
Supplementary Material: Does exposure prediction bias health effect estimation?

The relationship between confounding adjustment and exposure prediction



Exposure prediction that inflates confounding bias

Without loss of generality, here and throughout the eAppendix, all models are intercept free.

Consider an oversimplified scenario where all potential confounders are used to predict the

exposure and no confounding adjustment is made in the health effects regression model. We

recognize that this rarely occurs in practice, but it serves as a useful example to illustrate

that exposure prediction can increase the magnitude of the confounding bias.

Let Ci be a set of normally distributed covariates with mean µc and covariance Σc, and

assume that the outcome Yi and the exposure Xi are generated under the following linear

models:

Yi = Xiβ0 + Ciγ0 + εyi (1)

Xi = Ciα0 + εxi (2)

where εyi and εxi are independent, normally distributed, mean zero error terms with variances

σ2
y|xc and σ2

x|c. Suppose interest lies in the estimation of the linear exposure-outcome rela-

tionship β0, conditional on the covariates Ci. Here, and throughout, no restriction is placed

on γ0 or α0, and individual components of the vectors are free to be 0.

We define bias due to the lack of adjustment for confounding as the bias in our estimation

of β0 that is due to failure to control for the covariates Ci. That is, if one were to ignore

A-1



Ci when fitting the health effects regression model and instead fit Yi = Xiβ + εi, then the

least squares estimate for β, call it β̂x, is biased. We call this the bias due to the lack of

adjustment for confounding and denote it as bias(β̂x) = E[β̂x − β0].

Now suppose that the exposure is unobserved. Further, let Wi = Ciα0 be the predicted

exposure with α0 known. Consider fitting the health effects regression model that uses

the predicted exposure Wi in place of the true exposure Xi and fails to control for any

confounding (Yi = Wiβ + εi). The bias of the least squares estimator for β, call it β̂w, is

given by:

bias(β̂w) = E[β̂w − β0] = bias(β̂x)
σ2
x

σ2
w

(3)

where σ2
x = σ2

w + σ2
x|c and σ2

w = αT0 Σcα0 denote the variances of X and W , respectively. We

call the second term of Equation 3 ( σ
2
x

σ2
w

) the bias inflation factor, and note that it is equal to

the inverse of the population R2 when using W to predict X. From an intuitive standpoint,

we expect that the variation in the true exposure σ2
x will always be more than the variation

in the predicted exposure σ2
w, and hence, the bias inflation factor is always greater than 1

(i.e. the R2 is always less than 1).

Notice that the bias of β̂w is the product of two pieces: (1) the bias due to lack of adjustment

for confounding assuming that the true exposure is known (bias(β̂x)); and (2) the bias

inflation factor due exposure prediction ( σ
2
x

σ2
w

). It is easy to see that bias(β̂x) = 0 implies
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that bias(β̂w) = 0; therefore, bias inflation due to exposure prediction should only an issue

if there is some uncontrolled confounding. However, even in the presence of uncontrolled

confounding, bias(β̂x) 6= 0 implies bias(β̂w) 6= 0.

The bias inflation factor decreases as R2 increases and goes to 1 as the exposure model is

able to predict the true exposure X more accurately. Note that the bias inflation factor can

be large even if the bias due to lack of adjustment for confounding is small. It is tempting to

suggest that in an attempt to obtain an unbiased estimate of the health effect, a researcher

should build an exposure model that more accurately predicts the true exposure (a model

with the largest R2). However, the relationship is not that simple. As we will show next,

the bias of the health effect estimate can either increase or decrease in magnitude if a subset

of the confounders are used in the exposure prediction model.

Bias when confounding has been partially controlled or different subsets of con-

founders are used to predict exposure

First, consider the same set up as before, with the exposure-outcome-confounder relationship

given by eEquation 1 and 2. Let C = (C(1),C(2)) and ΣC = var(Ci) =

 Σ1 Σ12

Σ21 Σ2

.

Further, let W = Cα be the predicted exposure if the exposure model from eEquation 2

were known exactly, W1 = C(1)α∗1 be the predicted exposure if the misspecified exposure

model Xi = C
(1)
i α∗1 + ε were known exactly, and W2 = C

(2)
i α∗2 be the predicted exposure if

the misspecified exposure model Xi = C
(2)
i α∗2 + ε were known exactly.

eTable 1 provides the bias of the health effect estimate for each choice of the predicted
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exposure and a health effects regression model that either fails to control for any confounding

(Y = Wβ + ε) or a health effects regression model that controls for only C(1) (Y = Wβ +

C(1)γ + ε). Further, let R̃2
z denote the population value of the R2 from the exposure model

that uses arbitrary Z as a prediction of X. eTable 2 provides the R2 and its corresponding

population value for each of the predicted exposures W , W1, or W2.

The bias of β̂w given in eTable 1 is the bias of the health effect estimate provided in eEquation

3 that was previously described under the situation that the predicted exposure W is used

in an health effects regression model that fails to control for any confounding. Recall that

is was shown that this bias is the product of the bias due to lack of adjustment for any

confounding and a bias inflation factor due to exposure prediction that is the inverse of the

R̃2
w.

This relationship holds true for any collection of covariates, regardless of their association

with the exposure and the outcome. For example, suppose all C are only related to the

exposure. Then, there is no confounding and as a result, the bias of β̂w is 0. Similarly,

suppose that all C are only related to the outcome. Then, R̃2
w = 0 because C has no power

to predict exposure, and the bias of β̂w increases in magnitude to infinity.

Next, consider a situation where the true set of confounders C is unknown to the researcher

but the true exposure X is observed, and instead of controlling for the full set of Cs, the

decision is made to only control for the subset C(1) (first row, second column). The bias

of the health effect estimate from the misspecified health effects regression model Y =

Xβ + γC(1) + ε is given by bias(β̂
(1)
x ) in eTable 1. This corresponds to the bias due to the
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failure to control for the confounding due to C(2). In other words, it is the bias due to

confounding that remains after controlling for C(1), but failing to control for the full set of

necessary confounders C. Suppose that C(1) contains all covariates that are confounders

and C(2) contains any remaining covariates. Then, bias(β̂
(1)
x ) = 0 because confounding

has sufficiently been controlled by C(1) alone. However, suppose that C(2) contains all

covariates that are confounders, C(1) contains any remaining covariates, and C(1) and C(2)

are uncorrelated. Then, bias(β̂
(1)
x ) = bias(β̂x)R̃

−2
w2

so that the bias of the health effect

estimate is inflated by controlling for covariates that are not confounders. This is a specific

example of bias inflation that arises from conditioning on instrumental variables.1,2

Now consider a situation where the true exposure X is unobserved, and instead is predicted

with a subset of the Cs (second row, first column). The bias(β̂w1) is the bias of the health

effect estimate in the situation that the predicted exposure W1 = C(1)α∗1 is used in the

health effects regression model that fails to control for any confounding. From eTable 1,

we note that this bias decomposes into two parts, with the first one being the bias due to

the failure to control for confounding due to C(2). Therefore, ignoring the second term,

using C(1) to predict the exposure appears to help control the confounding due to C(1).

However, this is not exactly the case, as the second term of bias(β̂w1) in eTable 1 can either

decrease or increase the magnitude of the bias. Further we note that bias(β̂w1) depends on

the inverse of R̃2
w1

; therefore, the bias of β̂w1 is a function of how well W1 predicts X. As

R̃2
w1

goes to 1, bias(β̂w1) = bias(β̂x), so that if W1 predicts X perfectly, we are left with

the bias due to lack of adjustment for confounding in the situation where the true exposure

X is known. Similarly, as R̃2
w1

goes to 0, the bias(β̂w1) increases in magnitude to infinity,
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suggesting that if we cannot accurately predict the exposure, we cannot return a valid effect

estimate. However, as R̃2
w1

varies between 0 and 1, no general statement can be made about

the magnitude of the bias. Similar results hold for bias(β̂w2).

Suppose that C(1) contains all covariates that are confounders and C(2) contains any remain-

ing covariates. Then, bias(β̂w1) = bias(β̂x)R̃
−2
w1

, or in other words, we have an expression

similar to bias(β̂w) in that we are inflating the bias due to lack of adjustment for confounding.

By moving covariates that are not confounders from C(2) into C(1), we would increase R̃2
w1

and as a result bias(β̂w1) would decrease. Therefore, if all confounders are used to predict

the exposure, we decrease the bias of the health effect estimate by improving the prediction

accuracy.

Another situation provided in eTable 1 is a situation where the true exposure X is unob-

served, instead is predicted with a subset of the Cs, and a different set of Cs are used

to control confounding in the health effects regression model (third row, second column).

Specifically, the bias(β̂
(1)
w2 ) is the bias of the health effect estimate in the situation that the

predicted exposure W2 = C(2)α∗2 is used in the health effects regression model that controls

for only C(1) (Y = W2β+C(1)γ+ ε). We wish to only point out a few features of the expres-

sion for this bias. First, the bias depends on the true underlying effect β0. As the true effect

size increases, so does the magnitude of bias. Second, the expression for the bias of β̂
(1)
w2 is

much more complex than any of the other biases given in eTable 1 and will not be described

in detail. However, suppose again that C(1) contains all covariates that are confounders and

C(2) contains any remaining covariates. Further, assume that C(1) and C(2) are uncorrelated.

Then, bias(β̂
(1)
w2 ) = 0. This occurs because: (1) confounding has been sufficiently controlled
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through C(1); and (2) the exposure is predicted with covariates that are uncorrelated with

confounders. However, if C(1) and C(2) are correlated, then bias(β̂
(1)
w2 ) 6= 0.

Considering these results, if we can separate our covariates into two orthogonal sets, one

of which contains all necessary confounders, then we can hope to construct an exposure

prediction model along with a health effects regression model that yields an unbiased health

effect estimate.

The final situation provided in eTable 1 (row 4, column 2) is such that the subset C(1) is

used to control confounding while the full set C is used to predict the exposure. Specifically,

the bias(β̂
(1)
w ) is the bias of the health effect estimate in the situation that the predicted

exposure W = Cα is used in the health effects regression model that controls for only C(1)

(Y = Wβ+C(1)γ+ε). The main feature of bias(β̂
(1)
w ) is that if C(1) contains all confounders,

then b
(1)
x = 0 implying bias(β̂

(1)
w ) = 0. Therefore, if all confounders are included in the health

effects regression model, an unbiased health effect estimate can be estimated if the exposure

prediction model is correctly specified.

The biases given in eTable 1 are difficult to compare, except for in the simplest situations

as in bias(β̂x) and bias(β̂w). Therefore, it is difficult to make any general conclusions about

whether including or excluding a potential confounder from either the exposure model or

the health effects regression model is beneficial or detrimental to the final goal of effect

estimation.

The previous point warrant further discussion; when the goal of a study is effect estimation,

the decision to include or exclude a potential confounder from either the outcome or the
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exposure model needs to be based on more than just the predictive power of the potential

confounder on the exposure or the strength of the relationship with the outcome, but instead

the decision needs to be based on some tradeoff between the two. Current statistical methods

for model selection fail in this regard, as they have been designed to control confounding

and ignore exposure prediction all together.

All previous results can be extended to situations where the outcome, exposure, and con-

founders are not assumed to be normally distributed by replacing expectations with conver-

gence in probability. The probability limits have the exact form of the biases given in eTable

1.

Bias due to exposure prediction under exposure model misspecification

Assume that the data is generated under the following linear models:

Yi = Xiβx + C
(1)
i γ1 + εyi (4)

Xi = C
(1)
i α1 + C

(2)
i α2 + C

(3)
i α3 + εxi (5)

where C(1), C(2), and C(3) denote subsets of C. Notice that in this data generating scheme,

there is only partial overlap in the sets of covariates in the two models, and that the necessary

set of confounders is C(1).

Consider the situation where both C(1) and C(2) are used to predict the exposure, and
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the predicted exposure W = C(1)α∗1 + C(2)α∗2 from the misspecified exposure model Xi =

C
(1)
i α∗1 + C

(2)
i α∗2 + ε were known exactly. If the predicted exposure W is used in the health

effects regression model that properly adjusts for confounding (Yi = Wiβ+C
(1)
i γ1 + εyi ), then

the resulting estimate of β is unbiased.

However, if we were to purposefully exclude confounders C(1) from the exposure prediction

model, so that only C(2) is used to predict the exposure, then the resulting health effect

will biased. Specifically, assume the predicted exposure W = C(2)α∗2 from the misspecified

exposure model Xi = C
(2)
i α∗2 + ε were known exactly. If the predicted exposure W is

used in the health effects regression model that properly adjusts for confounding (Yi =

Wiβ + C
(1)
i γ1 + εyi ), then the resulting estimate of β is biased, with bias given by:

E[β̂ − β] = β
−α∗T2 Σ21Σ−1

1

{
(Σ1 − Σ12Σ−1

2 Σ21)α1 + (Σ13 − Σ12Σ−1
2 Σ23)α3

}
α∗T2 (Σ2 − Σ21Σ−1

1 Σ12)α∗2

where α∗2 = α2 + Σ−1
2 Σ21α1 + Σ−1

2 Σ23α3. Note that this bias is zero if C(2) is uncorrelated

with the confounders C(1). In general, the bias will be non-zero.

Equivalence of including confounders into exposure prediction model versus or-

thogonalization

Consider the following two approaches for predicting the exposure: (1) including all con-

founders into the exposure prediction model and (2) orthogonalizing the covariates used to
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predict the exposure to the confounders. Under the health effect regression model that in-

cludes all confounders, these two approaches are analytically equivalent. Considering the

same set up as before, let C(1) be the confounders, and let C(2) be additional predictors of

the exposure.

A known result from linear models implies that health effect estimate from strategy 1 is

given by β̂1 = <Y,w⊥>
||w⊥||2 , where w⊥ = PC⊥1 w = PC⊥1 PC1,C2X = PC⊥1 PC2X and PL denotes the

projection matrix onto the space spanned by L. This is equivalent to a univariate regression

where w⊥ is the only predictor of the outcome Y . In strategy 2, we are using a predicted

exposure w∗ = PC⊥1 C2(CT
2 PC⊥1 C2)−1CT

2 PC⊥1 X = PC⊥1 PC2X. Since w∗ is orthogonal to C1, the

estimate from strategy 2 is given by β̂2 = <Y,w∗>
||w∗||2 . Since w∗ = w⊥, β̂1 = β̂2.

Additional Simulated Results

Following the simulation setup of the main text exactly, we provide additional simulated

results for two additional choices of the parameter γ. Specifically, let

γa = (0,−0.044,−0.075, 0.105, 0.090,−0.082, 0.096, 0.0897,−0.041, 0.011)

γb = (0.025, 0.0067,−0.0058, 0.005, 0.0208, 0.0033, 0.025, 0.025, 0.0125, 0)

The purpose of these two additional specifications is to illustrate that in some cases, increas-

ing the R2 always decreases the bias, while in others, increasing the R2 always increases
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the bias. From eFigure 1, we note that the bias increases with the R2. Therefore, adding

additional covariates to the exposure prediction model adds bias to the estimated health

effect. From eFigure 2, we note that the bias decreases as R2 increases. Therefore, adding

additional covariates to the exposure prediction model improves the health effect estimate.

These results, in addition to those in the main text, provide evidence that the bias of a

health effect estimate can either reduce or increase when predicting the exposure.

Proof of Results

The proofs for all results in eTable 1 are similar; therefore, we will only provide the proof of

bias(β̂w), as all other results follow in a similar fashion. Additionally, we provide a proof of

the probability limit of the estimator without any parametric distributional assumptions.

Let Ci be a set of normally distributed covariates with mean µc and covariance Σc, and

assume that the outcome Yi and the exposure Xi are generated under the following linear

models:

Yi = β0Xi + Ciγ0 + εyi

Xi = Ciα0 + εxi

where εyi and εxi are independent, normally distributed, mean zero error terms with variances

σ2
y|xc and σ2

x|c. The hierarchical structure, along with the assumption of normality at each
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level, implies that:


Y

X

C

 ∼ N
µ =


µy

µx

µc

 ,Σ =


σ2
y σyx Σyc

σ2
x Σxc

Σc





where

σ2
x = σ2

x|c + αT0 Σcα0

Σxc = αT0 Σc

Σyc = β0α
T
0 Σc + γ0Σc

σyx = β0(σ2
x|c + αT0 Σcα0) + γ0Σcα0

Once this joint distribution is defined, all that is left is to find the conditional distribution

of interest. In this case, we are interested in:

(Y |W = αT
0 C) ∼ N

(
µy + (β0α

T
0 Σcα0 + γ0Σcα0)(αT

0 Σcα0)−1(W − αT
0 µc), σ

2
y − (Σycα0)(αT

0 Σcα0)−1(Σycα0)T
)

A-12



which implies that

E[β̂w] = β0 +
αT0 Σcγ0

αT0 Σcα0

= β0 +
αT0 Σcγ0

σ2
x|c + αT0 Σcα0

σ2
x|c + αT0 Σcα0

αT0 Σcα0

= β0 +
αT0 Σcγ0

σ2
x|c + αT0 Σcα0

σ2
x

σ2
w

All other results of eTable 1 follow in a similar manner.

Suppose that we loosen the distributional assumptions so that Ci is a set of covariates with

mean µc and finite covariance Σc, and assume that the outcome Yi and the exposure Xi

are generated under the same linear model, but with εyi and εxi are independent distributed,

mean zero error terms with finite variances σ2
y|xc and σ2

x|c. Without loss of generality, assume

µc = 0. Then,

β̂w = (W TW )−1W TY

= (αT0 CTCα0)−1αT0 CTY

=
αT0 CTY

αT0 CTCα0

p→ αT0 Σcy

αT0 Σcα0

= β0 +
αT0 Σcγ0

αT0 Σcα0
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eTable 1: The bias of the health effect estimate
Outcome model

Exposure Y = W + ε Y = W + C(1) + ε

W = X E[β̂x − β0] = bx = αT Σcγ
σ2
x|c+αT ΣCα

E[β̂
(1)
x − β0] = b

(1)
x =

αT
2 (Σ2−Σ21Σ−1

1 Σ12)γ2

σ2
x|c+αT

2 (Σ2−Σ21Σ−1
1 Σ12)α2

W = C(1)α∗1 E[β̂w1 − β0] = bw1 = b
(1)
x + (bx − b(1)

x )R̃−2
w1

NAa

W = C(2)α∗2 E[β̂w2 − β0] = bw2 = b
(2)
x + (bx − b(2)

x )R̃−2
w2

E[β̂
(1)
w2 − β0] = β0

α∗T2 Σ21Σ−1
1 Σ12α∗2−α∗T1 Σ12α∗2

α∗T2 (Σ2−Σ21Σ−1
1 Σ12)α∗2

+

α∗T2 (Σ2−Σ21Σ−1
1 Σ12)γ2

α∗T2 (Σ2−Σ21Σ−1
1 Σ12)α∗2

W = Cα E[β̂w − β] = bw = bxR̃
−2
w E[β̂

(1)
w − β0] = b

(1)
x

σ2
x−σ2

w1

σ2
w−σ2

w1
a Does not exist due to collinearity between predicted exposure and confounding adjustment.

eTable 2: Coefficient of determination (R2) and its corresponding population value (R̃2)
Predicted exposure Coefficient of determination Population based R2

W = Cα0 R2
w =

∑
(Wi−Xi)

2∑
(Xi−X̄)2

R̃2
w = αT ΣCα

σ2
x|c+αT Σcα

= σ2
w

σ2
x

W1 = C(1)α∗1 R2
w1

=
∑

(W1i−Xi)
2∑

(Xi−X̄)2
R̃2
w1

=
α∗T1 Σ1α∗1

σ2
x|c+αT Σcα

=
σ2
w1

σ2
x

W2 = C(2)α∗2 R2
w2

=
∑

(W2i−Xi)
2∑

(Xi−X̄)2
R̃2
w2

=
α∗T2 ΣCα

∗
2

σ2
x|c+αT Σcα

=
σ2
w2

σ2
x
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eFigure 1: Tradeoff between bias and R2,
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