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INTRODUCTION

A frequently used study design within
epidemiology is large cohort studies. In some
situations additional information which is not
included in the cohort, for instance biological
material stored in biobanks, is required. The
availability of such material is usually limited
and might be very expensive to analyze for the
entire cohort. A reasonable strategy is therefore
to restrict the study sample to a subset of the
original cohort. Two such designs are nested
case-control1,2 and case-cohort3 studies. With a
nested case-control design, m controls are sampled
for each case. The controls are required to be alive
and event free at the time the case experienced
the event. Due to those requirements, we say that
the controls are matched on time, or at risk status.
With a case-cohort design, a subcohort is sampled
at the outset of the study, and this subcohort is used
as a reference population at all event times.

In many studies, more than one endpoint or
type of event are of interest. Examples of this
can be settings where two or more types of events
”compete”, e.g. death from cancer and death from
cardiovascular diseases. Another example could be
situations where one endpoint is a subset of another
endpoint, e.g. incidence of prostate cancer and
subsequent death from prostate cancer.

As the controls are matched to their respective
cases in a nested case-control design, using them
for other endpoints have traditionally not been
considered possible. Thus, in the first example only
the controls sampled for the endpoint in question
can be used. In the second example, all controls
sampled for incident cases that did not die from
prostate cancer can not be included in the analysis
towards death from prostate cancer. The case-
cohort design, on the other hand, has often been the
design of choice if it was to be carried out analyses
towards multiple endpoints. Since the subcohort is
a random sample from the cohort, it can be used as
control population for all types of events.

In recent years, methods have been developed

that allow for breaking the matching in nested case-
control designs.4–9 This opens up the possibility of
reusing controls for other endpoints. Even though
these methods have been around for some time, it
does not seem that they have been picked up by
epidemiologists yet. We will show that it is fairly
easy to reuse controls also within the nested case-
control design and that this in many situations can
give large efficiency improvements.

Meyer et al.10 showed in a recent paper that
serum 25-hydroxyvitamin D (s-25(OH)D) was
positively related to the risk of prostate cancer in
a nested case-control study. We will re-analyze
this study with inverse probability weighting
(IPW).4–8,11 The main endpoint in Meyer et al.10

was incidence of prostate cancer. To investigate
efficiency improvements with IPW and illustrate
reuse of controls, we are also going to analyze the
endpoint death from prostate cancer and subgroups
of cases based on metastasis status.

DATA AND DESIGN

The cohort

The cohort consisted of participants in a collection
of population based health surveys conducted in
17 of Norway’s 19 counties from 1981 to 1991.
All men and women in selected birth cohorts
were invited to participate, although in our context
only male participants were of interest. The
health surveys consisted of a health examination
where a blood sample was drawn. Participants
also completed a questionnaire including questions
about physical activity during leisure time.

The data were linked to The Cancer Registry of
Norway and to the Causes of Death Registry kept
by Statistics Norway. Information on education
was provided by Statistics Norway. The subjects
were followed from time of health survey to
incidence of prostate cancer, death or the end
of December 2006. The primary endpoint was
incidence of prostate cancer, and a secondary
endpoint was death from prostate cancer (prostate
cancer being the underlying cause of death).
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The rationale for using death was that in recent
years screening for prostate cancer has increased.
This might increase the detection of the milder
forms. By using death from prostate cancer as an
endpoint instead of incidence, we may focus on the
most serious cases. As an alternative approach,
we divided the cases into metastatic and non-
metastatic cancer, and analyzed these outcomes
separately.

A primary case was defined as an individual
experiencing prostate cancer and prior to that
was free of all types of cancer. The individuals
experiencing the secondary endpoint, death from
prostate cancer, were thus a subset of the primary
cases. The eFigure displays the different types of
analyses that were carried out.

Nested case-control study

Our cohort consisted of 116,493 men. Among
those there were 2,118 incident prostate cancer
cases. A matched nested case-control design was
chosen for the study.10 For each incident case, m =
1 control, matched on age at serum sampling ±6
months, date of serum sampling ±2 months and
county of residence, was sampled. In addition, it
was required that the controls were alive and did
not have any previous cancer diagnoses at the time
of sampling.

We have a subsequent event setting; the cases
were first diagnosed with prostate cancer, and later
some cases died from this condition. However,
the controls were only sampled for incident cases
and when analyzing death of prostate cancer, the
already sampled controls for the cases that died
were used as controls in the traditional analysis.

STATISTICAL MODELS AND
METHODS

For each individual we observed the pair (ti,di)
where di indicated whether subject i was a case or
a control. The subjects were followed from age
at health examination, li, to the event time age at
prostate cancer or age at censoring, ti, depending
on the event indicator di. Age at health examination
will be referred to as inclusion time. We used age
as time scale instead of time on study, the subjects
are thereby not followed from time zero and we
have observations with delayed entries.

We considered Cox’s proportional hazards
model where the hazard function of events of type

k was modeled as

hki(ti|xi,zi) = hk0(ti)exp(β ′kxi + γ
′
kzi). (1)

The hki(ti|xi,zi) is the general model for all
types of events; when k = 1, h1i(ti|xi,zi) is the
model for incidence of prostate cancer. With
k = 2, h2i(ti|xi,zi) models death from prostate
cancer whereas k = 3,4,5 will represent three
metastasis groups; non-metastatic, metastatic and
unknown cancer status. The βk are the log-
hazard ratios connected to the k-th endpoint.
Further, hk0(ti) is the k-th baseline hazard, the
hazard when all covariates are equal to zero.
The covariates xi include the main exposure, s-
25(OH)D together with the confounder education.
The zi are covariates used as matching variables
with corresponding regression parameters γk.
When the cases and controls are matched in such
a way that they have the exact same value of
the matching variables, as described in the next
section, the γk’s will cancel out in the traditional
analysis. However, if the matching is broken, as
with IPW, the case is compared to all subjects at
risk and the matching variables should be adjusted
for.

The traditional nested case-control design
with additional matching

The traditional way of analyzing data from a nested
case-control design is a with a partial likelihood1,12

L(βk) = ∏
exp(β ′kx j)

∑i∈R j exp(β ′kxi)
. (2)

The product is over all cases of type k and indexed
by j. The R j is the sampled risk set at t j, which
constitutes the case at t j together with its sampled
controls. The estimation can be carried out by a
stratified Cox-regression, where the stratification
is with respect to risk sets. In a stratified Cox-
regression the case is only compared to the controls
within the same strata. Additionally matched data
can therefore be analyzed in exactly the same
manner as data with controls only matched on
time. Note that under the assumption of equally
or very closely matched cases and controls, the
terms γ ′kzi in equation (1) are equal within the
sampled risk sets and cancel out in equation (2).
Separate analyses are carried out for each endpoint,
hence one analysis for incidence, three analyses for
metastasis status and one analysis for death from
prostate cancer.
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eFIGURE. Overview of analyses. Each box, except the first, represents the cases in each type of analysis. The
numbers in parenthesis are the number of cases in each box. PC - prostate cancer, Met1 - local cancer, Met 2 -
unknown status, Met 3 - advanced cancer

Inverse probability weighting

In the recent decade or so methods have been
developed that allow for breaking the matching in
nested case-control designs.4–9 The methods can
be divided into two groups; inverse probability
weighting of the partial likelihood4,5,7,8 and full
likelihood methods.6,9 We will only consider the
former.

When we want to use our controls for a different
endpoint and thereby break the matching, a naive
approach would be to analyze our nested case-
control data as if it was a cohort. However, we
would then ignore the fact that the data is a biased
sample from the cohort. The sample is biased with
respect to the proportion of cases and controls. In
our study we have 2,118 cases and the total size
of the cohort is 116,493, hence the cases make up
less than 2% of the cohort, while with the nested
case-control design the cases make up 50% by
design. In addition, the controls will generally
be a biased sample with respect to the additional
matching variables, and possibly the covariates.

The naive approach may give erroneous results
because of the biased sample. However, inverse
probability weighting can resolve this problem.
The general idea of IPW is to reconstruct the full

cohort by letting each sampled subject represent a
number of subjects in the full cohort. Generally,
the subjects that are at risk only for a short
period of time, or are dissimilar to most cases
on the matching variables, are less likely to be
sampled as controls although they might comprise
a considerable part of the cohort. To obtain a
sample that is similar to the cohort, these subjects
will receive a large weight since they are under-
represented in the case-control sample. The
subjects that are more likely to be sampled will
correspondingly receive smaller weights. This is
achieved by weighting with the inverse sampling
probability. The cases are given weight 1, since
usually all of them are included, hence sampled
with probability 1.

The estimation is then carried out by a weighted
Cox-regression

Lk(βk,γk) = ∏
exp(β ′kx j + γ ′kz j)

∑i∈S j exp(β ′kxi + γ ′kzi)wi
, (3)

where the product is over all cases of type k. This
likelihood is similar to the likelihood in equation
(2). The main differences are the weights wi,
and that the sum is now over a set S j, defined
as all cases and all controls at risk at t j. The
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non-weighted version of (3) corresponds to the
naive approach. In a situation with no additional
matching, there are no zi’s and the γ ′kz j part is
omitted from (3) both in the nominator and in the
denominator. With additional matching, the zi may
vary over S j so γ ′kzi will generally not cancel.

The weights/sampling probabilities depend on
the inclusion time, censoring time and matching
variables. The sampling probabilities increase
for increasing censoring time and decrease for
increasing inclusion time; the longer a potential
control has been included in the study the more
opportunities it has had to be selected as a control.

The sampling probabilities pi = 1/wi, have to
be estimated from the data and we will consider
three estimation methods, first without taking the
matching into account. Samuelsen8 suggested an
estimator with a similar form as the Kaplan-Meier
(KM) estimator

pi = 1− ∏
li<t j<ti

{
1−

m(t j)

n(t j)−1

}
, (4)

where n(t j) is the number at risk at the event
time t j. See also Suissa et al.13 The expression
in brackets is the probability for individual i
of not being sampled as a control for the case
experiencing the event at time t j. Such probabilities
are then multiplied each time individual i could
have been sampled and 1 minus this product is the
probability for individual i of ever being sampled
as a control. It is only necessary to calculate
the probabilities for controls, since non-sampled
individuals are not included in the Cox-regression.
We will refer to weights estimated by (4) as KM-
weights. Note that for generality we use time
varying number of controls m(t j) in (4) which
means that cases can have different number of
controls. However, in our situation m(t j) = m = 1.

A more model based estimation procedure is
to use the fitted values from a logistic regression
model where a sampling indicator is the outcome
and the variables that the sampling probabilities
depend on are covariates.6,11,14 Without additional
matching, this will be the censoring time, and
the inclusion time if the time scale is different
from time on study. In our study, the covariates
in the logistic regression would be age at health
examination, which is the inclusion time, and age at
censoring. Note that the estimation is carried out on
the cohort with the cases excluded, since by design
the cases are sampled with probability 1.

A third option for estimating the weights is by
using a generalized additive model15 (GAM) with
the censoring time and inclusion time as covariates
and the sampling indicator as outcome. This
model is more flexible than the ordinary logistic
regression model, however in our experience
there is usually little difference between logistic
regression and GAM, with respect to final hazard
ratios and standard errors.

Since our subjects are used a number of
times in the estimation, the variance estimation
is somewhat more involved with IPW than it is
with the traditional estimator. Robust variances16

are often a good alternative, although somewhat
conservative in some situations.14 There exists
explicit variance formulas for the Kaplan-Meier
type of weights in situations both with and without
additional matching,7,14 we have however used the
robust variances in the following analyses.

Additional matching

To adjust for confounding and to increase
efficiency, the controls in a nested case-control
design are often matched on additional factors. We
will distinguish between two ”types” of matching
criteria; caliper matching and category matching.
We make the distinction because the sampling
probabilities will not be estimated in exactly the
same manner with the two criteria. With caliper
matching, the value of the matching variable for
a potential control must fall within an interval
around the value of the matching variable for the
case. With category matching, the value of the
matching variable must match the value of the case
exactly. In our study we have two caliper matching
criteria; age at serum sampling±6 months and date
of serum sampling ±2 months, and one category
matching criterion; county of residence.

The sampling probabilities will be affected when
the controls are matched on additional factors and
the estimation procedures may need to take this
into account. Salim et al.7 and Cai and Zheng4

suggested a generalization of the Kaplan-Meier
type of weights with caliper matching, which can
be expressed as

pi = 1−∏
j

{
1−

m(t j)

n j(t j)−1
I(Control i could be sampled for case j)

}
.

(5)

The n j(t j) is the number at risk at time t j who
meet the matching criteria of case j. The I(·)
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is an indicator function, hence the product is
only over cases that subject i could have been
sampled as a control for. The only differences
between (5) and (4) are that the product is now
only over subjects that meet the matching criteria,
and similarly the denominator only consists of the
number of subjects at risk that meet the matching
criteria.

If the matching criterion is narrow, hence only a
few or perhaps only one individual can be matched
to each case, the sampling probabilities will be
close to, or equal to 1. In such situations, the idea of
”reconstructing” the cohort by giving larger weight
to the controls than to the cases, will collapse.
When the ”true” sampling probabilities are close
to 1, a more model based approach with logistic
regression or GAM, where the matching variables,
in addition to inclusion time and event time are
used as covariates, might work better. Such an idea
has also been mentioned by Saarela et al.6

There are some difficulties by using logistic
regression or GAM regarding how the matching
variables should be included in the regression.
With category matching and not too many
categories, a natural approach is to include the
matching variables as categorical covariates. With
many categories, collapsing small groups into
bigger groups or including the matching variables
as continuous covariates are reasonable. With
caliper matching there may be several ways
to adjust for the matching variables. In our
analysis we have used age at diagnosis as a
continuous covariate while date of serum sampling
is categorized into month of serum sampling and
used as a categorical covariate. We only included
month of serum sampling since the amount of sun
exposure is assumed to have a yearly variation.
Since there is not any standardized recipe of how
to adjust the weights for the matching variables, it
is important to compare the hazard ratio from IPW
with the hazard ratio from the traditional estimator.

One reason for matching is to adjust for
confounding, however after we have broken the
matching the cases are no longer only compared
to their matched controls, but to all cases and
controls at risk at the given time. This means
that the confounding is no longer ”matched away”
and the matching variables should be adjusted
for in the Cox-regression. The need for such
adjustment can also be seen as an advantage of
IPW since the necessity of the particular matching

can be evaluated. This is impossible for category
matching with the traditional estimator since all
subjects within each matched set will have the same
value of the matching variables.

An alternative to adjusting for the matching
variables is to stratify on them. In effect this is what
is done with the traditional estimator. However,
from simulations (not presented), adjusting for
matching variables seems to be somewhat more
efficient than stratification.

RESULTS

The results from the IPW analyses and the
traditional analyses can be found in eTable 1-3. All
hazard ratios correspond to a 30 nmol/l increase
in s-25(OH)D concentrations and all IPW analyses
are adjusted for the matching variables.

The risk of incident prostate cancer increased
with increasing s-25(OH)D concentrations (eTable
1, left side) and adjusting for education did not
alter this (not shown). The HR from IPW was
similar to the HR from the traditional estimator
while the standard errors from IPW were somewhat
smaller than the standard errors from the traditional
estimator, resulting in larger efficiencies for IPW.

Efficiency is calculated as the variance from the
traditional estimator divided by the variances from
the IPW estimators. When the efficiency is larger
than 1, the traditional estimator needs more case-
control pairs to obtain the same accuracy as IPW.
The efficiency with logistic regression weights was
1.38, hence the traditional estimator requires 38%
more case-control pairs to obtain the same level of
accuracy as IPW.

The right side of eTable 1 displays the results
from the secondary analysis with death from
prostate cancer as endpoint. There was no
association between s-25(OH)D and death from
prostate cancer and adjusting for education did not
change this (not shown). The HRs from IPW
were similar to the traditional HR. The standard
errors were considerably smaller with IPW, as all
available controls could be used towards the subset
of cases, thereby increasing efficiency to about 2.

eTable 2 displays the result of the analyses with
localized cancer, advanced cancer and unknown
metastasis status as endpoints. Out of the 2,118
cases, 929 had localized cancer, 385 had advanced
cancer and 804 had unknown metastasis status. The
hazard ratios from IPW for localized cancer and
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eTABLE 1. Comparison of the traditional estimation method and IPW. Incidence of
prostate cancer and death from prostate cancer.

Method HRa se(βββ )))b 95% CI Eff.c HRa se(βββ )))b 95% CI Eff.c

Incidence Death
Trad.d 1.17 0.05 1.06 - 1.29 1 0.98 0.12 0.77 - 1.25 1
KMe 1.12 0.05 1.03 - 1.23 1.15 1.09 0.09 0.91 - 1.29 1.93
GAM f 1.13 0.04 1.04 - 1.22 1.37 1.06 0.09 0.89 - 1.27 1.95
GLM f 1.11 0.04 1.02 - 1.21 1.38 1.06 0.09 0.89 - 1.27 2.00
aHR correspond to a 30 nmol/l increase in s-25(OH)D bStandard error of log hazard ratio
cVariance from traditional estimator divided by variance from IPW
dThe traditional estimator, equation(2) eIPW with Kaplan-Meier type of weights
f GAM/GLM - IPW with weights estimated with GAM/logistic regression

unknown cancer status are reasonably close to the
traditional estimator, whereas the differences are
somewhat larger for advanced cancer.

With IPW, we could use all sampled controls
when analyzing all three endpoints, e.g. for
advanced cancer all 2,118 controls were used
as controls for the 385 cases. In contrast,
the traditional estimator could only use the 385
controls sampled for the advanced cases. The
extra controls available for IPW resulted in larger
efficiencies, being close to or above 2 for all cancer
types. Hence, the traditional analyses would need
twice as many case-control pairs to obtain the same
level of accuracy as IPW.

In the previous analyses there were some
discrepancies between the traditional estimator and
the IPW estimators. A possible partial explanation
for this is that while the traditional estimator only
uses the case-control pairs in the estimation, IPW
methods make use of all available controls. Thus
in the metastasis sub analyses and analysis of
death from prostate cancer, the IPW estimation
is based on a number of subjects not included in
the traditional estimation and somewhat different
results are not unexpected.

Since our cohort is a collection of health surveys,
a number of variables are known for all subjects,
for instance physical activity (PA). We could then
investigate the discrepancy between the estimators
by analyzing the association between PA and
incidence of prostate cancer with the traditional
estimator and IPW, and compare the results to a
complete cohort analysis. The cohort estimates
were fitted with Cox-regression on the entire cohort
and adjusted for the matching variables in the same
way as IPW. The original PA variable has four

eTABLE 2. Comparison of the traditional
estimation method and IPW. Metastasis
sub-analysis.

Method HRa se(βββ )))b 95% CI Eff.c

Localized cancer
Trad.d 1.08 0.07 0.94 - 1.25 1
KMe 1.13 0.06 1.01 - 1.26 1.71
GAM f 1.14 0.05 1.02 - 1.26 1.81
GLM f 1.12 0.05 1.01 - 1.25 1.83

Advanced cancer
Trad.d 1.23 0.12 0.98 - 1.54 1
KMe 1.08 0.07 0.92 - 1.25 2.18
GAM f 1.07 0.08 0.92 - 1.25 2.12
GLM f 1.05 0.08 0.90 - 1.23 2.14

Unknown cancer status
Trad.d 1.23 0.08 1.05 - 1.45 1
KMe 1.17 0.06 1.05 - 1.32 1.96
GAM f 1.17 0.06 1.05 - 1.31 2.08
GLM f 1.15 0.06 1.03 - 1.29 2.09
aHR correspond to a 30 nmol/l increase
in s-25(OH)D
bStandard error of log hazard ratio
cVariance from traditional estimator
divided by variance from IPW
dThe traditional estimator, equation(2)
eIPW with Kaplan-Meier type of weights
f GAM/GLM - IPW with weights estimated
with GAM/logistic regression

levels, however we recoded it into three categories
where 1 corresponds to sedentary activity, 2 to
moderate activity at least four hours a week and 3
corresponds to regularly intermediate to intensive
physical activity.
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eTABLE 3. The traditional estimator and IPW compared
to the cohortanalysis. Estimates of physical activity on
incidence of prostate cancer; HR (95% CI).

Method PA 1a PA 2a PA 3a

Cohort 1 1.07 (0.95 - 1.22) 1.18 (1.04 - 1.35)
Trad.b 1 1.09 (0.92 - 1.29) 1.31 (1.08 - 1.58)
KMc 1 1.01 (0.85 - 1.21) 1.15 (0.95 - 1.39)
GAMd 1 1.08 (0.91 - 1.28) 1.23 (1.02 - 1.48)
GLMd 1 1.07 (0.90 - 1.26) 1.23 (1.02 - 1.48)
aPA - Physical activity, PA 1: sedentary activity,
PA 2: moderate activity
PA 3: intermediate to intensive activity
bThe traditional estimator, equation (2)
cIPW with Kaplan-Meier type of weights
dIPW with weights estimated with GAM/logistic regression

eTable 3 displays the results from the analyses.
The reference group is PA 1. For PA 2, all
point estimates were close to the cohort estimate.
However, the KM estimate is somewhat smaller
than the other estimates. For PA 3, the estimates
from IPW were closer to the cohort than the
traditional estimator. The KM estimate was closest
to the cohort estimate, however also here smaller
than the other estimates.

By applying IPW to a study of serum 25-
hydroxyvitamin D and prostate cancer, we have
shown that inverse probability weighting can
increase the efficiency of NCC-designs quite
substantially in some situations. The IPW analyses
require an additional estimation step, which is
estimation of weights. However, this can be carried
out fairly easily e.g. with logistic regression.
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