θ(.,.), φ(.,.)). The posterior mean and 90% credible intervals (CI; in

parenthesis) with the detection sensitivity (ν) of double colonization assumed
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either 100% or 50%.

Table 3A: The Gambian dataset (19F)

ν = 100% Mean 90%CI Mean 90%CI

λ(0,19F) 0.15 (0.08, 0.25) λ(19F,0) 0.21 (0.08, 0.55)

λ(0,6B) 0.35 (0.28, 0.43) λ(6B,0) 0.40 (0.30, 0.50)

λ(0,6A) 0.28 (0.22, 0.33) λ(6A,0) 0.49 (0.36, 0.63)

λ(0,14) 0.21 (0.16, 0.26) λ(14,0) 0.32 (0.24, 0.42)

λ(0,23F) 0.20 (0.16, 0.26) λ(23F,0) 0.38 (0.29, 0.50)

λ(0,19A) 0.10 (0.07, 0.13) λ(19A,0) 0.28 (0.19, 0.37)

λ(0,15B/C) 0.07 (0.05, 0.09) λ(15B/C,0) 0.21 (0.14, 0.30)

λ(0,35B) 0.04 (0.03, 0.06) λ(35B,0) 0.25 (0.17, 0.35)

λ(0,3) 0.09 (0.06, 0.13) λ(3,0) 0.48 (0.30, 0.73)

λ(0,11) 0.04 (0.03, 0.06) λ(11,0) 0.25 (0.15, 0.37)

λ(0,23B) 0.05 (0.03, 0.07) λ(23B,0) 0.35 (0.22, 0.51)

λ(0,9N) 0.04 (0.03, 0.06) λ(9N,0) 0.31 (0.19, 0.46)

λ(0,16F) 0.05 (0.03, 0.07) λ(16F,0) 0.44 (0.27, 0.64)

λ(0,The rest) 0.73 (0.64, 0.84) λ(The rest,0) 0.56 (0.47, 0.65)

θ(x),(x,19F) 0.58 (0.23, 1.00) φ(19F,x),(x) 11.58 (1.29, 30.72)

θ(19F),(19F,x) 0.60 (0.23, 1.05) φ(x,19F),(19F) 10.73 (5.01, 19.36)

θ(x),(x,y) 0.49 (0.39, 0.59) φ(x,y),(x) 13.62 (9.81, 18.00)

ν = 50% Mean 90%CI Mean 90%CI

λ(0,19F) 0.17 (0.11, 0.24) λ(19F,0) 0.24 (0.13, 0.42)

λ(0,6B) 0.31 (0.25, 0.38) λ(6B,0) 0.40 (0.31, 0.52)

λ(0,6A) 0.23 (0.19, 0.28) λ(6A,0) 0.46 (0.36, 0.58)

λ(0,14) 0.20 (0.16, 0.24) λ(14,0) 0.36 (0.28, 0.44)

λ(0,23F) 0.19 (0.15, 0.24) λ(23F,0) 0.43 (0.34, 0.54)

λ(0,19A) 0.08 (0.06, 0.10) λ(19A,0) 0.25 (0.18, 0.35)

λ(0,15B/C) 0.08 (0.06, 0.10) λ(15B/C,0) 0.32 (0.22, 0.45)

λ(0,35B) 0.05 (0.03, 0.07) λ(35B,0) 0.33 (0.23, 0.46)

λ(0,3) 0.10 (0.07, 0.14) λ(3,0) 0.75 (0.51, 1.06)

λ(0,11) 0.05 (0.03, 0.07) λ(11,0) 0.36 (0.23, 0.51)

λ(0,23B) 0.05 (0.04, 0.07) λ(23B,0) 0.43 (0.29, 0.60)

λ(0,9N) 0.03 (0.02, 0.05) λ(9N,0) 0.30 (0.20, 0.43)

λ(0,16F) 0.03 (0.02, 0.04) λ(16F,0) 0.24 (0.14, 0.36)

λ(0,The rest) 0.68 (0.59, 0.78) λ(The rest,0) 0.59 (0.50, 0.66)

θ(x),(x,19F) 0.42 (0.22, 0.70) φ(19F,x),(x) 2.33 (0.81, 5.00)

θ(19F),(19F,x) 0.51 (0.35, 0.71) φ(x,19F),(19F) 2.33 (1.56, 3.26)

θ(x),(x,y) 0.39 (0.32, 0.46) φ(x,y),(x) 3.16 (2.52, 3.99)
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Table 3B: The Gambian dataset (6B)

ν = 100% Mean 90%CI Mean 90%CI

λ(0,6B) 0.23 (0.16, 0.30) λ(6B,0) 0.19 (0.10, 0.31)

λ(0,19F) 0.20 (0.16, 0.24) λ(19F,0) 0.26 (0.21, 0.32)

λ(0,6A) 0.28 (0.23, 0.32) λ(6A,0) 0.50 (0.38, 0.64)

λ(0,14) 0.21 (0.18, 0.25) λ(14,0) 0.37 (0.29, 0.46)

λ(0,23F) 0.20 (0.17, 0.24) λ(23F,0) 0.42 (0.32, 0.53)

λ(0,19A) 0.10 (0.08, 0.12) λ(19A,0) 0.31 (0.23, 0.39)

λ(0,15B/C) 0.07 (0.05, 0.09) λ(15B/C,0) 0.25 (0.17, 0.34)

λ(0,35B) 0.05 (0.03, 0.06) λ(35B,0) 0.30 (0.21, 0.42)

λ(0,3) 0.10 (0.07, 0.13) λ(3,0) 0.57 (0.39, 0.83)

λ(0,11) 0.05 (0.03, 0.06) λ(11,0) 0.31 (0.20, 0.43)

λ(0,23B) 0.05 (0.04, 0.07) λ(23B,0) 0.40 (0.27, 0.55)

λ(0,9N) 0.04 (0.03, 0.06) λ(9N,0) 0.35 (0.23, 0.50)

λ(0,16F) 0.05 (0.03, 0.07) λ(16F,0) 0.52 (0.34, 0.78)

λ(0,The rest) 0.71 (0.62, 0.82) λ(The rest,0) 0.55 (0.47, 0.64)

θ(x),(x,6B) 0.84 (0.57, 1.24) φ(x,6B),(x) 53.69 (25.41, 117.82)

θ(6B),(x,6B) 0.72 (0.51, 0.97) φ(x,6B),(6B) 34.20 (20.87, 48.22)

θ(x),(x,y) 0.34 (0.27, 0.42) φ(x,y),(x) 7.28 (5.18, 10.37)

ν = 50% Mean 90%CI Mean 90%CI

λ(0,6B) 0.25 (0.19, 0.34) λ(6B,0) 0.18 (0.09, 0.31)

λ(0,19F) 0.17 (0.13, 0.21) λ(19F,0) 0.24 (0.19, 0.32)

λ(0,6A) 0.22 (0.18, 0.27) λ(6A,0) 0.45 (0.34, 0.58)

λ(0,14) 0.18 (0.15, 0.22) λ(14,0) 0.36 (0.27, 0.46)

λ(0,23F) 0.18 (0.14, 0.23) λ(23F,0) 0.44 (0.35, 0.55)

λ(0,19A) 0.08 (0.06, 0.10) λ(19A,0) 0.26 (0.19, 0.34)

λ(0,15B/C) 0.07 (0.05, 0.10) λ(15B/C,0) 0.31 (0.22, 0.43)

λ(0,35B) 0.05 (0.03, 0.06) λ(35B,0) 0.35 (0.24, 0.47)

λ(0,3) 0.10 (0.07, 0.13) λ(3,0) 0.77 (0.53, 1.05)

λ(0,11) 0.05 (0.03, 0.07) λ(11,0) 0.38 (0.25, 0.53)

λ(0,23B) 0.05 (0.03, 0.07) λ(23B,0) 0.45 (0.31, 0.61)

λ(0,9N) 0.03 (0.02, 0.04) λ(9N,0) 0.31 (0.19, 0.43)

λ(0,16F) 0.02 (0.01, 0.04) λ(16F,0) 0.25 (0.15, 0.38)

λ(0,The rest) 0.68 (0.59, 0.79) λ(The rest,0) 0.61 (0.53, 0.70)

θ(x),(x,6B) 0.69 (0.38, 1.07) φ(x,6B),(x) 18.97 (7.97, 34.08)

θ(6B),(x,6B) 0.54 (0.38, 0.77) φ(x,6B),(6B) 7.12 (4.26, 10.60)

θ(x),(x,y) 0.39 (0.32, 0.47) φ(x,y),(x) 2.40 (1.87, 3.07)
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Table 3. Estimates of acquisition (λ(0,.)), clearance (λ(.,0)) and competition

parameters (θ(.,.), φ(.,.)). The posterior mean and 90% credible intervals (CI; in

parenthesis) with the detection sensitivity (ν) of double colonization assumed

either 100% or 50%. The target serotype (s) is either 19F in panel A and 6B

in panel B.

Competition with very low assumed level of the detection sensi-

tivity. We performed analyses with very low assumed levels of the detection

sensitivity (ν), but all model parameters could not be estimated well. We

therefore repeated these analyses using a model with a reduced number of pa-

rameters. Specifically, we assumed that all serotypes had the same clearance

rate and the same competition parameters, i.e., no serotype-specific compe-

tition was allowed in the model. The sensitivity parameter ν was assumed

to be 15%. The estimated acquisition rates were similar to what were esti-

mated assuming ν = 50%. The estimated clearance rates were close to what

were estimated for the common serotypes in each dataset with ν = 50%. The

estimated levels of competition are presented in Table 4 below.

Table 4: Competition under a reduced model

The Danish dataset

ν = 15% Mean 90%CI Mean 90%CI

θ(x),(x,y) 0.35 (0.31, 0.39) φ(x,y),(x) 0.21 (0.12, 0.34)

The American Indian dataset

ν = 15% Mean 90%CI Mean 90%CI

θ(x),(x,y) 0.62 (0.41, 0.86) φ(x,y),(x) 0.74 (0.49, 1.06)

The Gambian dataset

ν = 15% Mean 90%CI Mean 90%CI

θ(x),(x,y) 0.55 (0.47, 0.62) φ(x,y),(x) 1.78 (1.49, 2.01)

Table 4. Estimates of competition parameters (θ(x,y), φ(x,y)) under a reduced

model in which all serotypes share the same competition parameters and clear-

ance rates. The posterior mean and 90% credible intervals (CI; in parenthesis)

with the detection sensitivity (ν) of double colonization assumed 15%.

We also compared the model predictions with ν = 15% to the observed

data. Briefly, the model does not allow competition in acquisition to be close
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to 1 because the turnover of serotypes would then be faster than what was

observed.

3 eAppendix C: Model assessment

Figures 1, 2 and 3 present the observed transition probabilities between the

different colonization states for the most common sampling intervals in the

Danish, American Indian, and the Gambian datasets, respectively. In ad-

dition, the posterior predictive transition probabilities are presented, based

on the model with the either perfect (ν = 100%) or imperfect sensitivity

(ν = 50%) to detect double colonization assumed. For ν = 50%, the tran-

sition probabilities which take into account the detection sensitivity, i.e., not

the true underlying ones, are presented. Transition probabilities are deter-

mined between the following five aggregated states: non-colonized (state 0),

the target serotype, any non-target type, doubly colonized states (target and

non-target; two non-target types). The target type is not present with the

American Indian data because target-specific rates could not be identified.

12



0* (25) 1* (9) 2* (30) 3* (1) 4* (1)
0

0.5

1
From state 0

P
(t

)

0* (9) 1* (15) 2* (8) 3* (2) 4* (0)
0

0.5

1
From the target type

P
(t

)

0* (26) 1* (10) 2* (86) 3* (3) 4* (5)
0

0.5

1
From a non−target type

P
(t

)

0* (1) 1* (0) 2* (4) 3* (2) 4* (0)
0

0.5

1
From co−colonisation of the target type and a non−target type

P
(t

)

0* (2) 1* (0) 2* (8) 3* (0) 4* (0)
0

0.5

1
From co−colonisation of two non−target types

P
(t

)

Figure 1: The observed transition probabilities between the different coloniza-

tion states (P(t)) for the most common time interval (30 days) in the Danish

dataset and serotype 23F as the target type (horizontal line). The posterior

predictive distributions of the transition probabilities are indicated with blue

’+’ (the model with 100% sensitivity of detection) or magenta ’x’ (50% sen-

sitivity). 0∗ : To state 0. 1∗ : To the target type. 2∗ : To a non-target type.

3∗ : To co-colonization of the target type and a non-target type. 4∗ : To

co-colonization of two non-target types.

13



0* (50) 2* (46) 4* (0)
0

0.5

1
From state 0

P
(t

)

0* (79) 2* (185) 4* (9)
0

0.5

1
From a non−target type

P
(t

)

0* (10) 2* (14) 4* (1)
0

0.5

1
From co−colonization of to non−target types

P
(t

)

Figure 2: The observed transition probabilities between the different coloniza-

tion states (P(t)) for the most common time interval (35 days) in the American

Indian dataset (horizontal line). The posterior predictive distributions of the

transition probabilities are indicated with blue ’+’ (the model with 100% sen-

sitivity of detection) or magenta ’x’ (50% sensitivity). 0∗ : To state 0. 2∗ : To

a non-target type. 4∗ : To co-colonization of two non-target types
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Figure 3: The observed transition probabilities between the different coloniza-

tion states (P(t)) for the most common time interval (14 days) in the Gambian

dataset and serotype 19F as the target type (horizontal line). The posterior

predictive distributions of the transition probabilities are indicated with blue

’+’ (the model with 100% sensitivity of detection) or magenta ’x’ (50% sen-

sitivity). (50% sensitivity 0∗ : To state 0. 1∗ : To the target type. 2∗ : To a

non-target type. 3∗ : To co-colonization of the target type and a non-target

type. 4∗ : To co-colonization of two non-target types
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Calculation of the prevalence of colonization and the proportion of

doubly colonized samples in the absence of competition. Assuming

that the total prevalence and the serotype distribution are approximately the

observed ones, the proportion of multiple colonization among the positive

samples under the assumption of no competition can be calculated. Denote

pi = Ni/N , where Ni is the number of isolates of serotype i and N the total

number of samples in the dataset, and P1 =
∑

i pi, P2 =
∑

i

∑

j>i pipj , and

P3 =
∑

i

∑

j>i

∑

k>j pipjpk, ..., where for each dataset we have Pi:i>3 ≈ 0.

Thus, by the additive law of probability for independent events, the total

prevalence of colonization is approximately P1−P2+P3 and the prevalence of

multiple colonization P2 − P3, and the proportion of multiple colonization of

total colonization (P2 − P3)/(P1 − P2 + P3).

By scaling the observed pi in each dataset so that the total prevalence

(P1 − P2 + P3) is the observed one, we obtain the theoretical proportion of

multiple colonization of these in the absence of competition. For the Dan-

ish dataset this is (P2 − P3)/(P1 − P2 + P3) ≈ 55%, for the American In-

dian dataset (P2 − P3)/(P1 − P2 + P3) ≈ 40%, and for the Gambian dataset

(P2 − P3)/(P1 − P2 + P3) ≈ 62%.

Assessment of exposure as a confounder. The estimation of competition

in acquisition could be confounded, if some unadjusted background variables

were associated with both the colonization status (colonized/non-colonized)

and exposure to acquisition. For instance, individuals could belong to sub-

populations clearly dominated by different serotypes (micro-epidemics). We

employed the Danish data to investigate whether such associations could be

found. In that dataset, repeated observations came from three different day-

care centers. Earlier studies have indicated the key role of day care centers in

generating micro-epidemics.4

We calculated first the proportion of non-colonized samples that were col-

lected with and without serotype 23F (the target serotype in the analysis)

present at the same time at the same day care center. Second, we calculated

the proportion of samples found to be singly colonized with other types than

23F, again with and without 23F being present at the same time at the same
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day care center. The results are shown in Table 5 below.

N0 Ny Total

Exposure = 0 73(73/165 = 44%) 110(110/340 = 32%) 183

Exposure = 1 92(92/165 = 56%) 230(230/340 = 68)% 322

Total 165 340 505
N0:Number of observations of the non-colonized state 0.

Ny:Number of observations of singly colonized states other than 23F.

Exposure: exposure to serotype 23F (23F present at the same DCC at the same sampling round, 1=yes, 0=no).

Table 5. The number of observations of different states in the Danish dataset

stratified by the presence of serotype 23F (yes/no at the respective sampling

round in the same DCC).

The proportion of samples found non-colonized and without exposure to

23F was 44% of all non-colonized samples. The corresponding proportion of

singly colonized samples (other than 23F) was 32%. If colonization with other

types than 23F was associated with 23F not being present at the same time,

the latter proportion should be larger. Since this was not the case, this means

that those colonized with other than the target serotype were actually more

often exposed to 23F than the non-colonized. This is against the hypothesis

of confounding bias due to micro-epidemics. The reason why other types were

present at the same time as 23F could be e.g. seasonal effects. Perhaps more

likely, it is just random variation as for all serotypes the average difference of

the corresponding proportions was only 4 percentage points.
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