eAppendix 1: Location of the gene promoter and region amplified						
Gene	Chromosome	Promoter Start end	Amplicon Start end	Location	Promoter	CpGs (position)
F3	1	$\begin{aligned} & 94779671 \\ & 94780502 \end{aligned}$	$\begin{aligned} & 94779878 \\ & 94780068 \end{aligned}$	$\begin{gathered} \mathrm{CpG} \\ \text { island } \end{gathered}$	Yes	$\begin{aligned} & 94779947 \text { (pos1) } \\ & 94779950 \text { (pos2) } \\ & 94779956 \text { (pos3) } \\ & 94779958 \text { (pos4) } \\ & 94779974 \text { (pos5) } \end{aligned}$
ICAM	19	$\begin{aligned} & 10242017 \\ & 10242937 \end{aligned}$	$\begin{aligned} & 10242034 \\ & 10242283 \end{aligned}$	$\underset{\text { island }}{\mathrm{CpG}}$	Yes	$\begin{aligned} & 10242236 \text { (pos1) } \\ & 10242225 \text { (pos2) } \\ & 10242218 \text { (pos3) } \end{aligned}$
TLR2	4	$\begin{aligned} & 154824391 \\ & 154824991 \end{aligned}$	$\begin{aligned} & 154824566 \\ & 154824754 \end{aligned}$	$\begin{gathered} \mathrm{CpG} \\ \text { island } \end{gathered}$	Yes	$\begin{aligned} & 154824709 \text { (pos1) } \\ & 154824713 \text { (pos2) } \\ & 154824715 \text { (pos3) } \\ & 154824723 \text { (pos4) } \\ & 154824727 \text { (pos5) } \end{aligned}$
CRAT	9	$\begin{aligned} & 130912702 \\ & 130913404 \end{aligned}$	$\begin{aligned} & 130912776 \\ & 130912862 \end{aligned}$	$\begin{gathered} \mathrm{CpG} \\ \text { island } \end{gathered}$	Yes	$\begin{aligned} & 130912824(\text { pos1) } \\ & 130912806(\text { pos } 2) \end{aligned}$
OGG1	3	$\begin{aligned} & 9766128 \\ & 9766775 \end{aligned}$	9766288 9766514	$\begin{aligned} & \mathrm{CpG} \\ & \text { island } \end{aligned}$	Yes	$\begin{aligned} & 9766356(\text { pos1) } \\ & 9766366(\operatorname{pos} 2) \\ & 9766373(\operatorname{pos} 3) \\ & 9766380(\text { pos } 4) \end{aligned}$
$I F N \gamma$	12	$\begin{aligned} & 66839561 \\ & 66840293 \end{aligned}$	$\begin{aligned} & 66840120 \\ & 66840260 \end{aligned}$	non-CpG island		$\begin{aligned} & 66840192(\operatorname{pos} 1) \\ & 66840186(\operatorname{pos} 2) \end{aligned}$
IL6	7	$\begin{aligned} & 22732791 \\ & 22733685 \end{aligned}$	$\begin{aligned} & 22733758 \\ & 22733893 \end{aligned}$	non-CpG island	No	$\begin{aligned} & 22733847(\operatorname{pos} 1) \\ & 22733841(\operatorname{pos} 2) \end{aligned}$
iNOS	17	$\begin{aligned} & 23149861 \\ & 23150461 \end{aligned}$	$\begin{aligned} & 23149873 \\ & 23149990 \end{aligned}$	$\begin{aligned} & \text { non-CpG } \\ & \text { island } \end{aligned}$	Yes	$\begin{aligned} & 23149929(\operatorname{pos} 1) \\ & 23149936(\operatorname{pos} 2) \end{aligned}$
$G C R$	5	$\begin{aligned} & 142760496 \\ & 142761097 \end{aligned}$	$\begin{aligned} & 142760531 \\ & 142760806 \end{aligned}$	non-CpG island	Yes	142760565

eAppendix 2: Tweedie distribution

| eAppendix
 participants
 3: across visits |
| :--- | :--- | :--- | :--- | Blood count characteristics of the NAS

eAppendix 4: Distributions of the weather and air pollution variables						
	$\mathbf{n}_{\text {observations }}$	$\mathbf{n}_{\text {missing }}$	IQR	$5^{\text {th }}$	$\begin{gathered} \hline \text { Percentiles } \\ \mathbf{5 0}^{\text {th }} \end{gathered}$	$95^{\text {th }}$
Temperature (${ }^{\circ} \mathbf{C}$)						
1 week	1,798	0	$13^{\circ} \mathrm{C}$	$-1^{\circ} \mathrm{C}$	$13^{\circ} \mathrm{C}$	$24^{\circ} \mathrm{C}$
2 weeks	1,798	0	$13^{\circ} \mathrm{C}$	$-1^{\circ} \mathrm{C}$	$13^{\circ} \mathrm{C}$	$24^{\circ} \mathrm{C}$
3 weeks	1,798	0	$13^{\circ} \mathrm{C}$	$-1^{\circ} \mathrm{C}$	$13^{\circ} \mathrm{C}$	$23^{\circ} \mathrm{C}$
Relative humidity (\%)						
1 week	1,798	0	12\%	53\%	68\%	82\%
2 weeks	1,798	0	10\%	56\%	68\%	80\%
3 weeks	1,798	0	9\%	56\%	68\%	78\%
$\mathbf{P M}_{2.5}\left(\underline{\mu \mathrm{~g} / \mathrm{m}^{3}}\right.$)						
1 week	1,798	0	4.3	5.8	9.5	16.0
2 weeks	1,798	0	3.8	6.2	9.5	15.2
3 weeks	1,798	0	3.5	6.3	9.6	14.8

eAppendix 5: Spearman correlations between weather variables and $\mathrm{PM}_{2.5}$ (1-week moving average)					
	Temperature	Relative humidity	Absolute humidity	Barometric pressure	$\mathbf{P M}_{2.5}$
Temperature	1	0.22*	0.96*	-0.06*	0.30*
Relative humidity		1	0.46*	0.05*	0.10*
Absolute humidity			1	-0.04	0.30*
Barometric pressure				1	0.08*
$\mathbf{P M}_{2.5}$					1

eAppendix 6a: Gene specific DNA methylation (\% 5mC) across visits [$5^{\text {th }}, 50^{\text {th }}$, and					
Gene	F3	ICAM-1	TLR-2	CRAT	$O G G$
$\mathbf{n}_{\text {observations }}$	1,533	1,424	1,424	1,669	1,159
$\mathbf{n}_{\text {missing }}$	265	374	374	129	639
Baseline ($\mathrm{n}=777$)	[1.0, 2.0, 4.5]	[2.2, 4.1, 8.2]	[1.5, 2.8, 5.3]	[1.7, 3.1, 5.0]	[0.8, 1.8, 4.1]
Participants having one visit ($\mathrm{n}=221$)					
Visit 1	[1.1, 1.9, 3.5]	[2.6, 4.3, 7.7]	[1.4, 2.8, 5.0]	[2.0, 3.2, 4.6]	[0.8, 1.6, 4.1]
Participants having two visits ($\mathrm{n}=217$)					
Visit 1	[1.0, 2.0, 4.2]	[2.2, 4.1, 8.4]	[1.5, 2.6, 5.1]	[1.7, 3.1, 5.1]	[0.8, 1.8, 4.1]
Visit 2	[0.8, 2.3, 4.4]	[2.2, 3.9, 8.2]	[1.0, 2.6, 5.7]	[1.6, 3.2, 5.2]	[0.5, 1.7, 4.5]
Participants having three visits ($\mathrm{n}=216$)					
Visit 1	[1.0, 2.0,4.5]	[2.1, 3.8, 7.6]	[1.3, 2.8, 5.2]	[1.6, 3.0, 5.1]	[1.0, 2.0, 4.1]
Visit 2	[0.9, 2.5, 4.5]	[2.1, 3.6, 7.8]	[1.5, 2.6, 5.3]	[1.5, 2.9, 5.6]	[0.8, 2.0, 4.4]
Visit 3	[0.9, 1.8, 4.3]	[2.9, 4.2, 6.7]	[0.9, 2.1, 4.9]	[1.9, 3.3, 5.2]	[0.3, 1.3, 6.0]
Participants having four visits ($\mathrm{n}=120$)					
Visit 1	[0.4, 2.3, 5.2]	[2.1,4.0, 9.8]	[1.9, 3.3, 5.9]	[1.6, 3.0, 5.5]	[0.9, 2.0, 5.3]
Visit 2	[1.0, 2.4, 4.8]	[2.0, 3.3, 9.9]	[1.7, 3.1, 6.0]	[1.6, 2.9, 5.1]	[0.6, 1.5, 4.3]
Visit 3	[1.8, 2.9, 4.5]	[2.5, 4.4, 6.1]	[1.5, 3.0, 6.3]	[2.4, 3.5, 5.3]	[0.7, 2.9, 6.0]
Visit 4	[0.7, 1.3, 3.1]	[2.8, 4.0, 8.3]	[0.9, 1.6, 4.0]	[1.9, 3.3, 5.7]	[0.4, 0.7, 4.3]
Participants having five visits ($\mathrm{n}=3$)					
Visit 1	[$\mathrm{NA}^{*}, 3.0,3.2$]	[3.0, 3.3, 4.5]	[2.3, 3.1, 3.9]	[2.6, 2.6, 2.6]	[1.0, 2.4, 3.8]
Visit 2	[2.6, 2.9, 3.3]	[$\left.\mathrm{NA}^{*}, 2.6,2.7\right]$	[$\mathrm{AA}^{*}, 1.9,2.8$]	[4.1, 4.6, 5.7]	[1.3, 1.7, 2.2]
Visit 3	[2.4, 3.6, 8.5]	[NA*, 3.5, 3.7]	[$\left.\mathrm{NA}^{*}, \mathrm{NA}^{*}, 4.9\right]$	[3.3, 4.6, 5.8]	[5.2, 5.2, 5.2]
Visit 4	[NA*, NA*, 2.2]	[2.5, 4.2, 7.1]	[$\mathrm{NA}^{*}, \mathrm{NA}$ *, 2.9]	[2.6, 2.9, 3.2]	[0.7, 1.4, 2.9]
Visit 5	[0.7, 1.6, 34.6]	[3.2, 5.2, 6.0]	[1.4, 2.1, 3.5]	[2.6, 2.7, 2.8]	[0.3, 0.6, 0.9]

*NA=missing data

eAppendix 6b: Gene-specific, LINE-1, and Alu DNA methylation (\% 5mC) across visits [$5^{\text {th }}, 50^{\text {th }}$, and $95^{\text {th }}$ percentiles]						
Gene or elements	$\boldsymbol{I F N - \gamma}$	IL-6	iNOS	GCR	LINE-1	Alu
$\mathbf{n}_{\text {observations }}$	1,736	1,749	1,273	1,549	1,761	1,779
$\mathbf{n}_{\text {missing }}$	62	49	525	249	37	19
Baseline ($\mathrm{n}=777$)	[75.4, 85.2, 91.1]	[25.4, 43.7, 62.1]	[57.6, 70.6, 79.8]	[37.6, 47.0, 55.8]	[74.0, 77.3, 82.8]	[24.5, 26.1, 28.1]
Participants having one visit ($\mathrm{n}=221$)						
Visit 1	[72.4, 85.2, 91.8]	[23.7, 43.8, 61.6]	[55.4, 70.3, 80.9]	[37.3, 46.3, 54.8]	[74.0, 77.1, 83.6]	[24.6, 26.0, 27.9]
Participants having two visits ($\mathrm{n}=217$)						
Visit 1	[75.4, 85.5, 90.9]	[23.7, 43.1, 65.3]	[60.9, 71.0, 80.0]	[39.7, 47.0, 57.6]	[74.1, 77.3, 83.0]	[24.2, 26.0, 28.5]
Visit 2	[75.8, 86.2, 91.4]	[24.7, 42.8, 59.8]	[54.1, 68.2, 78.2]	[33.4, 47.0, 55.0]	[75.1, 81.0, 84.7]	[23.3, 25.9, 28.8]
Participants having three visits ($\mathrm{n}=216$)						
Visit 1	[75.8, 84.7, 91.1]	[28.9, 43.7, 59.8]	[59.4, 70.4, 78.6]	[37.3, 46.8, 54.5]	[73.7, 77.4, 82.7]	[24.6, 26.1, 28.2]
Visit 2	[76.4, 86.8, 90.7]	[28.4, 43.0, 57.5]	[56.8, 68.9, 78.5]	[37.3, 47.5, 54.7]	[75.4, 79.1, 83.9]	[24.1, 25.6, 27.4]
Visit 3	[76.3, 86.2, 91.1]	[24.9, 42.9, 59.7]	[56.8, 68.9, 78.5]	[34.3, 46.4, 54.6]	[76.0, 82.6, 85.4]	[22.9, 26.2, 29.7]
Participants having four visits ($\mathrm{n}=120$)						
Visit 1	[76.9, 84.4, 90.7]	[28.9, 43.8, 61.8]	[59.9, 71.6, 79.1]	[38.9, 47.4, 60.6]	[74.2, 77.3, 81.7]	[24.6, 26.2, 28.4]
Visit 2	[76.9, 85.6, 91.4]	[25.3, 43.4, 58.4]	[58.7, 70.5, 77.9]	[36.9, 48.2, 56.9]	[74.7, 78.9, 84.3]	[24.7, 25.9, 27.9]
Visit 3	[75.0, 86.4, 89.3]	[28.7, 44.4, 62.9]	[57.6, 70.5, 77.9]	[41.4, 48.3, 54.1]	[74.8, 79.0, 83.7]	[22.6, 25.6, 27.6]
Visit 4	[77.5, 86.2, 92.7]	[26.3, 44.9, 60.5]	[55.3, 65.2, 78.5]	[37.4, 48.0, 56.9]	[81.8, 83.9, 86.0]	[25.6, 27.6, 30.5]
Participants having five visits ($n=3$)						
Visit 1	[82.0, 85.6, 93.9]	[$\left.\mathrm{NA}^{*}, 44.2,51.8\right]$	[69.6, 70.5, 71.4]	[31.3, 38.1, 45.0]	[78.9, 79.4, 82.4]	[23.7, 24.8, 27.5]
Visit 2	[84.2, 86.2, 89.9]	[36.8, 44.8, 50.1]	[64.1, 66.5, 69.0]	[40.9, 43.7, 46.5]	[81.1, 81.7, 82.3]	[25.8, 25.9, 27.7]
Visit 3	[83.9, 85.0, 86.2]	[39.0, 42.8, 50.1]	[71.9, 74.0, 76.2]	[42.9, 45.9, 49.0]	[78.0, 78.9, 80.0]	[26.3, 26.5, 27.1]
Visit 4	[87.7, 89.2, 89.7]	[13.8, 30.4, 47.9]	[45.9, 56.8, 67.8]	[15.7, 42.5, 44.8]	[75.0, 78.1, 78.5]	[20.4, 26.4, 26.8]
Visit 5	[80.1, 86.8, 92.1]	[17.0, 28.6, 44.3]	[62.3, 66.4, 70.5]	[24.1, 45.4, 50.6]	[82.7, 83.3, 84.9]	[27.0, 27.5, 30.4]

eAppendix 7: Associations between a $5^{\circ} \mathrm{C}$ increase in temperature and gene-specific methylation across the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ weeks of exposure (Estimates and associated 95% CI)

eAppendix 8: Associations between a 10% increase in relative humidity and methylation on specific genes, LINE-1, and Alu across the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ weeks of exposure (Estimates and associated 95\% CI)

eAppendix 9a: Associations between temperature and relative humidity exposure (over the 3 -week period preceding medical examination) and gene-specific methylation (sensitivity analysis)			
Methylation mean ratio for a Δ increase in temperature and relative humidity [95\% CI]			
F3	Model 1 (Main model)	Model 2	Model 3
Temperature	0.945 [0.874 to 1.021]	0.951 [0.879 to 1.029]	0.970 [0.890 to 1.058]
Relative humidity	0.967 [0.921 to 1.015]	0.970 [0.923 to 1.019]	0.967 [0.920 to 1.016]
ICAM-1	Model 1 (Main model)	Model 2	Model 3
Temperature	1.092 [1.034 to 1.154]	1.090 [1.031 to 1.152]	1.115 [1.050 to 1.185]
Relative humidity	0.952 [0.920 to 0.985]	0.951 [0.918 to 0.984]	0.949 [0.917 to 0.983]
TLR-2	Model 1 (Main model)	Model 2	Model 3
Temperature	0.933 [0.872 to 0.999]	$\mathbf{0 . 9 3 0}$ [0.868 to 0.996]	0.929 [0.862 to 1.001]
Relative humidity	0.978 [0.938 to 1.020]	0.978 [0.937 to 1.020]	0.974 [0.933 to 1.017]
CRAT	Model 1 (Main model)	Model 2	Model 3
Temperature	1.053 [1.004 to 1.104]	$\mathbf{1 . 0 6 2}$ [1.012 to 1.114]	$\mathbf{1 . 0 9 5}$ [1.040 to 1.153]
Relative humidity	0.966 [0.920 to 1.014]	0.977 [0.949 to 1.006]	0.977 [0.949 to 1.006]
OGG	$\begin{gathered} \text { Model 1 } \\ \text { (Main model) } \\ \hline \end{gathered}$	Model 2	Model 3
Temperature	1.013 [0.904 to 1.134]	1.038 [0.925 to 1.164]	0.989 [0.872 to 1.122]
Relative humidity	0.971 [0.903 to 1.043]	0.971 [0.903 to 1.044]	0.967 [0.898 to 1.042]

Δ^{*} corresponds to increments of $5^{\circ} \mathrm{C}$ and 10% for temperature and relative humidity, respectively
a) Variables included in model 1: f_{1} (temperature) ${ }^{\text {d }}, f_{2}$ (relative humidity) ${ }^{\text {d }}$, age, body mass index, smoking status, diabetes status, statin use, \% neutrophils in blood count, \% lymphocytes in blood count, \% monocytes in blood count, \% basophils in blood count, seasonal sine and cosine, season, and batch
b) Variables included in model 2: variables included in model 1 and f_{3} (barometric pressure) ${ }^{d}$
c) Variables included in model 3: variables included in model 1 and $f_{3}\left(\mathrm{PM}_{2.5}\right)^{\mathrm{d}}$
d) f_{1} (temperature), f_{2} (relative humidity), f_{3} (barometric pressure) represent the distributed-lag functions with sets of coefficients constrained by a natural spline (with 3 degrees of freedom) that correspond to the temperature and relative humidity effects at lags 0 and 20 days.

eAppendix 9b: Associations between temperature and relative humidity exposure (over the 3-week period preceding medical examination) and gene-specific, LINE-1, and Alu methylation (sensitivity analysis)			
Change in methylation (\% 5mC) for a Δ increase in temperature and relative humidity [$95 \% \mathrm{CI}$]			
IFN- γ	Model 1 (Main model)	Model 2	Model 3
Temperature	0.396 [-0.256 to 1.048]	0.352 [-0.311 to 1.016]	0.479 [-0.244 to 1.202]
Relative humidity	-0.289 [-0.684 to 0.106]	-0.246 [-0.649 to 0.156]	-0.284 [-0.691 to 0.124]
IL-6	Model 1 (Main model)	Model 2	Model 3
Temperature	-0.736 [-1.810 to 0.338]	-0.865 [-1.955 to 0.224]	-1.044 [-2.237 to 0.149]
Relative humidity	0.390 [-0.264 to 1.043]	0.264 [-0.401 to 0.930]	0.367 [-0.317 to 1.050]
iNOS	Model 1 (Main model)	Model 2	Model 3
Temperature	0.863 [-0.174 to 1.900]	0.936 [-0.122 to 1.994]	1.681 [0.530 to 2.831]
Relative humidity	0.913 [0.253 to 1.572]	0.911 [0.237 to 1.585]	0.997 [0.316 to 1.677]
GCR	Model 1 (Main model)	Model 2	Model 3
Temperature	0.845 [-0.053 to 1.743]	0.806 [-0.106 to 1.718]	$\mathbf{1 . 1 9 2}$ [0.199 to 2.186]
Relative humidity	0.328 [-0.222 to 0.877]	0.305 [-0.255 to 0.865]	0.373 [-0.193 to 0.938]
LINE-1	Model 1 (Main model)	Model 2	Model 3
Temperature	-0.497 [-0.915 to -0.080]	-0.503 [-0.927 to -0.079]	-0.109 [-0.567 to 0.349]
Relative humidity	-0.464 [-0.719 to -0.210]	-0.473 [-0.731 to -0.214]	-0.451 [-0.710 to -0.192]
Alu	Model 1 (Main model)	Model 2	Model 3
Temperature	0.074 [-0.114 to 0.262]	0.065 [-0.125 to 0.256]	-0.039 [-0.248 to 0.170]
Relative humidity	0.199 [0.083 to 0.314]	0.177 [0.060 to 0.294]	0.167 [0.049 to 0.286]

Δ^{*} corresponds to increments of $5^{\circ} \mathrm{C}$ and 10% for temperature and relative humidity, respectively
a) Variables included in model 1: f_{1} (temperature) ${ }^{d}$, f_{2} (relative humidity) ${ }^{\mathrm{d}}$, age, body mass index, smoking status, diabetes status, statin use, \% neutrophils in blood count, \% lymphocytes in blood count, \% monocytes in blood count, \% basophils in blood count, seasonal sine and cosine, season, and batch
b) Variables included in model 2: variables included in model 1 and f_{3} (barometric pressure) ${ }^{\text {d }}$
c) Variables included in model 3: variables included in model 1 and $f_{3}\left(\mathrm{PM}_{2.5}\right)^{\mathrm{d}}$
d) f_{1} (temperature), f_{2} (relative humidity), f_{3} (barometric pressure) represent the distributed-lag functions with sets of coefficients constrained by a natural spline (with 3 degrees of freedom) that correspond to the temperature and relative humidity effects at lags 0 and 20 days.

