
eAppendix 1

Québec Birth File Data

We used the Québec birth file data to estimate exposure-response curves for the rela-

tion between inter-pregnancy interval and the risk of preterm birth. Québec is the second

most populous province in Canada, and registration of live births is mandatory. We extracted

information from over one million live singleton births between 1989 and 2008 (inclusive),

including: gestational age at birth (in completed weeks); maternal and paternal date and

country of birth; marital status in six categories; language spoken at home (English, French,

Other); parity (total number of previous deliveries); maternal educational status (integer years

from 0 to 30); and six-digit postal code. We used postal code information to assign to each

individual two area-level measures of social and material deprivation based on the quinqen-

nial Census.1 These indices were coded at the Census dissemination area, small neighbour-

hoods containing an average of 400-700 inhabitants.1 Maternal and paternal country of birth

was used to create an 11-category variable for region of birth, with categories defined as:

Canada, Western Europe, Eastern Europe, Sub-Saharan Africa, Middle East, Latin America,

East Asia-Pacific, South Asia, Carribean, USA, and foreign unspecified. Gestational age at

birth was obtained using first- or second-trimester ultrasounds which are not subject to recall

bias common to estimates based on last menstrual period. Preterm birth was defined as an

indicator of less than 37 weeks completed gestation. We defined inter-pregnancy interval as

the difference (in years) between the conception date of the index child and the date of birth of

the previous child. Of the over one million births available, information from a total of 726,294

multiparous women was extracted.
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Statistical Analysis

Stabilized Inverse Probability Weights

We used the quantile binning method2 to construct stabilized inverse probability weights

(sw) for inter-pregnancy interval, defined as:

ŝw =
f̂X(X ; θ1)

f̂X|C(X | C = c ; θ2)
(1)

where f•(•) denotes the probability density function for inter-pregnancy interval with parame-

ter vector θ. The quantile binning approach requires that one first rank the exposure variable

into quantiles (e.g., deciles) and fit a cumulative logistic model to estimate the predicted prob-

ability of being in each category. These probabilities are then used to construct the weights

in (1). To obtain marginal exposure response curves, we avoid conditioning the numerator on

elements of C.3 For the denominator model in ŝw, the set of confounders C included maternal

year of birth, year of birth of the index child, neighborhood-level social and material depriva-

tion indices, maternal and paternal age (in years), maternal education, parity, and maternal

and paternal country of birth. Interactions between maternal and paternal age, social and

material deprivation indices, and maternal education and maternal age were also included in

the model. Continuous covariate main terms and interaction terms were fit using natural cubic

splines with eight and three degrees of freedom, respectively.

Regression Models

We fit a marginally adjusted (weighted) model defined as:

log
{

P∗(Y = 1 | X = x)
1 − P∗(Y = 1 | X = x)

}
= β∗0 + s∗(x), (Marginal)
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where the superscript asterix reflects probabilities, parameters, and functions in the pseudo-

data (i.e., weighted).

Interaction Models

To explore the exposure response curves for the relation between interpregnancy interval

and the risk of preterm birth in mothers of parity = 1 and mothers of parity ≥ 2, we fit a

marginally adjusted interaction model, defined as:

log
{

P∗(Y = 1 | X = x)
1 − P∗(Y = 1 | X = x)

}
= β∗0 + s∗(x, z),

where s(x, z) represents a separate penalized smoothing spline expansion for mothers with

parities z = 1 and z ≥ 2.
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eAppendix 2

There are well known relations between linear models fit with penalized smoothing splines

and mixed effects regression models.1(p108,p288), 2(p316), 3(p608) Consequently, one can make use

of existing mixed model (MM) routines in standard software packages to estimate regres-

sion models with penalized smoothing splines. Moreover, because MM routines in packages

such as SAS (SAS Institute, Cary, NC) and Stata (StatCorps, College Station, TX) accomo-

date weighting, one can fit weighted penalized smoothing spline regression models. In SAS,

the approach can be accomplished by first building a set of spline basis functions using the

transreg procedure, and fitting a penalized likelihood using the glimmix procedure:

proc transreg data=w design;

model pspline(m / degree=3 nknots=20);

id ptb_i id sw;

output out=wspline;

run;

proc glimmix data=wspline method=LAPLACE;

weight swQB;

model ptb = m_1 m_2 m_3 / link=logit dist=bin s;

random m_4-m_23 / type=toep(1) s;

output out=spl pred(blup ilink)=p;

run;

where swQB is the inverse probability weight estimated with the quantile binning approach

outlined in eAppendix 1, ptb is an indicator of preterm birth, and m is a centred and scaled

inter-pregnancy interval variable. Importantly, using pred(blup ilink)=p allows one to plot

the predicted risk as a smoothed functional inter-pregnancy because the ilink request

outputs predicted probabilities. An alternative to this code would be to remove m 1-m 13

from the random statement, add m to the random statement, and replace type=toep(1) with

type=pspline or type=rsmooth to implement B-splines and radial smoothing splines, respec-

tively. This approach would not require that the user build their own set of spline basis func-

tions, but, in our experience, is more prone to convergence issues.
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Pointwise bootstrap confidence intervals for exposure-response curves from the above

process can be obtained as follows:4

1. Fit the weighted generalized linear mixed model to obtain parameter estimates β̂0, β̂1, β̂2, β̂3

for the fixed effects, and a variance estimate σ̂u for the random effects.

2. Sample (with replacement) n individuals B times from the original data, where n is the

original sample size, and B = 1000 is the number of bootstrap resamples. Then, for each

of the n individuals in each of the B resamples,

3. Construct stabilized inverse probability weights for the exposure.

4. Generate a bootstrapped random effects component of the linear predictor, Zu∗, where

u∗ ∼ N(0, σ̂u), and where Z is the vector of spline variables in the random effects state-

ment of the glimmix code above (m 4-m 23).

5. Generate a fixed effects component of the linear predictor, Xβ, as β̂0+ β̂1m1+ β̂2m2+ β̂3m3.

6. Generate a bootstrapped outcome, Y∗, drawn from a binomial distribution with probability

p = {1 + exp(−Xβ − Zu∗)}−1

7. Re-fit the generalized linear mixed model in Step 1 to obtain B exposure response

curves. Each curve provides a different predicted probability of the response as a func-

tion of the exposure.

8. For each unique exposure value, calculate the standard deviation of the predicted proba-

bility of the response, denoted ŝeB. For each unique exposure value, the pointwise upper

and lower 95% confidence interval can be computed as p̂ ± 1.96 × ŝeB. Alternatively, one

can choose the 97.5th and 2.5th percentile of the distribution of predicted probabilities

for each unique exposure value as the pointwise 95% confidence bounds. This latter

method, however, may require smoothing of the pointwise confidence bands.

2



0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Interpregnancy Interval

P
re

te
rm

 B
ir

th
 R

is
k

Figure 1: Exposure response curve and 95%
pointwise bootstrap confidence bands for the
relation between interpregnancy interval and
the risk of preterm birth in 12,145 live births
in Québec, Canada, 2009-2010.

We applied the above procedure using

the 97.5th and 2.5th percentile of the dis-

tribution of predicted probabilities for each

unique exposure value as the pointwise 95%

confidence bounds to a random sub-sample

of 12,145 live births between 2009 and

2010 from the Québec birth file, yielding the

curves shown in Figure 1.
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