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1 Regression to the mean examples

Regression to the mean results from intra-individual variability and measurement error on the baseline
outcome value, which creates a negative correlation between the measured baseline value and measured
change from baseline. We give two examples of bias that can result from this phenomenon.

1.1 Example 1: The exposure depends on baseline level

Regression to the mean is known to create a spurious correlation between the exposure and change from
baseline when the exposure depends on baseline level.

Let us assume a very homogeneous population (with no inter-individual variability) in which systolic
blood pressure is measured twice (at timet1 = 0 andt2 = 10). In this population, the measured blood
pressure at baseline (t1) has a mean of 120 mmHg and a standard deviation of 10 mmHg (resulting only
from intra-individual variability and measurement error).

Furthermore, let us assume that the exposure of interest (E = 1) is only given to individuals with
BP∗(t1) ≥ 120 mmHg (black circles in Figure S1) and that individuals with BP∗(t1) < 120 mmHg are
unexposed (E = 0) (white circles in Figure S1).

In the situation of a true null hypothesis (the exposureE has no causal effect), where blood pressure
does not change in time except for intra-individual variability and measurement error, the observed blood
pressure at timet2 will also have a mean of 120 mmHg and a standard deviation of 10mmHg.

Individuals with the highest blood pressure values at timet1 are more likely to have lower blood
pressure values at timet2, and individuals with the lowest blood pressure values at timet1 are more likely
to have higher blood pressure values at timet2 (as shown in Figure S1). In such a situation, we observe a
decrease in blood pressure for subjects exposed toE = 1 and an increase for unexposed subjects, leading
to the erroneous conclusion of a non-null protective effect of the exposure.
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Figure S1: Regression to the mean example, in which the exposure (black circlesvs white circles) de-
pends on baseline level
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1.2 Example 2: Conditioning on baseline level in pre-existing populations differ-
ing by the exposure and baseline level of the outcome

Let us assume two pre-existing homogeneous populations (with no inter-individual variability): the first
population is exposed to the exposure of interest (E = 1) and have a measured blood pressure at baseline
(t1) of mean 130 mmHg and standard deviation 10 mmHg (resulting only from intra-individual variability
and measurement error), the second population is unexposedto E (E = 0) and have a measured blood
pressure at baseline of mean 110 mmHg and standard deviation10 mmHg. Two situations can lead to
such circomstances:

• studies in which the exposureE starts before the beginning of the study and influences the baseline
blood pressureBP(t1),

• studies with a common causal factor ofE andBP(t1).

In the situation of a true null hypothesis (the exposureE has no causal effect on change), where
blood pressure does not change in time except for intra-individual variability and measurement error, the
observed blood pressure at timet2 = 10 will also have a mean of 130 mmHg in the first population and a
mean of 110 mmHg in the second population.

When conditioning on the value ofBP∗(t1), for example including only subjects with a measured
blood pressure at baselineBP∗(t1) in the interval [115 mmHg; 125 mmHg]:

• the included subjects in the exposed sample are more likely to have higher values att2,

• the included subjects in the unexposed sample are more likely to have lower values att2,

leading to the erroneous conclusion of a non-null effect of the exposure on change from baseline (Figure
S2).
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Figure S2: Regression to the mean example, conditioning on baseline level in two pre-existing popula-
tions differing by the exposure and baseline level of the outcome

2 Data sets simulation

2.1 General Points

We illustrated the different situations represented in Figure 1 to Figure 4 by simulated data sets com-
patible with the causal structures of the DAGs. We estimatedthe effect of the exposureE on blood
pressure change∆BP using linear regression adjusted or unadjusted for the measured baseline level of
blood pressureBP∗(t1). The simulation code for Stata SE 11.2 is provided and can bedownloaded online.

In order to simulate a common causal factor ofBP(t1) and∆BP corresponding to the variableP in
Figures 1 to 4, we assumed that blood pressure (BP) varies over time as a polynomial function ofage
andage2, whereE is a ”correlate of change”, so that aging have a varying effect on BP according to the
exposure status.[1] With such a polynomial function of age,∆BP depends onage(t1) and the effect ofE
on∆BP is modified byage(t1), as shown by Clarke and detailed below.[2] We considered the following
parameters to simulate the data sets:

• The length of the study is 10 years. As a consequence, we haveagei(t2) = agei(t1) + 10.

• The exposureE is a binary intervention with a mean effect of−10mmHg on blood pressure for
exposed versus unexposed individuals 50 years old (except in a few situations indicated below.)

• The age at the beginning of the study,agei(t1), was simulated from 40 to 60 years from a uniform
distribution (mean age was 50 years). We denote byc.age(t1) the age centered on the mean age of
the sample (at the beginning of the study):

c.agei(t1) = agei(t1) − age(t1) ∀i = 1, . . . , I
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• To characterize intra-individual variation and measurement error, we simulated theUBP1 andUBP2

variables independently from a standard Gaussian distribution of varianceσ2
UBP1
= σ2

UBP2
=

100
3 . In

Figure 1A, the corresponding intraclass correlation for the measured blood pressureBP∗(t1) at the

beginning of the study is ICC=
σ2

BP(t1)

σ2
BP∗(t1)

= 0.75.

We calculated the causal effect of E on ∆BP for individuals aged 50, using the estimated param-
eters ˆτ∗E and τ̂∗′E from the following linear regressions (corresponding to models 3 and 4 in the main
manuscript). As suggested by Clarke, we included interaction terms(c.age(t1) ∗ E) and

(

c.age(t1)2 ∗ E
)

because blood pressure values were simulated according to aquadratic growth curve depending onage
andage2.[2]

The linear regression adjusted forBP∗(t1) is (model 3):

E (∆BP∗ | E, BP∗(t1), c.age(t1)) = µ
∗
+ τ∗BP1BP∗(t1) + τ

∗
EE + τ∗agec.age(t1)

+ τ∗age∗E (c.age(t1) ∗ E) + τ∗age2∗E

(

c.age(t1)
2 ∗ E

)

The linear regression unadjusted forBP∗(t1) is (model 4):

E (∆BP∗ | E, c.age(t1)) = µ
∗′
+ τ∗′E E + τ∗′agec.age(t1)) + τ

∗′
age∗E (c.age(t1) ∗ E) + τ∗′age2∗E

(

c.age(t1)
2 ∗ E

)

As shown below, the last interaction termτ∗′
age2∗E

(

c.age(t1)2 ∗ E
)

is not necessary in the fourth situa-
tion whereE starts before the beginning of the study and influences bothBP(t1) andBP(t2) (Figure 4 in
the main text).

The directed acyclic graphs in Figures 1 to 4 representJ different scenarios. In each scenario, we
simulatedK = 1050 samples of sizeI = 500. A sample size of 500 was enough to control some
instability in the estimations of the effect of E on∆BP which resulted from applying linear regressions
adjusted forE∗age(t1) andE∗[age(t1)]2 interaction terms. Moreover, a sample size of 500 was largerthan
necessary to detect a 10 mmHg difference of blood pressure between exposed and unexposed subjects in
every scenario, with a power greater than 90% and a type I error of 5%. The number of 1050 samples
was chosen to be able to explore biases larger than 10% of the standard error of the estimated effect of
the exposureE on change∆BP.

Denotingτt
j the “true” causal effect of the exposureE on change∆BP in the scenarioj, andτ̂ jk the

effect estimated in the samplek from the linear regression adjusted (ˆτ∗E) or unadjusted for baseline level
(τ̂∗′E ), we calculated:[3]

1. the average bias of the estimated effect ofE on∆BP in the scenarioj:

biasj = τ j − τ
t
j where τ j =

1
1050

∑

k

τ̂ jk

2. the standard error (SE) of the estimated effect ofE on∆BP in the scenarioj:

SEj =

√

1
1049

∑

k

(

τ̂ jk − τ j

)2
.
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2.2 Randomized Trials

In order to simulate blood pressure values at timet1 and t2 for the individuali, we used the following
equations:

BPgrowth
i (agei(t1)) =

[

η0 + R0i
]

+
[

η1 + R1i
]

(agei(t1)) +
[

η2 + R2i
]

(agei(t1))
2 (S1)

and

BPgrowth
i (agei(t2), Ei,Mi) =

[

η0 + (θ0 + ξ0i) Ei + (δ0 + ε0) Mi + R0i
]

+
[

η1 + (θ1 + ξ1i) Ei + R1i
]

(agei(t1) + 10)

+
[

η2 + (θ2 + ξ2i) Ei + R2i
]

(agei(t1) + 10)2 (S2)

where a random half of the population is exposed toE (Ei = 1) at the beginning of the study.
Parametersξ0, ξ1, ξ2 andε0 are exogenous and independent random variables (from a Gaussian dis-

tribution) used to add inter-individual variability for the effect of the variablesE andM.

We denotet.agei(t1) = agei(t1)− 50 the age centered onE (age(t1)) = 50 in the general population, so
thatE (t.age(t1)) = 0.

According to the equations (S1) and (S2), change from baseline for a given exposureEi andagei(t1) =
(t.agei(t1) + 50) can be written as :

∆BP (agei(t1), Ei,Mi) =BPgrowth
i (agei(t2), Ei,Mi) − BPgrowth

i (agei(t1)) (S3)

∆BP (agei(t1), Ei,Mi) =10(η1 + R1i) + 1100(η2 + R2i) + (δ0 + ε0i) Mi

+
[

(θ0 + ξ0i) + 60(θ1 + ξ1i) + 3600(θ2 + ξ2i)
]

Ei

+ 20(η2 + R2i) t.agei(t1)

+
[

(θ1 + ξ1i) + 120(θ2 + ξ2i)
]

Ei t.agei(t1)

+ (θ2 + ξ2i) Ei
[

t.agei(t1)
]2

The expected causal effect on change from baseline of do(E = 1) vs do(E = 0) for a givenage(t1) =
(t.agei(t1) + 50) is equal to:

E (∆BP (do(E = 1), age(t1)) − ∆BP (do(E = 0), age(t1))) = (θ0 + 60θ1 + 3600θ2) (S4)

+ (θ1 + 120θ2) t.age(t1) + θ2
[

t.age(t1)
]2

We can see in equation (S4) thatage(t1) is an effect modifier of the causal effect of E on∆BP (the
causal difference is not constant inage(t1)).[4] In order to test the null hypothesis, one needs to test{H0 :
θ0 = 0 andθ1 = 0 andθ2 = 0}, which is equivalent to testing{H0 : τ∗E = 0 andτ∗age∗E = 0 andτ∗

age2∗E
= 0}

or {H0 : τ∗′E = 0 andτ∗′age∗E = 0 andτ∗′
age2∗E

= 0}.
A simple way to deal with this effect modification in our examples is to focus on the effect of E on

∆BP for the meanage(t1) value, so that interaction terms(t.age(t1) ∗ E) and
(

t.age(t1)2 ∗ E
)

cancel out,
and the null hypothesisH0 : {θ0 + 60θ1 + 3600θ2 = 0} is equivalent to testingH0 : {τ∗E = 0} with model
(4) or H0 : {τ∗′E = 0} with model (5).

In Figures 1A and 1B in the main text, we used the following parameters:
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• η0 ≈ 121.8, η1 ≈ 0.0214 andη2 ≈ 0.00286 to characterize the general quadratic shape of the BP
curve. For individuals unexposed toE and M, these values corresponded to a mean BP of 130
mmHg at 50 years old with a slow quadratic BP increase of+3.4 mmHg between 50 and 60 years
old.

• the random variablesR0, R1 andR2 were simulated from Gaussian distributions of respective stan-
dard deviationσR0 = 2,σR1 = 0.1, andσR2 = 0.001, to create some inter-individual variability in
the general shape of the BP curve

• θ0 = −5, θ1 = −0.05 andθ2 = −1/1800, so that the average effect of the exposureE on∆BP is
equal to−10 mmHg for individuals aged 50

• the random variablesξ0, ξ1 andξ2 were simulated from Gaussian distributions of respective stan-
dard deviationσξ0 = 2, σξ1 = 0.1 andσξ2 = 0.001, to create inter-individual variability of the
exposure effect

In Figure 1B in the main text, we used a binary variableM to simulate some effect of BP(t1) on
BP(t2):

• for individuals whoseBP(t1) value was higher than 140 mmHg, we simulated theMi variable
according to a random binomial distribution of probability60%

• for individuals whoseBP(t1) value was lower than 140 mmHg, the variableM was fixed atMi = 0

• δ0 = +5 mmHg, characterizing the effect of the variableM on BP(t2)

• the random variableε0 was simulated from a Gaussian distribution of standard error σε0 = 2 to add
some inter-individual variability for the effect ofM on BP(t2)

Relationships between these variables can be represented with additional measurement errors on
BP(t1) andBP(t2) as in Figure S3.

BP(t1) BP(t2)M

R

E

age(t1)

BP∗(t1) BP∗(t2)

UBP1 UBP2

Figure S3: Randomized trials
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2.3 Non-randomized Studies with Confounding Factors between the Exposure
and the Outcome

To simulate blood pressure values at timet1 andt2 for the individuali in the scenarios of Figure 2, we
used the following equations:

BPgrowth
i (agei(t1),Ci) =

[

η0 + (λ0 + ζ0i) Ci + R0i
]

+
[

η1 + (λ1 + ζ1i) Ci + R1i
]

(agei(t1))

+
[

η2 + (λ2 + ζ2i) Ci + R2i
]

(agei(t1))
2 (S5)

and

BPgrowth
i (agei(t2), Ei,Mi,Ci) =

[

η0 + (θ0 + ξ0i) Ei + (δ0 + ε0i) Mi + (λ0 + ζ0i) Ci + R0i
]

+
[

η1 + (θ1 + ξ1i) Ei + (λ1 + ζ1i) Ci + R1i
]

(agei(t1) + 10) (S6)

+
[

η2 + (θ2 + ξ2i) Ei + (λ2 + ζ2i) Ci + R2i
]

(agei(t1) + 10)2

According to equations (S5) and (S6), change from baseline for a given exposureEi, Ci andagei(t1)
can be written as :

∆BP (agei(t1), Ei,Mi,Ci) =BPgrowth
i (agei(t2), Ei,Mi,Ci) − BPgrowth

i (agei(t1),Ci) (S7)

∆BP (agei(t1), Ei,Mi,Ci) =10(η1 + R1i) + 100(η2 + R2i) + (δ0 + ε0i) Mi

+
[

(θ0 + ξ0i) + 10(θ1 + ξ1i) + 100(θ2 + ξ2i)
]

Ei

+
[

10(λ1 + ζ1i) + 100(λ2 + ζ2i)
]

Ci

+ 20(η2 + R2i) agei(t1)

+
[

(θ1 + ξ1i) + 20(θ2 + ξ2i)
]

Ei agei(t1)

+ 20(λ2 + ζ2i) Ci agei(t1)

+ (θ2 + ξ2i) Ei
[

agei(t1)
]2

The expected causal effect on change from baseline of do(E = 1) vs do(E = 0) for a givenage(t1) is
the same as in equation (S4).

We can see in equation (S7) that ifλ1 = λ2 = ζ1i = ζ2i = 0 (i.e. when the effect ofC on BP(t1) and
BP(t2) is not modified byage(t1)), then∆BP does not depend onC so that Figures 2A and 2B can be
simplified into Figures 2C and 2D.

We did not simulate data from Figure 2B as it does not provide additional information to the results
observed from Figures 2A, 2C and 2D. We defined the following parameters for the simulated data sets:

• C is a binary variable, simulated from a binomial distribution of probabilityP (C = 1) = 0.40

• C influences the probability of being exposed toE. E was simulated from a conditional binomial
distribution of probability

P (E | C) = expit

[

ln

(

0.25
1− 0.25

)

+ ln(3)× C

]

,

where expit(x) = exp(x)/[1 + exp(x)], so thatP (E = 1 | C = 0) = 25% and the effect ofC on E is
characterized by an odds ratio (OR) of 3.
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• C influences blood pressure at the beginning and at the end of the study: individuals exposed to
C = 1 had a BPλ0 = 15 mmHg higher than individuals unexposed toC.

• the random variableζ0i was simulated from a Gaussian distribution of standard deviation 5 mmHg,
adding some inter-individual variability to the effect ofC on BP(t1) andBP(t2).

In Figures 2A, 2C and 2D in the main text, we used the same parameters as in Figures 1A and 1B
regarding:η0 ≈ 121.8, η1 ≈ 0.0214 andη2 ≈ 0.00286,θ0 = −5, θ1 = −0.05 andθ2 = −1/1800. The
random variablesR0, R1, R2, ξ0, ξ1 andξ2 have been simulated in the same way as in Figures 1A and 1B.

In Figure 2A, the effect ofC on BP(t1) andBP(t2) is modified byage(t1), using the following param-
eters:λ1 = 0.02,λ2 = 0.003. The random variablesζ1 andζ2 were simulated from Gaussian distributions
of respective standard deviationσζ1 = 0.005,σζ2 = 0.0005, to create inter-individual variability of the
effect modification byage(t1).

In Figures 2C and 2D, the effect of C on BP(t1) and BP(t2) is not modified byage(t1), so that
λ1 = λ2 = 0 and the random variablesζ1 andζ2 do not have to be simulated.

In Figure 2D in the main text, the binary variableM andε0 have been simulated in the same way as
in Figures 1B. The parameterδ0 = +5 mmHg.

Relationships between these variables can be represented with additional measurement errors on
BP(t1) andBP(t2) as in Figure S4.

BP(t1) BP(t2)MR

E

age(t1)

C

BP∗(t1) BP∗(t2)

UBP1 UBP2

Figure S4: Non-randomized studies with confoundersC between the exposure and blood pressure

2.4 Non-randomized Studies where the Observed Baseline Outcome Influences
the Exposure

Data set simulation for the DAGs of Figures 3A and 3B

To simulate blood pressure values at timet1 andt2 for the individuali in the scenarios of Figure 3, we
used the same equations (S1) and (S2) than for the randomizedcontrolled trial data set.
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In Figures 3A and 3B in the main text, the observed baseline blood pressureBP∗(t1) influences the
probability of being exposed toE at the beginning of the study.E was simulated from a conditional
binomial distribution of probability

P (E | BP∗(t1)) ≈ expit
[

−9.13+ ln(21/10) × BP∗(t1)
]

,

so thatP (E = 1 | BP∗(t1) = 100) = 10% and the odds ofP(E = 1) is multiplied by 2 for a 10 mmHg
increase ofBP∗(t1).

In Figures 3A and 3B in the main text, we used the same parameters as in Figures 1A and 1B regard-
ing: η0 ≈ 121.8, η1 ≈ 0.0214 andη2 ≈ 0.00286,θ0 = −5, θ1 = −0.05 andθ2 = −1/1800. The random
variablesR0, R1, R2, ξ0, ξ1 andξ2 have been simulated in the same way as in Figures 1A and 1B.

In Figure 3B in the main text, the binary variableM and the variableε0 have been simulated in the
same way as in Figure 1B. The parameterδ0 = +5 mmHg.

Relationships between the variables corresponding to Figures 3A and 3B can be represented with
additional measurement errors onBP(t1) andBP(t2) as in Figure S5.

BP(t1) BP(t2)M

R

E

age(t1)

BP∗(t1) BP∗(t2)

UBP1 UBP2

Figure S5: Non-randomized studies whereBP∗(t1) influences the exposure
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Data set simulation for the DAG of Figure 3C

In Figure 3C in the main text, the probability of being exposed to E at the beginning of the study is
influenced by a pre-existing value of blood pressureBP∗(t0), which have been measured 10 years earlier
(age(t0) = age(t1) − 10).

In order to simulate blood pressure value at timet0 for the individuali, we used an equation similar
to (S1) withage(t0) instead ofage(t1):

BPgrowth
i (agei(t0)) =

[

η0 + R0i
]

+
[

η1 + R1i
]

(agei(t0)) +
[

η2 + R2i
]

(agei(t0))
2 (S8)

The exposureE was simulated from a conditional binomial distribution of probability

P (E | BP∗(t0)) ≈ expit
[

−9.13+ ln(21/10) × BP∗(t0)
]

,

so thatP (E = 1 | BP∗(t0) = 100) = 10% and the odds ofP(E = 1) is multiplied by 2 for a 10 mmHg
increase ofBP∗(t0).

Blood pressure values at timet1 andt2 for the individuali, have been simulated using the same equa-
tions (S1) and (S2) as in Figures 3A and 3B, with the same parametersη0 ≈ 121.8, η1 ≈ 0.0214 and
η2 ≈ 0.00286,θ0 = −5, θ1 = −0.05 andθ2 = −1/1800. The random variablesR0, R1, R2, ξ0, ξ1 andξ2
have also been simulated in the same way as in Figures 3A and 3B.

Relationships between the variables corresponding to Figures 3C can be represented with additional
measurement errors onBP(t0), BP(t1) andBP(t2) as in Figure S6.

BP(t0) BP(t1) BP(t2)

R

E

age(t0)

BP∗(t0) BP∗(t1) BP∗(t2)

UBP0 UBP1 UBP2

Figure S6: Non-randomized studies whereBP∗(t0) influences the exposure
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2.5 Non-randomized Studies where the Exposure Starts before the Beginning of
the Study

In DAGs of Figures 4 in the main text, the exposure starts att0 (before the beginning of the study). As
previously, BP evolves according to a growth curve, so that∆BP depends on the length of the exposure
at timet1, length(t1) = age(t1) − age(t0) (i.e. the individual change score depends on bothage(t0) and
age(t1)). In order to know the value ofage(t0) for individuals unexposed toE = 1, we must assume that
the exposureE has to potentially occur at the sameage(t0) for every subject (or at a time origin that can
be clearly defined from some common event known for every subject). If we do not know the age at the
time of potential exposure for subjects who happened to be unexposed toE, the consistency assumption
(the fact that an individual’s potential outcome under a hypothetical intervention is the observed outcome
if the intervention happened to materialize) does not hold and we cannot estimate the causal effect ofE
on∆BP.[5]

To simulate blood pressure values at timet1 andt2 for the individuali in the scenarios of Figure 4, we
used the following equations:

BPgrowth
i (lengthi(t1), Ei) =

[

η0 + (θ0 + ξ0i) Ei + R0i
]

+
[

η1 + (θ1 + ξ1i) Ei + R1i
]

(lengthi(t1)) (S9)

+
[

η2 + (θ2 + ξ2i) Ei + R2i
]

(lengthi(t1))
2

and

BPgrowth
i (lengthi(t2), Ei,Mi) =

[

η0 + (θ0 + ξ0i) Ei + (δ0 + ε0) Mi + R0i
]

+
[

η1 + (θ1 + ξ1i) Ei + R1i
]

(lengthi(t1) + 10) (S10)

+
[

η2 + (θ2 + ξ2i) Ei + R2i
]

(lengthi(t1) + 10)2

where:

• A random half of the population is exposed toE (Ei = 1) at the age of 20 years. If, contrary to the
fact, unexposed individuals had been exposed, the exposurewould have also started at the age of
20 years

• Thelengthi(t1) variable is the potential length of the exposure at the beginning (t1) of the study for
the individuali, defined bylengthi(t1) = agei(t1) − 20

• The potential length of the exposure at the end (t2) of the study islengthi(t2) = lengthi(t1) + 10

According to equations (S9) and (S10), change from baselinefor a given exposureEi andlengthi(t1)
can be written as :

∆BP (lengthi(t1), Ei,Mi) =BPgrowth
i (lengthi(t2), Ei,Mi) − BPgrowth

i (lengthi(t1), Ei) (S11)

∆BP (lengthi(t1), Ei,Mi) =10(η1 + R1i) + 100(η2 + R2i) + (δ0 + ε0i) Mi

+
[

10(θ1 + ξ1i) + 100(θ2 + ξ2i)
]

Ei

+ 20(η2 + R2i) lengthi(t1)

+ 20(θ2 + ξ2i) Ei lengthi(t1)
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It should be noted that in this causal structure,Mi is a function ofEi.

The expected causal effect on change from baseline of do(E = 1) vs do(E = 0) for a givenlength(t1) =
(t.agei(t1) + 30) is equal to:

E
(

∆BP
(

do(E = 1), length(t1),Mi,do(E=1)
)

− ∆BP
(

do(E = 0), length(t1),Mi,do(E=0)
))

=

10θ1 + 700θ2 + 20θ2 t.age(t1)

+ δ0
[

P (M = 1 | do(E = 1), lengthi(t1)) − P (M = 1 | do(E = 0), lengthi(t1))
]

(S12)

As previously,age(t1) is an effect modifier of the causal risk difference ofE on∆BP (the causal dif-
ference is not constant inage(t1)), and we will focus on the effect ofE on∆BP for the meanage(t1) value.

In Figures 4A and 4B, we used the following parameters:

• η0 = 125,η1 = 1/20 andη2 = 3/200 to characterize the general quadratic shape of the BP curve.
For individuals unexposed toE andM, these values corresponded to a mean BP of 140 mmHg at
age 50 with a slow quadratic BP increase of+10 mmHg between age 50 and 60.

• the random variablesR0, R1 andR2 were simulated from Gaussian distributions of respective stan-
dard deviationσR0 = 2,σR1 = 0.1, andσR2 = 0.001, to create some inter-individual variability in
the general shape of the BP curve

In Figure 4A:

• θ0 = −5, θ1 = −3/100 andθ2 = −97/7000, so that the average effect of the exposureE on change
∆BP is equal to−10 mmHg for subjects aged 50 at the beginning of the study.

• The random variablesξ0, ξ1 andξ2 were simulated from Gaussian distributions of respective stan-
dard deviationσξ0 = 2, σξ1 = 0.1 andσξ2 = 0.001, to create inter-individual variability of the
exposure effect.

In Figure 4B, we used the same parametersθ0 = −5, θ1 = −3/100 andθ2 = −97/7000 as in Figure
4A and the variablesξ0, ξ1 andξ2 have been simulated in the same way.

The binary variableM and the variableε0 have been simulated in the same way as in Figure 1B. The
effect ofM on BP(t2) was higher than previously withδ0 = +15 mmHg.

We can calculate from the equation ofBP(t1):

P (BP(t1) > 140 | do(E = 0), age(t1) = 50) ≈ 50%
and
P (BP(t1) > 140 | do(E = 1), age(t1) = 50) ≈ 0.024%

As the binary variableM appears in 60% of the subjects whoseBP(t1) value is higher than 140 mmHg,
the “true” effect ofE on change∆BP for individuals aged 50 is:

τt
= −10+ δ0 × 0.6× (0.024− 0.50) ≈ −14.50mmHg

Relationships between these variables can be represented with additional measurement errors on
BP(t1) andBP(t2) as in Figure S7.
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Figure S7: Non-randomized studies whereE starts before the beginning of the study
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******************* Simulation code for Stata/SE 11 .2 
******************* Estimating the causal effect of  an exposure on change from baseline using DAGs and  path analysis 
******************* 2014 june 
 
set mem 1g 
 
program linear_regressions_of_change 
 version 11 
 args BP1_mes BP2_mes E age1   
 sum `age1' 
 scalar mean_age = r(mean) 
 gen age_c = `age1' - mean_age 
 gen age_c2 = age_c^2 
  
 gen dif = `BP2_mes' - `BP1_mes' 
 
 * model 4) linear regression adjusted on BP1 +/- E *age and E*age^2 interaction terms 
 xi: regress dif `E' `BP1_mes' age_c i.`E'*age_c i. `E'*age_c2  
 scalar adj_lr_age2 = _b[`E']  
  
 xi: regress dif `E' `BP1_mes' age_c i.`E'*age_c  
 scalar adj_lr_age = _b[`E']  
  
 xi: regress dif `E' `BP1_mes' 
 scalar adj_lr = _b[`E'] 
  
 * model 5) linear regression unadjusted on BP1 +/-  E*age and E*age^2 interaction terms 
 xi: regress dif `E' age_c i.`E'*age_c i.`E'*age_c2   
 scalar unadj_lr_age2 = _b[`E'] 
 
 xi: regress dif `E' age_c i.`E'*age_c  
 scalar unadj_lr_age = _b[`E'] 
  
 xi: regress dif `E' 
 scalar unadj_lr = _b[`E'] 
  
 drop age_c age_c2 dif  
end 
 
*************************************************** *************************************************** ********** 
*** I) Randomized control trial datasets simulation  
*************************************************** *************************************************** ********** 

 
*************************************************** *************************************************** ********** 
*** 1A) Figure 1A 
clear 
set seed X64ad479b45c155c3ddda364fd8449359000243b6 
set obs 525000 
gen id = _n 
gen n_simu=int( ( (id-1)/500) + 1 ) 
 
gen age1 = 40 + (20*runiform()) 



 
gen eta0 = 121.78571 
gen eta1 = 0.0214288 
gen eta2 = 0.00285714 
 
gen R0 = rnormal(0,2) 
gen R1 = rnormal(0,0.1) 
gen R2 = rnormal(0,0.001) 
 
gen BP1 = [eta0 + R0] + [eta1 + R1]*age1 + [eta2 + R2]*(age1^2) 
 
gen theta0 = -5 
gen theta1 = -0.05 
gen theta2 = -1/1800 
 
gen xi0 = rnormal(0,2) 
gen xi1 = rnormal(0,0.1) 
gen xi2 = rnormal(0,0.001) 
 
gen E = rbinomial(1,0.5) 
 
gen BP2 = [eta0 + (theta0 + xi0)*E + R0] + [eta1 + (theta1 + xi1)*E + R1]*(age1 + 10) /// 
         + [eta2 + (theta2 + xi2)*E + R2]*((age1 + 10)^2) 
 
gen Ubp1 =rnormal(0,5.7735027) 
gen Ubp2 =rnormal(0,5.7735027) 
 
gen BP1_mes = BP1 + Ubp1 
gen BP2_mes = BP2 + Ubp2 
 
keep n_simu id BP1_mes BP2_mes E age1 
save "D:\...simulation_file_path...\sim_1a.dta", re place  
 
*** Analyses 
forvalues i = 1/1050 { 
use "D:\...simulation_file_path...\sim_1a.dta", cle ar 
drop if n_simu!=`i' 
 
linear_regressions_of_change BP1_mes BP2_mes E age1    
 
gen effect_adj_age2=scalar(adj_lr_age2)  
gen effect_unadj_age2=scalar(unadj_lr_age2) 
 
gen bias_adj_age2 = effect_adj_age2 + 10  
gen bias_unadj_age2 = effect_unadj_age2 + 10  
 
gen id_bis=id - ((`i'-1)*500) 
 
keep if id_bis==1 
keep n_simu effect_adj_age2 effect_unadj_age2 bias_ adj_age2 bias_unadj_age2  
 
save "D:\...simulation_file_path...\results_sim_1a_ `i'.dta", replace 



} 
 
use "D:\...simulation_file_path...\results_sim_1a_1 .dta", clear 
 
forvalues i = 2/1050 { 
append using "D:\...simulation_file_path...\results _sim_1a_`i'.dta" 
} 
save "D:\...simulation_file_path...\results_sim_1a. dta", replace 
 
forvalues i = 1/1050 { 
erase "D:\...simulation_file_path...\results_sim_1a _`i'.dta" 
} 
 
*** Results simulation Figure 1A 
use "D:\...simulation_file_path...\results_sim_1a.d ta", clear 
tabstat bias_adj_age2 bias_unadj_age2, statistics(m ean sd) columns(statistics) 
tabstat effect_adj_age2 effect_unadj_age2, statisti cs(mean sd) columns(statistics) 
 

 
 
*************************************************** *************************************************** ********** 
*** 1B) Figure 1B 
clear 
set seed Xf73e2f9f2b0a423625c79d6ba81d8ec800024cbe 
set obs 525000 
gen id = _n 
gen n_simu=int( ( (id-1)/500) + 1 ) 
 
gen age1 = 40 + (20*runiform()) 
 
gen eta0 = 121.78571 
gen eta1 = 0.0214288 
gen eta2 = 0.00285714 
 
gen R0 = rnormal(0,2) 
gen R1 = rnormal(0,0.1) 
gen R2 = rnormal(0,0.001) 
 
gen BP1 = [eta0 + R0] + [eta1 + R1]*age1 + [eta2 + R2]*(age1^2) 
 
gen M = rbinomial(1,0.6) if BP1>=140 
replace M = 0 if BP1<140 
gen delta0 = 5 
gen eps0=rnormal(0,2) 
 
gen E = rbinomial(1,0.5) 
 
gen theta0 = -5 
gen theta1 = -0.05 
gen theta2 = -1/1800 
 
gen xi0 = rnormal(0,2) 



gen xi1 = rnormal(0,0.1) 
gen xi2 = rnormal(0,0.001) 
 
 
gen BP2 = [eta0 + (theta0 + xi0)*E + (delta0 + eps0 )*M + R0] + [eta1 + (theta1 + xi1)*E + R1]*(age1 + 10) /// 
         + [eta2 + (theta2 + xi2)*E + R2]*((age1 + 10)^2) 
 
gen Ubp1 =rnormal(0,5.7735027) 
gen Ubp2 =rnormal(0,5.7735027) 
 
gen BP1_mes = BP1 + Ubp1 
gen BP2_mes = BP2 + Ubp2 
 
keep n_simu id BP1_mes BP2_mes E age1 
save "D:\...simulation_file_path...\sim_1b.dta", re place  
 
*** Analyses 
forvalues i = 1/1050 { 
use "D:\...simulation_file_path...\sim_1b.dta", cle ar 
drop if n_simu!=`i' 
 
linear_regressions_of_change BP1_mes BP2_mes E age1    
 
gen effect_adj_age2=scalar(adj_lr_age2)  
gen effect_unadj_age2=scalar(unadj_lr_age2) 
 
gen bias_adj_age2 = effect_adj_age2 + 10  
gen bias_unadj_age2 = effect_unadj_age2 + 10  
 
gen id_bis=id - ((`i'-1)*500) 
 
keep if id_bis==1 
keep n_simu effect_adj_age2 effect_unadj_age2 bias_ adj_age2 bias_unadj_age2  
 
save "D:\...simulation_file_path...\results_sim_1b_ `i'.dta", replace 
} 
 
use "D:\...simulation_file_path...\results_sim_1b_1 .dta", clear 
 
forvalues i = 2/1050 { 
append using "D:\...simulation_file_path...\results _sim_1b_`i'.dta" 
} 
save "D:\...simulation_file_path...\results_sim_1b. dta", replace 
 
forvalues i = 1/1050 { 
erase "D:\...simulation_file_path...\results_sim_1b _`i'.dta" 
} 
 
*** Results simulation Figure 1B 
use "D:\...simulation_file_path...\results_sim_1b.d ta", clear 
tabstat bias_adj_age2 bias_unadj_age2, statistics(m ean sd) columns(statistics) 
tabstat effect_adj_age2 effect_unadj_age2, statisti cs(mean sd) columns(statistics) 



 
 

*************************************************** *************************************************** ********** 
*** II) Non-randomized Studies with Confounding Fac tors between the Exposure and the Outcome 
*************************************************** *************************************************** ********** 
 
*************************************************** *************************************************** ********** 
*** 2A) Figure 2A 
clear 
set seed X8a8d036b45674c0eec8a50a508fed9f500020f2a 
set obs 525000 
gen id = _n 
gen n_simu=int( ( (id-1)/500) + 1 ) 
 
gen age1 = 40 + (20*runiform()) 
 
gen C = rbinomial(1,0.40) 
gen E = rbinomial(1, invlogit( ln(0.25/(1-0.25)) + C*ln(3)) ) 
 
gen eta0 = 121.78571 
gen eta1 = 0.0214288 
gen eta2 = 0.00285714 
 
gen R0 = rnormal(0,2) 
gen R1 = rnormal(0,0.1) 
gen R2 = rnormal(0,0.001) 
 
gen lambda0 = 15 
gen zeta0 = rnormal(0,5) 
 
*gen lambda1 = 0.01 
gen lambda1 = 0.02 
gen zeta1 = rnormal(0,0.005) 
*gen lambda2 = 0.001 
gen lambda2 = 0.003 
gen zeta2 = rnormal(0,0.0005) 
 
gen BP1 = [eta0 + (lambda0 + zeta0)*C + R0] + [eta1  + (lambda1 + zeta1)*C + R1]*age1 + [eta2 + (lambda 2 + zeta2)*C + R2]*(age1^2) 
 
gen theta0 = -5 
gen theta1 = -0.05 
gen theta2 = -1/1800 
 
gen xi0 = rnormal(0,2) 
gen xi1 = rnormal(0,0.1) 
gen xi2 = rnormal(0,0.001) 
 
gen BP2 = [eta0 + (theta0 + xi0)*E + (lambda0 + zet a0)*C + R0] + [eta1 + (theta1 + xi1)*E + (lambda1 +  zeta1)*C + R1]*(age1 + 10) /// 
         + [eta2 + (theta2 + xi2)*E + (lambda2 + ze ta2)*C + R2]*((age1 + 10)^2) 
 
gen Ubp1 =rnormal(0,5.7735027) 
gen Ubp2 =rnormal(0,5.7735027) 



 
gen BP1_mes = BP1 + Ubp1 
gen BP2_mes = BP2 + Ubp2 
 
keep n_simu id BP1_mes BP2_mes E age1 
save "D:\...simulation_file_path...\sim_2a.dta", re place  
 
*** Analyses 
forvalues i = 1/1050 { 
use "D:\...simulation_file_path...\sim_2a.dta", cle ar 
drop if n_simu!=`i' 
 
linear_regressions_of_change BP1_mes BP2_mes E age1    
 
gen effect_adj_age2=scalar(adj_lr_age2)  
gen effect_unadj_age2=scalar(unadj_lr_age2) 
 
gen effect_adj=scalar(adj_lr)  
gen effect_unadj=scalar(unadj_lr) 
 
gen bias_adj_age2 = effect_adj_age2 + 10  
gen bias_unadj_age2 = effect_unadj_age2 + 10  
 
gen bias_adj = effect_adj + 10  
gen bias_unadj = effect_unadj + 10 
 
gen id_bis=id - ((`i'-1)*500) 
 
keep if id_bis==1 
keep n_simu effect_adj_age2 effect_unadj_age2 bias_ adj_age2 bias_unadj_age2 
 
save "D:\...simulation_file_path...\results_sim_2a_ `i'.dta", replace 
} 
 
use "D:\...simulation_file_path...\results_sim_2a_1 .dta", clear 
 
forvalues i = 2/1050 { 
append using "D:\...simulation_file_path...\results _sim_2a_`i'.dta" 
} 
save "D:\...simulation_file_path...\results_sim_2a. dta", replace 
 
forvalues i = 1/1050 { 
erase "D:\...simulation_file_path...\results_sim_2a _`i'.dta" 
} 
 
*** Results simulation Figure 2A 
use "D:\...simulation_file_path...\results_sim_2a.d ta", clear 
tabstat bias_adj_age2 bias_unadj_age2, statistics(m ean sd) columns(statistics) 
tabstat effect_adj_age2 effect_unadj_age2, statisti cs(mean sd) columns(statistics) 
 
 
 



*************************************************** *************************************************** ********** 
*** 2C) Figure 2C 
clear 
set seed Xbac0c56195c254508582d28d7a2e469100022645 
set obs 525000 
gen id = _n 
gen n_simu=int( ( (id-1)/500) + 1 ) 
 
gen age1 = 40 + (20*runiform()) 
 
gen C = rbinomial(1,0.40) 
gen E = rbinomial(1, invlogit( ln(0.25/(1-0.25)) + C*ln(3)) ) 
 
gen eta0 = 121.78571 
gen eta1 = 0.0214288 
gen eta2 = 0.00285714 
 
gen R0 = rnormal(0,2) 
gen R1 = rnormal(0,0.1) 
gen R2 = rnormal(0,0.001) 
 
gen lambda0 = 15 
gen zeta0 = rnormal(0,5) 
 
gen BP1 = [eta0 + (lambda0 + zeta0)*C + R0] + [eta1  + R1]*age1 + [eta2 + R2]*(age1^2) 
 
gen theta0 = -5 
gen theta1 = -0.05 
gen theta2 = -1/1800 
 
gen xi0 = rnormal(0,2) 
gen xi1 = rnormal(0,0.1) 
gen xi2 = rnormal(0,0.001) 
 
gen BP2 = [eta0 + (theta0 + xi0)*E + (lambda0 + zet a0)*C + R0] + [eta1 + (theta1 + xi1)*E + R1]*(age1 + 10) /// 
         + [eta2 + (theta2 + xi2)*E + R2]*((age1 + 10)^2) 
 
gen Ubp1 =rnormal(0,5.7735027) 
gen Ubp2 =rnormal(0,5.7735027) 
 
gen BP1_mes = BP1 + Ubp1 
gen BP2_mes = BP2 + Ubp2 
 
keep n_simu id BP1_mes BP2_mes E age1 
save "D:\...simulation_file_path...\sim_2c.dta", re place  
 
*** Analyses 
forvalues i = 1/1050 { 
use "D:\...simulation_file_path...\sim_2c.dta", cle ar 
drop if n_simu!=`i' 
 
linear_regressions_of_change BP1_mes BP2_mes E age1    



 
gen effect_adj_age2=scalar(adj_lr_age2)  
gen effect_unadj_age2=scalar(unadj_lr_age2) 
 
gen effect_adj=scalar(adj_lr)  
gen effect_unadj=scalar(unadj_lr) 
 
gen bias_adj_age2 = effect_adj_age2 + 10  
gen bias_unadj_age2 = effect_unadj_age2 + 10  
 
gen bias_adj = effect_adj + 10  
gen bias_unadj = effect_unadj + 10 
 
gen id_bis=id - ((`i'-1)*500) 
 
keep if id_bis==1 
keep n_simu effect_adj_age2 effect_unadj_age2 bias_ adj_age2 bias_unadj_age2 
 
save "D:\...simulation_file_path...\results_sim_2c_ `i'.dta", replace 
} 
 
use "D:\...simulation_file_path...\results_sim_2c_1 .dta", clear 
 
forvalues i = 2/1050 { 
append using "D:\...simulation_file_path...\results _sim_2c_`i'.dta" 
} 
save "D:\...simulation_file_path...\results_sim_2c. dta", replace 
 
forvalues i = 1/1050 { 
erase "D:\...simulation_file_path...\results_sim_2c _`i'.dta" 
} 
 
*** Results simulation Figure 2C 
use "D:\...simulation_file_path...\results_sim_2c.d ta", clear 
tabstat bias_adj_age2 bias_unadj_age2, statistics(m ean sd) columns(statistics) 
tabstat effect_adj_age2 effect_unadj_age2, statisti cs(mean sd) columns(statistics) 
 
 
 
 
*************************************************** *************************************************** ********** 
*** 2D) Figure 2D 
clear 
set seed X505828a031e9171c1b7dcd60f31936c300022033 
set obs 525000 
gen id = _n 
gen n_simu=int( ( (id-1)/500) + 1 ) 
 
gen age1 = 40 + (20*runiform()) 
 
gen C = rbinomial(1,0.40) 
gen E = rbinomial(1, invlogit( ln(0.25/(1-0.25)) + C*ln(3)) ) 



 
gen eta0 = 121.78571 
gen eta1 = 0.0214288 
gen eta2 = 0.00285714 
 
gen R0 = rnormal(0,2) 
gen R1 = rnormal(0,0.1) 
gen R2 = rnormal(0,0.001) 
 
gen lambda0 = 15 
gen zeta0 = rnormal(0,5) 
 
gen BP1 = [eta0 + (lambda0 + zeta0)*C + R0] + [eta1  + R1]*age1 + [eta2 + R2]*(age1^2) 
 
gen theta0 = -5 
gen theta1 = -0.05 
gen theta2 = -1/1800 
 
gen xi0 = rnormal(0,2) 
gen xi1 = rnormal(0,0.1) 
gen xi2 = rnormal(0,0.001) 
 
gen M = rbinomial(1,0.6) if BP1>=140 
replace M = 0 if BP1<140 
gen delta0 = 5 
gen eps0=rnormal(0,2) 
 
gen BP2 = [eta0 + (theta0 + xi0)*E + (delta0 + eps0 )*M + (lambda0 + zeta0)*C + R0] + [eta1 + (theta1 +  xi1)*E + R1]*(age1 + 10) /// 
         + [eta2 + (theta2 + xi2)*E + R2]*((age1 + 10)^2) 
 
gen Ubp1 =rnormal(0,5.7735027) 
gen Ubp2 =rnormal(0,5.7735027) 
 
gen BP1_mes = BP1 + Ubp1 
gen BP2_mes = BP2 + Ubp2 
 
save "D:\...simulation_file_path...\sim_2d.dta", re place  
 
*** Analyses 
forvalues i = 1/1050 { 
use "D:\...simulation_file_path...\sim_2d.dta", cle ar 
drop if n_simu!=`i' 
keep n_simu id BP1_mes BP2_mes E age1 
 
linear_regressions_of_change BP1_mes BP2_mes E age1    
 
gen effect_adj_age2=scalar(adj_lr_age2)  
gen effect_unadj_age2=scalar(unadj_lr_age2) 
 
gen bias_adj_age2 = effect_adj_age2 + 10  
gen bias_unadj_age2 = effect_unadj_age2 + 10  
 



gen id_bis=id - ((`i'-1)*500) 
 
keep if id_bis==1 
keep n_simu effect_adj_age2 effect_unadj_age2 bias_ adj_age2 bias_unadj_age2  
 
save "D:\...simulation_file_path...\results_sim_2d_ `i'.dta", replace 
} 
 
use "D:\...simulation_file_path...\results_sim_2d_1 .dta", clear 
 
forvalues i = 2/1050 { 
append using "D:\...simulation_file_path...\results _sim_2d_`i'.dta" 
} 
save "D:\...simulation_file_path...\results_sim_2d. dta", replace 
 
forvalues i = 1/1050 { 
erase "D:\...simulation_file_path...\results_sim_2d _`i'.dta" 
} 
 
*** Results simulation Figure 2D 
use "D:\...simulation_file_path...\results_sim_2d.d ta", clear 
tabstat bias_adj_age2 bias_unadj_age2, statistics(m ean sd) columns(statistics) 
tabstat effect_adj_age2 effect_unadj_age2, statisti cs(mean sd) columns(statistics) 
 
 
 
 
*************************************************** *************************************************** ********** 
*** III) Non-randomized Studies where the Observed Baseline Outcome Influences the Exposure 
*************************************************** *************************************************** ********** 
 
 
*************************************************** *************************************************** ********** 
*** 3A) Figure 3A 
clear 
set seed Xa8e910a73f9ebf951ff8adeee201b13800022ee1 
set obs 525000 
gen id = _n 
gen n_simu=int( ( (id-1)/500) + 1 ) 
 
gen age1 = 40 + (20*runiform()) 
 
gen eta0 = 121.78571 
gen eta1 = 0.0214288 
gen eta2 = 0.00285714 
 
gen R0 = rnormal(0,2) 
gen R1 = rnormal(0,0.1) 
gen R2 = rnormal(0,0.001) 
 
gen BP1 = [eta0 + R0] + [eta1 + R1]*age1 + [eta2 + R2]*(age1^2) 
 



gen Ubp1 =rnormal(0,5.7735027) 
gen BP1_mes = BP1 + Ubp1 
 
gen E = rbinomial(1,invlogit((logit(0.10) - (ln(2^0 .1)*100)) + BP1_mes*ln(2^0.1) ) ) 
 
gen theta0 = -5 
gen theta1 = -0.05 
gen theta2 = -1/1800 
 
gen xi0 = rnormal(0,2) 
gen xi1 = rnormal(0,0.1) 
gen xi2 = rnormal(0,0.001) 
 
gen BP2 = [eta0 + (theta0 + xi0)*E + R0] + [eta1 + (theta1 + xi1)*E + R1]*(age1 + 10) /// 
         + [eta2 + (theta2 + xi2)*E + R2]*((age1 + 10)^2) 
 
gen Ubp2 =rnormal(0,5.7735027) 
gen BP2_mes = BP2 + Ubp2 
 
keep n_simu id BP1_mes BP2_mes E age1 
save "D:\...simulation_file_path...\sim_3a.dta", re place  
 
*** Analyses 
forvalues i = 1/1050 { 
use "D:\...simulation_file_path...\sim_3a.dta", cle ar 
drop if n_simu!=`i' 
 
linear_regressions_of_change BP1_mes BP2_mes E age1    
 
gen effect_adj_age2=scalar(adj_lr_age2)  
gen effect_unadj_age2=scalar(unadj_lr_age2) 
 
gen bias_adj_age2 = effect_adj_age2 + 10  
gen bias_unadj_age2 = effect_unadj_age2 + 10  
 
gen id_bis=id - ((`i'-1)*500) 
 
keep if id_bis==1 
keep n_simu effect_adj_age2 effect_unadj_age2 bias_ adj_age2 bias_unadj_age2  
 
save "D:\...simulation_file_path...\results_sim_3a_ `i'.dta", replace 
} 
 
use "D:\...simulation_file_path...\results_sim_3a_1 .dta", clear 
 
forvalues i = 2/1050 { 
append using "D:\...simulation_file_path...\results _sim_3a_`i'.dta" 
} 
save "D:\...simulation_file_path...\results_sim_3a. dta", replace 
 
forvalues i = 1/1050 { 
erase "D:\...simulation_file_path...\results_sim_3a _`i'.dta" 



} 
 
*** Results simulation Figure 3A 
use "D:\...simulation_file_path...\results_sim_3a.d ta", clear 
tabstat bias_adj_age2 bias_unadj_age2, statistics(m ean sd) columns(statistics) 
tabstat effect_adj_age2 effect_unadj_age2, statisti cs(mean sd) columns(statistics) 
 
 
 
*************************************************** *************************************************** ********** 
*** 3B) Figure 3B 
clear 
set seed X1546cb3eae93f0add3fc4d9a993e791900021ad1 
set obs 525000 
gen id = _n 
gen n_simu=int( ( (id-1)/500) + 1 ) 
 
gen age1 = 40 + (20*runiform()) 
 
gen eta0 = 121.78571 
gen eta1 = 0.0214288 
gen eta2 = 0.00285714 
 
gen R0 = rnormal(0,2) 
gen R1 = rnormal(0,0.1) 
gen R2 = rnormal(0,0.001) 
 
gen BP1 = [eta0 + R0] + [eta1 + R1]*age1 + [eta2 + R2]*(age1^2) 
 
gen Ubp1 =rnormal(0,5.7735027) 
gen BP1_mes = BP1 + Ubp1 
 
gen M = rbinomial(1,0.6) if BP1>=140 
replace M = 0 if BP1<140 
gen delta0 = 5 
gen eps0=rnormal(0,2) 
 
gen E = rbinomial(1,invlogit((logit(0.10) - (ln(2^0 .1)*100)) + BP1_mes*ln(2^0.1) ) ) 
 
gen theta0 = -5 
gen theta1 = -0.05 
gen theta2 = -1/1800 
 
gen xi0 = rnormal(0,2) 
gen xi1 = rnormal(0,0.1) 
gen xi2 = rnormal(0,0.001) 
 
gen BP2 = [eta0 + (theta0 + xi0)*E + (delta0 + eps0 )*M + R0] + [eta1 + (theta1 + xi1)*E + R1]*(age1 + 10) /// 
         + [eta2 + (theta2 + xi2)*E + R2]*((age1 + 10)^2) 
 
gen Ubp2 =rnormal(0,5.7735027) 
 



gen BP2_mes = BP2 + Ubp2 
 
keep n_simu id BP1_mes BP2_mes E age1 
save "D:\...simulation_file_path...\sim_3b.dta", re place  
 
*** Analyses 
forvalues i = 1/1050 { 
use "D:\...simulation_file_path...\sim_3b.dta", cle ar 
drop if n_simu!=`i' 
 
linear_regressions_of_change BP1_mes BP2_mes E age1    
 
gen effect_adj_age2=scalar(adj_lr_age2)  
gen effect_unadj_age2=scalar(unadj_lr_age2) 
 
gen bias_adj_age2 = effect_adj_age2 + 10  
gen bias_unadj_age2 = effect_unadj_age2 + 10  
 
gen id_bis=id - ((`i'-1)*500) 
 
keep if id_bis==1 
keep n_simu effect_adj_age2 effect_unadj_age2 bias_ adj_age2 bias_unadj_age2  
 
save "D:\...simulation_file_path...\results_sim_3b_ `i'.dta", replace 
} 
 
use "D:\...simulation_file_path...\results_sim_3b_1 .dta", clear 
 
forvalues i = 2/1050 { 
append using "D:\...simulation_file_path...\results _sim_3b_`i'.dta" 
} 
save "D:\...simulation_file_path...\results_sim_3b. dta", replace 
 
forvalues i = 1/1050 { 
erase "D:\...simulation_file_path...\results_sim_3b _`i'.dta" 
} 
 
*** Results simulation Figure 3B 
use "D:\...simulation_file_path...\results_sim_3b.d ta", clear 
tabstat bias_adj_age2 bias_unadj_age2, statistics(m ean sd) columns(statistics) 
tabstat effect_adj_age2 effect_unadj_age2, statisti cs(mean sd) columns(statistics) 
 
 
 
*************************************************** *************************************************** ********** 
*** 3C) Figure 3C 
clear 
set seed X18f05abd3ce62fe6ae24356b77ee2b6300024d8a 
set obs 525000 
gen id = _n 
gen n_simu=int( ( (id-1)/500) + 1 ) 
 



gen age1 = 40 + (20*runiform()) 
gen age0 = age1 - 10 
 
gen eta0 = 121.78571 
gen eta1 = 0.0214288 
gen eta2 = 0.00285714 
 
gen R0 = rnormal(0,2) 
gen R1 = rnormal(0,0.1) 
gen R2 = rnormal(0,0.001) 
 
gen BP0 = [eta0 + R0] + [eta1 + R1]*age0 + [eta2 + R2]*(age0^2) 
gen BP1 = [eta0 + R0] + [eta1 + R1]*age1 + [eta2 + R2]*(age1^2) 
 
gen Ubp0 =rnormal(0,5.7735027) 
gen BP0_mes = BP0 + Ubp0 
 
gen Ubp1 =rnormal(0,5.7735027) 
gen BP1_mes = BP1 + Ubp1 
 
gen E = rbinomial(1,invlogit((logit(0.10) - (ln(2^0 .1)*100)) + BP0_mes*ln(2^0.1) ) ) 
 
gen theta0 = -5 
gen theta1 = -0.05 
gen theta2 = -1/1800 
 
gen xi0 = rnormal(0,2) 
gen xi1 = rnormal(0,0.1) 
gen xi2 = rnormal(0,0.001) 
 
gen BP2 = [eta0 + (theta0 + xi0)*E + R0] + [eta1 + (theta1 + xi1)*E + R1]*(age1 + 10) /// 
         + [eta2 + (theta2 + xi2)*E + R2]*((age1 + 10)^2) 
 
gen Ubp2 =rnormal(0,5.7735027) 
gen BP2_mes = BP2 + Ubp2 
 
keep n_simu id BP0_mes BP1_mes BP2_mes E age1 
save "D:\...simulation_file_path...\sim_3c.dta", re place  
 
*** Analyses 
forvalues i = 1/1050 { 
use "D:\...simulation_file_path...\sim_3c.dta", cle ar 
drop if n_simu!=`i' 
 
linear_regressions_of_change BP1_mes BP2_mes E age1    
 
gen effect_adj_age2=scalar(adj_lr_age2)  
gen effect_unadj_age2=scalar(unadj_lr_age2) 
 
gen bias_adj_age2 = effect_adj_age2 + 10  
gen bias_unadj_age2 = effect_unadj_age2 + 10  
 



gen id_bis=id - ((`i'-1)*500) 
 
keep if id_bis==1 
keep n_simu effect_adj_age2 effect_unadj_age2 bias_ adj_age2 bias_unadj_age2  
 
save "D:\...simulation_file_path...\results_sim_3c_ `i'.dta", replace 
} 
 
use "D:\...simulation_file_path...\results_sim_3c_1 .dta", clear 
 
forvalues i = 2/1050 { 
append using "D:\...simulation_file_path...\results _sim_3c_`i'.dta" 
} 
save "D:\...simulation_file_path...\results_sim_3c. dta", replace 
 
forvalues i = 1/1050 { 
erase "D:\...simulation_file_path...\results_sim_3c _`i'.dta" 
} 
 
*** Results simulation Figure 3C 
use "D:\...simulation_file_path...\results_sim_3c.d ta", clear 
tabstat bias_adj_age2 bias_unadj_age2, statistics(m ean sd) columns(statistics) 
tabstat effect_adj_age2 effect_unadj_age2, statisti cs(mean sd) columns(statistics) 
 
 
 
 
 
 
*************************************************** *************************************************** ********** 
*** IV) Non-randomized Studies where the Exposure S tarts Before the Beginning of the Study 
*************************************************** *************************************************** ********** 
 
 
*************************************************** *************************************************** ********** 
*** 4A) Figure 4A 
clear 
set seed X0346fb596e19cde3d79bd25d550949ee00024b20 
set obs 525000 
gen id = _n 
gen n_simu=int( ( (id-1)/500) + 1 ) 
 
gen age1 = 40 + (20*runiform()) 
gen length1 = age1 - 20 
 
gen eta0 = 125 
gen eta1 = 1/20 
gen eta2 = 3/200 
 
gen R0 = rnormal(0,2) 
gen R1 = rnormal(0,0.1) 
gen R2 = rnormal(0,0.001) 



 
gen theta0 = -5 
gen theta1 = -3/100 
gen theta2 = -97/7000 
 
gen xi0 = rnormal(0,2) 
gen xi1 = rnormal(0,0.1) 
gen xi2 = rnormal(0,0.001) 
 
gen E = rbinomial(1,0.5) 
 
gen BP1 = [eta0 + (theta0 + xi0)*E + R0] + [eta1 + (theta1 + xi1)*E + R1]*length1 + [eta2 + (theta2 + xi2)*E + R2]*(length1^2) 
 
gen BP2 = [eta0 + (theta0 + xi0)*E + R0] + [eta1 + (theta1 + xi1)*E + R1]*(length1 + 10) /// 
   + [eta2 + (theta2 + xi2)*E + R2]*((length1 + 10) ^2) 
 
gen Ubp1 =rnormal(0,5.7735027) 
gen Ubp2 =rnormal(0,5.7735027) 
 
gen BP1_mes = BP1 + Ubp1 
gen BP2_mes = BP2 + Ubp2 
 
keep n_simu id BP1_mes BP2_mes E age1 
save "D:\...simulation_file_path...\sim_4a.dta", re place  
 
*** Analyses 
forvalues i = 1/1050 { 
use "D:\...simulation_file_path...\sim_4a.dta", cle ar 
drop if n_simu!=`i' 
 
linear_regressions_of_change BP1_mes BP2_mes E age1    
 
gen effect_adj_age=scalar(adj_lr_age)  
gen effect_unadj_age=scalar(unadj_lr_age) 
 
gen bias_adj_age = effect_adj_age - (-10)  
gen bias_unadj_age = effect_unadj_age - (-10)  
 
gen id_bis=id - ((`i'-1)*500) 
 
keep if id_bis==1 
keep n_simu effect_adj_age effect_unadj_age bias_ad j_age bias_unadj_age  
 
save "D:\...simulation_file_path...\results_sim_4a_ `i'.dta", replace 
} 
 
use "D:\...simulation_file_path...\results_sim_4a_1 .dta", clear 
 
forvalues i = 2/1050 { 
append using "D:\...simulation_file_path...\results _sim_4a_`i'.dta" 
} 
save "D:\...simulation_file_path...\results_sim_4a. dta", replace 



 
forvalues i = 1/1050 { 
erase "D:\...simulation_file_path...\results_sim_4a _`i'.dta" 
} 
 
*** Results simulation Figure 4A 
use "D:\...simulation_file_path...\results_sim_4a.d ta", clear 
tabstat bias_adj_age bias_unadj_age, statistics(mea n sd) columns(statistics) 
tabstat effect_adj_age effect_unadj_age, statistics (mean sd) columns(statistics) 
 
 
 
*************************************************** *************************************************** ********** 
*** 4B) Figure 4B 
clear 
set seed Xabdf30f08f5f321c6c1ce432bbceeebc00024cc9 
set obs 525000 
gen id = _n 
gen n_simu=int( ( (id-1)/500) + 1 ) 
 
gen age1 = 40 + (20*runiform()) 
gen length1 = age1 - 20 
 
gen eta0 = 125 
gen eta1 = 1/20 
gen eta2 = 3/200 
 
gen R0 = rnormal(0,2) 
gen R1 = rnormal(0,0.1) 
gen R2 = rnormal(0,0.001) 
 
gen theta0 = -5 
gen theta1 = -3/100 
gen theta2 = -97/7000 
 
gen xi0 = rnormal(0,2) 
gen xi1 = rnormal(0,0.1) 
gen xi2 = rnormal(0,0.001) 
 
gen E = rbinomial(1,0.5) 
 
gen BP1 = (eta0 + (theta0 + xi0)*E + R0) + (eta1 + (theta1 + xi1)*E + R1)*length1 + (eta2 + (theta2 + xi2)*E + R2)*(length1^2) 
 
gen M = rbinomial(1,0.6) if BP1>=140 
replace M = 0 if BP1<140 
gen delta0 = 15 
gen eps0=rnormal(0,2) 
 
gen BP2 = [eta0 + (theta0 + xi0)*E +(delta0 + eps0) *M + R0] + [eta1 + (theta1 + xi1)*E + R1]*(length1 + 10) /// 

+ [eta2 + (theta2 + xi2)*E + R2]*((length1 + 10)^2)  
 
gen Ubp1 =rnormal(0,5.7735027) 



gen Ubp2 =rnormal(0,5.7735027) 
 
gen BP1_mes = BP1 + Ubp1 
gen BP2_mes = BP2 + Ubp2 
 
keep n_simu id BP1_mes BP2_mes E age1 
save "D:\...simulation_file_path...\sim_4b.dta", re place  
 
*** Analyses 
forvalues i = 1/1050 { 
use "D:\...simulation_file_path...\sim_4b.dta", cle ar 
drop if n_simu!=`i' 
 
linear_regressions_of_change BP1_mes BP2_mes E age1    
 
gen effect_adj_age=scalar(adj_lr_age)  
gen effect_unadj_age=scalar(unadj_lr_age) 
 
gen true_effect = -10 + 15*0.6*[(1 - normal( (140-( 125-5+(0.05-3/100)*30+(0.015-97/7000)*(30^2)) )/ sq rt((2^2+2^2) + 
(30^2)*(0.1^2+0.1^2)+(30^4)*(0.001^2+0.001^2) ))) / // 
                   - (1 - normal( (140-(125+0.05*30 +0.015*(30^2)))/sqrt((2^2) + (30^2)*(0.1^2)+(30^4)* (0.001^2) ) )) ] 
 
gen bias_adj_age = effect_adj_age - true_effect  
gen bias_unadj_age = effect_unadj_age - true_effect  
 
gen id_bis=id - ((`i'-1)*500) 
 
keep if id_bis==1 
keep n_simu effect_adj_age effect_unadj_age bias_ad j_age bias_unadj_age 
 
save "D:\...simulation_file_path...\results_sim_4b_ `i'.dta", replace 
} 
 
use "D:\...simulation_file_path...\results_sim_4b_1 .dta", clear 
 
forvalues i = 2/1050 { 
append using "D:\...simulation_file_path...\results _sim_4b_`i'.dta" 
} 
save "D:\...simulation_file_path...\results_sim_4b. dta", replace 
 
forvalues i = 1/1050 { 
erase "D:\...simulation_file_path...\results_sim_4b _`i'.dta" 
} 
 
*** Results simulation Figure 4B 
use "D:\...simulation_file_path...\results_sim_4b.d ta", clear 
tabstat bias_adj_age bias_unadj_age, statistics(mea n sd) columns(statistics) 
tabstat effect_adj_age effect_unadj_age, statistics (mean sd) columns(statistics) 


