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eTable 1. Short- and Long-term studies pooled 

Author Stroke Outcome 
Publication 

year 

Risk 

ratio 

Lower 

limit 

Upper 

limit 

Short-Term Studies 

Anderson et Cerebrovascular 2001 0.99 0.97 1.02 

Bell et al.29  Cerebrovascular 2008 0.99 0.97 1.01 

Chan et al.30  Cerebrovascular 2006 1.00 0.98 1.01 

Chan et al.30  Hemorrhagic 2006 0.96 0.91 1.01 

Chan et al.30  Ischemic 2006 1.03 0.99 1.07 

Dominici et Cerebrovascular 2006 1.01 1.00 1.01 

Haley et al.32 Cerebrovascular 2009 1.00 0.99 1.01 

Halonen et al.33  Cerebrovascular 2009 1.00 0.97 1.03 

Jalaludin et al.34 Cerebrovascular 2006 0.98 0.95 1.01 

Kim et al.35 Cerebrovascular 2012 1.00 0.99 1.02 

Kloog et al.36 Cerebrovascular 2012 1.00 1.00 1.01 

Lippman et al.37   Cerebrovascular 2000 1.01 0.98 1.04 

Lisabeth et al.38  Ischemic 2008 1.06 0.99 1.13 

Metzger et al.39  Cerebrovascular 2004 1.05 1.01 1.09 

Moolgavkar40 Cerebrovascular 2000 1.01 1.00 1.02 

Villeneuve et Hemorrhagic 2012 1.02 0.86 1.20 

Villeneuve et al. Ischemic 2012 1.07 0.95 1.21 

Villeneuve et al. Hemorrhagic 2006 1.11 0.97 1.27 

Villeneuve et al. Ischemic 2006 1.02 0.94 1.10 

Wellenius et al. Ischemic 2012 1.18 1.02 1.36 

Long-Term Studies 
    

Kloog et al. 36 Cerebrovascular 2012 1.03 1.01 1.07 

Lippsett et al. 43 Hemorrhagic and 

ischemic 

2011 1.10 0.93 1.31 

Miller et al. 6  Hemorrhagic and 

ischemic 
2007 1.28 1.02 1.61 

Atkinson et al. Hemorrhagic 2013 1.08 0.92 1.27 

aFor simplicity, we report the national pooled estimate from Dominici here, but pooled the 

202 city-specific risk estimates.  
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eAppendix:  Bayesian Approach for meta-analysis 

 

We present an approach to summarize the uncertainty in the association between exposure 

to PM2.5 and the incidence of nonfatal strokes using a 2-stage Bayesian hierarchical model. 

It is assumed the true but unknown risks are exchangeable among the selected studies. The 

unknown true risks (i.e. true study-specific risk) can have any distribution in the sense of 

Bayesian perspective. In this meta-analysis study, we consider two distributions in 

particular, a normal (non-informative prior) and a gamma (semi-informative prior) 

distributions. We then develop a strategy (called “Hybrid Bayesian-Frequentist approach”) 

to select reasonable prior distributions for the gamma risk distribution when we have a 

limited number of studies but there is toxicological or clinical literature to support a causal 

relationship.   

     

We assume that β=( 1β ,…, Kβ ), representing the stroke risks for the K studies, are 

exchangeable. In other words, our prior belief about iβ (risk for the i-th study) and jβ (risk 

for the j-th study) are identical. This implies the unknown true stroke risks are considered 

to have the same nature regardless of place (North America vs Asia), size (big vs small 

country in population), or time (in the 80s vs 90s). Due to our inability to separate those 

differences, we start with this general assumption.  

 

We construct an exchangeable prior by assuming that β is a random sample from a 

reasonable statistical distribution, normal versus gamma, as mentioned earlier. The 

reported study-specific risk estimate ( kβ̂ ) is then assumed to vary about the true risk ( kβ ) 

in equation (A1), and the individual kβ  is assumed to be random variables from a 

distribution conditional on additional parameters called hyperparameters (A3-N, A3-G, and 

A3-G*). The is assumed to be a random variable from a normal distribution specified by 

mean and variance parameters (A2-N) and from a gamma distribution specified by shape 

and scale parameters (A2-G). The gamma distribution, which is not a typical choice, is 

selected for the true risk since we believe the association between the adverse health 

outcomes (strokes) and exposure to PM2.5 is positive. The gamma distribution also can 

characterize variation in risk among studies in a non-symmetric manner, a pattern often 

observed. No matter what distribution is assumed, the kβ has mean ( βµ ) and between 

study variation (
2

βσ ), which is the inter-study difference or heterogeneity among studies. 

 

At the first stage of the 2-stage Bayesian hierarchical model, we assume for the k-th study: 

                                                                                                 
    (A1)                                                    

where kβ̂  is the reported risk estimates, kβ  is the unknown true risk, and 
2ˆ
kv  is the known 

estimated sampling variance of kβ̂  conditional on kβ , )|ˆ(r̂va kk ββ , of the k-th study. The 

normality assumption in (A1) is derived from a meta-regression model, where the stroke 

risk estimate has a normal distribution, and thus (A1) is shared by both normal and gamma 

priors.  

 

kβ

,,..,1kfor  )ˆ,(~|ˆ 2 KvN kkkk =βββ
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At the second stage, the true risks, 1β ,…, Kβ , are assumed in two ways: a random sample 

from a normal distribution with mean ( βµ ) and variation (
2

βσ ) or from a gamma 

distribution with shape and scale parameters, α>0 and θ>0, respectively. Here the 

hyperparameters βµ  and 
2

βσ  are assumed to be independent. 

 

First, the normal prior for the stroke risk is written: for any k, 

 

) , (~,|
22

ββββ σµσµβ Nk                                                     (A2-N) 

The model specification is completed by prior distributions for the hyperparameters 

),0(~ µβµ IN  and ),(~
2 πφσ β IG                                               (A3-N) 

where IG  is an Inverse Gamma distribution with shape and scale parameters φ and π  for 

variance 
2

βσ . The posterior distributions for βµ  and
2

βσ   are insensitive to the specification 

of µI  but highly sensitive to the values of ),( πφ . One selects non-informative priors as 

follows:  

µI =1000, ,001.0=φ  and 001.0=π .                                          (A4-N) 

 

Two examples on short-term risk, ischemic and hemorrhagic strokes, were used for four 

different values of φ   and π  but keeping 1000=µI  fixed as the results were insensitive to 

the prior for βµ . The typical non-informative priors in equation (A4-N) are expected to 

have little influence on the eventual posteriors, but this is often untrue if only small 

number of studies is available.  

 

As shown in eTable 2, the 95% posterior ranges for βµ  and
2

βσ  are quite different over the 

change in the prior for 
2

βσ , and the results from this non-informative prior (A4-N) are 

shaded. 

 

eTable 2: Example results from  Bayesian normal model (A3-N) 

cause Prior1  parameter mean sd Q2.5 Q50 Q97.5 

observed 

variance 

Ischemic 

(number 

of 

study=5) 

1.0E-04 overall risk2 0.0467 0.0266 0.0005 0.0453 0.1030 0.0033 

1.0E-04 Hetero3 0.0019 0.0090 0.0001 0.0006 0.0111 0.0033 

0.001 overall risk 0.0521 0.0362 -0.0134 0.0506 0.1274 0.0033 

0.001 hetero 0.0046 0.0171 0.0004 0.0021 0.0225 0.0033 

0.01 overall risk 0.0597 0.0624 -0.0592 0.0587 0.1849 0.0033 

0.01 hetero 0.0171 0.0483 0.0026 0.0097 0.0731 0.0033 

0.1 overall risk 0.0646 0.1445 -0.2195 0.0645 0.3499 0.0033 

0.1 hetero 0.1010 0.2309 0.0190 0.0622 0.4064 0.0033 

Hemorrh

agic 

1.0E-04 overall risk 0.0069 0.1267 -0.1365 0.0009 0.1851 0.0056 

1.0E-04 hetero 0.0448 2.0916 0.0001 0.0033 0.1594 0.0056 
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(number 

of 

study=3) 

0.001 overall risk 0.0146 0.1550 -0.1770 0.0107 0.2271 0.0056 

0.001 hetero 0.0694 2.4949 0.0007 0.0073 0.2544 0.0056 

0.01 overall risk 0.0224 0.2384 -0.3017 0.0209 0.3573 0.0056 

0.01 hetero 0.1672 3.5516 0.0040 0.0241 0.6745 0.0056 

0.1 overall risk 0.0266 0.4765 -0.6931 0.0258 0.7503 0.0056 

0.1 hetero 0.6848 15.0711 0.0278 0.1385 2.9690 0.0056 

1prior values of φ   and π   for equation (A4-N) 

2pooled risk (mean risk) among studies ( βµ ) 

3heterogeneity between studies (
2

βσ ) 

 

 

Second, the gamma prior for the stroke risk is written: for any k, 

. ),(~,| θαθαβ Gk                                                             (A2-G) 

The mean ( βµ ) and variance (
2

βσ ) of G(α,θ) are αθ and 2αθ , respectively.  To compare 

with the normal prior in (A2-N), we re-parameterize them by changing the shape and scale 

parameters to βµ  and 
2

βσ  as follows: 

 

 ), / (~,| 2222

ββββββ µσσµσµβ Gk .                              

 

We apply non-informative prior distributions for both βµ  and 
2

βσ  using the uniform 

distribution and diffuse the prior distributions by taking large values of the uniform 

distribution: 

),0(~ µβµ IU  and ),0(~ 2

2

σβσ IU .                                               (A3-G)          

 

As with the normal distributional assumption on the true stroke risks, in practice the 

posterior distributions for βµ  and
2

βσ  are insensitive to the specification of µI  but highly 

sensitive to the values of 2σ
I . We borrow a philosophy from the Frequentist’s approach by 

noting that the heterogeneity in risk among studies should be less than the observed 

variance between the kβ̂ .  To ensure our method adheres to this philosophy we identify a 

value of 2σ
I such that the 0.975 percentile of the posterior distribution of 

2

βσ  is close to but 

not greater than the observed variance of the kβ̂ .  

µI =1000, and 2σ
I depends on observed variance of the kβ̂ .            (A4-G) 

 

In comparison to the normal priors in (A3-N), the same two examples on short-term risk 

were used for four different values of 2σ
I but keeping 1000=µI  in (A3-G). The results are 

summarized in eTable 3. Again the results are very sensitive to the prior for 
2

βσ , as 

predicted above due to the small number of studies. We propose an empirical prior based 
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on the observed variance in the last column and the 97.5th percentile column shaded to 

decide the value for 2σ
I : the 97.5th percentile of the posterior distribution of heterogeneity 

is close to but less than the observed variance as indicated in bold in the table.    

 

eTable 3: Example results from Bayesian gamma model (A3-G) 

cause Prior1  parameter mean sd Q2.5 Q50 Q97.5 

observed 

variance 

Ischemic 

(number 

of 

study=5) 

1.0E-04 overall risk2 0.0405 0.0145 0.0123 0.0403 0.0694 0.0033 

1.0E-04 Hetero3 0.0000 0.0000 0.0000 0.0000 0.0001 0.0033 

0.001 overall risk 0.0460 0.0173 0.0141 0.0453 0.0816 0.0033 

0.001 hetero 0.0005 0.0003 0.0000 0.0005 0.0010 0.0033 

0.01 overall risk 0.0652 0.0271 0.0203 0.0626 0.1248 0.0033 

0.01 hetero 0.0043 0.0029 0.0001 0.0040 0.0097 0.0033 

0.1 overall risk 0.1094 0.0583 0.0251 0.1004 0.2424 0.0033 

0.1 hetero 0.0459 0.0301 0.0010 0.0445 0.0972 0.0033 

Hemorrh

agic 

(number 

of 

study=3) 

1.0E-04 overall risk 0.0139 0.0113 0.0010 0.0111 0.0422 0.0056 

1.0E-04 hetero 0.0001 0.0000 0.0000 0.0001 0.0001 0.0056 

0.001 overall risk 0.0197 0.0147 0.0021 0.0162 0.0560 0.0056 

0.001 hetero 0.0005 0.0003 0.0000 0.0006 0.0010 0.0056 

0.01 overall risk 0.0362 0.0254 0.0055 0.0302 0.0990 0.0056 

0.01 hetero 0.0056 0.0028 0.0005 0.0058 0.0098 0.0056 

0.1 overall risk 0.0802 0.0523 0.0159 0.0671 0.2113 0.0056 

0.1 hetero 0.0562 0.0275 0.0056 0.0584 0.0981 0.0056 

1prior values of 2σ
I   for equation (A3-G) 

2pooled risk (mean risk) among studies ( βµ ) 

3heterogeneity between studies (
2

βσ ) 

 

 

 

eFigure 1 on sensitivity analysis for short-term effects: For short-term effects in this 

paper 221 risk estimates  were used for pooled risk estimate. Among them 202 estimates 

were drawn from the Dominici et al. multi-city study.31 To assess the influence of this 

multi-city study, we excluded 202 risk estimates and then pooled across the remaining 

study risk estimates (N=19) and for the cerebrovascular endpoint alone (N=11).  

 

Note that 5 out of 19 studies (26%) across all stroke endpoints reported negative point 

estimates, and also 4 out of 11 studies (36%) on cerebrovascular stroke reported negative 

point estimates. These are relatively high rates of negative risk estimate, and thus for stable 

computations we used original hyperparameters (shape and scale) of the gamma prior 

distribution (A3-G*) instead of using its mean ( βµ ) and variance (
2

βσ ) in (A3-G). 
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Again we apply non-informative prior distributions for both shape and scale using a uniform 

distribution as follows: 

,,,,)))),,,,((((~~~~,,,,\\\\     θαθαβ Gk                                                             (A2-G) 

)))),,,,((((~~~~ αα IU 0  and )))),,,,((((~~~~ θθ IU 0 .                                               (A3-G*)          

 

The comparisons with and without the multi-city study are displayed in eFigure 1. Both 

prior distributions, normal and gamma, returned comparable posterior medians 

(represented by dots in circle and square, respectively) but the normal prior returned 

wider posterior intervals when the multi-city study was excluded.  

 

 

eFigure 1. Risk ratio of short-term exposure to PM2.5 (per 10 µg/m3) with and without 

multi-city study31: Bayesian approach with normal and gamma prior distributions for 

across-all strokes and cerebrovascular stroke alone (number of studies included). 

 

To estimate the unknown parameters, we ran three sequences (chains) of the Gibbs 

sampler using different initial values, each chain for 11,000 iterations and removed the 

first 1000 burn-in samples to reach convergence. We assessed the convergence through the 

use of trace and Gelman-Rubin statistic plots. All estimates were obtained by WinBUGS 

(version 1.4.3)e1 and a R package R2WinBUGSe2. All figures were generated also by R 

(version 2.15.2)e3. 
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