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1 Regression to the mean examples

Regression to the mean results from intra-individual \mlitg and measurement error on the baseline
outcome value, which creates a negative correlation betweemeasured baseline value and measured
change from baseline. We give two examples of bias that cartfeom this phenomenon.

1.1 Example 1: The exposure depends on baseline level

Regression to the mean is known to create a spurious coorelagtween the exposure and change from
baseline when the exposure depends on baseline level.

Let us assume a very homogeneous population (with no intevidual variability) in which systolic
blood pressure is measured twice (at time= 0 andt, = 10). In this population, the measured blood
pressure at baseling) has a mean of 120 mmHg and a standard deviation of 10 mmHgt{resonly
from intra-individual variability and measurement error)

Furthermore, let us assume that the exposure of inteeest () is only given to individuals with
BP*(t;) > 120 mmHg (black circles in Figure S1) and that individual§vBP*(t;) < 120 mmHg are
unexposedl = 0) (white circles in Figure S1).

In the situation of a true null hypothesis (the expodtfeas no causalfgect), where blood pressure
does not change in time except for intra-individual valigband measurement error, the observed blood
pressure at time will also have a mean of 120 mmHg and a standard deviation ofirb®ig.

Individuals with the highest blood pressure values at ttmare more likely to have lower blood
pressure values at timig and individuals with the lowest blood pressure valuesagti are more likely
to have higher blood pressure values at tim@s shown in Figure S1). In such a situation, we observe a
decrease in blood pressure for subjects expos&tHd and an increase for unexposed subjects, leading
to the erroneous conclusion of a non-null protectiffee of the exposure.
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Figure S1: Regression to the mean example, in which the expdblack circlesss white circles) de-
pends on baseline level



1.2 Example 2: Conditioning on baseline level in pre-existig populations differ-
ing by the exposure and baseline level of the outcome

Let us assume two pre-existing homogeneous populationis (wiinter-individual variability): the first
population is exposed to the exposure of interEst (1) and have a measured blood pressure at baseline
(t1) of mean 130 mmHg and standard deviation 10 mmHg (resultagfoom intra-individual variability

and measurement error), the second population is unexpo¥edE = 0) and have a measured blood
pressure at baseline of mean 110 mmHg and standard devidtioomHg. Two situations can lead to
such circomstances:

¢ studies in which the exposukestarts before the beginning of the study and influences tbelina
blood pressur®P(t,),

¢ studies with a common causal factorandBP(t,).

In the situation of a true null hypothesis (the exposkrbas no causalffect on change), where
blood pressure does not change in time except for intradithgial variability and measurement error, the
observed blood pressure at titae= 10 will also have a mean of 130 mmHg in the first population and a
mean of 110 mmHg in the second population.

When conditioning on the value d@P*(t;), for example including only subjects with a measured
blood pressure at baseli®®*(t;) in the interval [115 mmHg; 125 mmHg]:

¢ the included subjects in the exposed sample are more likdigvee higher values &,
¢ the included subjects in the unexposed sample are morg tilkkélave lower values &,

leading to the erroneous conclusion of a non-nfik& of the exposure on change from baseline (Figure
S2).
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Figure S2: Regression to the mean example, conditioningaselime level in two pre-existing popula-
tions differing by the exposure and baseline level of the outcome

2 Data sets simulation

2.1 General Points

We illustrated the dferent situations represented in Figure 1 to Figure 4 by sitadldata sets com-
patible with the causal structures of the DAGs. We estim#teddtect of the exposur& on blood

pressure chang&BP using linear regression adjusted or unadjusted for the mnedsaseline level of
blood pressur&P*(t;). The simulation code for Stata SE 11.2 is provided and catobaloaded online.

In order to simulate a common causal factoB##(t;) and ABP corresponding to the variabRin
Figures 1 to 4, we assumed that blood pressure (BP) variegiowe as a polynomial function adge
andage?, whereE is a "correlate of change”, so that aging have a varyifigat on BP according to the
exposure status.[1] With such a polynomial function of ageP depends omage(t;) and the &ect of E
on ABP is modified byage(t;), as shown by Clarke and detailed below.[2] We considereddtowing
parameters to simulate the data sets:

e The length of the study is 10 years. As a consequence, wedgaxe) = age (t,) + 10.

e The exposuré is a binary intervention with a mearfect of -10mmHg on blood pressure for
exposed versus unexposed individuals 50 years old (excepiew situations indicated below.)

e The age at the beginning of the studgg (t;), was simulated from 40 to 60 years from a uniform
distribution (mean age was 50 years). We denote.age(t;) the age centered on the mean age of
the sample (at the beginning of the study):

c.age(ty) = age(ty) —age(ty)) Vvi=1,...,
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e To characterize intra-individual variation and measuneneeror, we simulated thBgp; andUgp,
variables independently from a standard Gaussian disisibof variancery | = o3 =10 In
Figure 1A, the corresponding intraclass correlation fernreasured blood pressuB”(t,) at the

0_2
beginning of the study is ICE& - = 0.75.
BP* (ty)

We calculated the causaffect of E on ABP for individuals aged 50, using the estimated param-
eterstz and7¢ from the following linear regressions (corresponding todeils 3 and 4 in the main
manuscript). As suggested by Clarke, we included intesadtrms(c.age(t;) = E) and(c.age(tl)2 * E)
because blood pressure values were simulated accordinguadxatic growth curve depending age
andage?.[2]

The linear regression adjusted BP*(t,) is (model 3):

E (ABP" | E, BP*(ty), c.age(ty)) = 4" + 7pp BP*(t1) + 7 E + 754.C.a06(t1)
+ Togee (C.A08(1) * E) + 0 e (c.age(tl)2 * E)

The linear regression unadjusted &#*(t,) is (model 4):
E (ABP" | E, c.age(ty)) = u” + TEE + T5geC-806(11)) + Toge.e (c.age(ty) = E) + T;’gez*E (c.age(t1)2 * E)

As shown below, the last interaction temgﬁg 2.E (c.age(t1)2 ¢ E) is not necessary in the fourth situa-
tion wherekE starts before the beginning of the study and influences BB{h,) andBP(t,) (Figure 4 in
the main text).

The directed acyclic graphs in Figures 1 to 4 represedifferent scenarios. In each scenario, we
simulatedK = 1050 samples of size = 500. A sample size of 500 was enough to control some
instability in the estimations of thefect of E on ABP which resulted from applying linear regressions
adjusted foilE xage(t;) andE «[age(t;)]? interaction terms. Moreover, a sample size of 500 was ldhger
necessary to detect a 10 mmHdfdrence of blood pressure between exposed and unexposedtsubj
every scenario, with a power greater than 90% and a type it eff5%. The number of 1050 samples
was chosen to be able to explore biases larger than 10% ofahéasd error of the estimateéect of
the exposur& on changeABP.

Denotingrtj the “true” causal ect of the exposurg& on change\BP in the scenarig, and7 the
effect estimated in the samtefrom the linear regression adjustedt) or unadjusted for baseline level
(7¢), we calculated:[3]

1. the average bias of the estimatéi@et ofE on ABP in the scenarig:
biag =7; -7t where 7| = 1 Z%-
T I~ 105044

2. the standard error (SE) of the estimaté&ee& of E on ABP in the scenarig:

1 A =
SEJ = \/mzk: (Tjk — Tj)z'




2.2 Randomized Trials

In order to simulate blood pressure values at timandt, for the individuali, we used the following
equations:

BPY"" (age;(t1)) = [170 + Rai] + [71 + Ru] (agei(ts)) + [12 + Ra] (age(ts))? (S1)
and

Bpigrowm (age(tz), Ei, Mi) = [no+ (6o + &ai) Ei + (60 + £0) M + Ryi]
+ [7]1 + (91 + érli) Ei + Rli] (age (tl) + 10)
+ [T]z + (92 + §2i) E + R2i] (age, (t]_) + 10)2 (SZ)

where a random half of the population is expose# {&; = 1) at the beginning of the study.
Parametergy, &1, & andegg are exogenous and independent random variables (from ssi@auss-
tribution) used to add inter-individual variability forerefect of the variableg andM.

We denotd.age (t;) = age (t;) — 50 the age centered d@h(age(t;)) = 50 in the general population, so
thatE (t.age(t;)) = 0.

According to the equations (S1) and (S2), change from bes&r a given exposurg andage (t;) =
(t.age(ty) + 50) can be written as :

ABP (age (t,), Ei, M) =BPY"" (age (1), Ei, M;) — BPY*"" (age:(ty)) (S3)
ABP (age (ta), Ei, Mi) =10(771 + Ryi) + 1100(n2 + Rai) + (90 + £0i) M

+ [(6o + &ai) + 60(61 + £1i) + 360062 + £2)] B

+20(n2 + Ry) t.age(ty)

+ [(61 + &) + 120(6, + £2)] E; t.age(ty)

+ (62 + &) Ei [tage(t)]?

The expected causaffect on change from baseline of @& 1) vs do(E = 0) for a givenage(t;) =
(t.age(ty) + 50) is equal to:

E (ABP (do(E = 1), age(ty)) — ABP (do(E = 0), age(ty))) = (6 + 606, + 360065) (S4)
+ (91 + 12092) t.age(tl) + 92 [t.age(tl)]z

We can see in equation (S4) tree(t,) is an dfect modifier of the causalfect of E on ABP (the
causal diference is not constant age(t;)).[4] In order to test the null hypothesis, one needs to{tdgt
6o = 0 andé; = 0 andd, = 0}, which is equivalent to testingdH, : 7z = 0 andrgge*E =0 andr;gez*E = 0}
or{Ho : 7¢ = 0 andry.; = 0 andr, , . = O}.

A simple way to deal with thislgmct modification in our examples is to focus on thikeet of E on
ABP for the mearage(t;) value, so that interaction ternfsage(t;) = E) and(t.age(t1)2 * E) cancel out,

and the null hypothesid : {6, + 606, + 36000, = 0} is equivalent to testindl, : {rg = 0} with model
(4) orHo : {r¢ = 0} with model (5).

In Figures 1A and 1B in the main text, we used the followingapagters:
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e 10 ~ 1218, n; = 0.0214 andy, ~ 0.00286 to characterize the general quadratic shape of the BP
curve. For individuals unexposed Eband M, these values corresponded to a mean BP of 130
mmHg at 50 years old with a slow quadratic BP increase®# mmHg between 50 and 60 years
old.

¢ the random variableR,, R, andR, were simulated from Gaussian distributions of respectian-s
dard deviatiorog, = 2, og, = 0.1, andog, = 0.001, to create some inter-individual variability in
the general shape of the BP curve

e 6p = -5,6, = -0.05 andd, = —1/1800, so that the averagéect of the exposur& on ABP is
equal to-10 mmHg for individuals aged 50

¢ the random variable, £, andé, were simulated from Gaussian distributions of respectiaa-s
dard deviatioroy, = 2, o, = 0.1 ando,, = 0.001, to create inter-individual variability of the
exposure gect

In Figure 1B in the main text, we used a binary variableto simulate somefect of BP(t;) on
Bp(tz)

¢ for individuals whoseBP(t;) value was higher than 140 mmHg, we simulated kevariable
according to a random binomial distribution of probabib%

¢ for individuals whoséBP(t,) value was lower than 140 mmHg, the variaMewas fixed atM; = O
e §p = +5 mmHg, characterizing thdtect of the variabléM on BP(t,)

¢ the random variable, was simulated from a Gaussian distribution of standard ergp= 2 to add
some inter-individual variability for thefiect of M on BP(t,)

Relationships between these variables can be represeitiecadditional measurement errors on
BP(t;) andBP(t,) as in Figure S3.
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Figure S3: Randomized trials



2.3 Non-randomized Studies with Confounding Factors betwen the Exposure
and the Outcome

To simulate blood pressure values at tim@ndt, for the individuali in the scenarios of Figure 2, we
used the following equations:

BP""(age(t1),Ci) = [0+ (do+ Zu) Ci + Rai] + [ + (A1 + &) Ci + Rui] (age (ta))
+[n2 + (A2 + £2) Ci + Ra] (age (ty))? (S5)
and

BPY""(agei(t), Ei. Mi,C) = [10+ (60 + &a) Ei + (60 + £0)) Mi + (Ao + Za1) Ci + Ro
+[ny + (01 + €1) Ei + (A1 + ) G + Ryi] (agei(t) + 10)  (S6)
+ (12 + (02 + &) Ei + (A2 + £2) Ci + Ra] (age (tr) + 10)°

According to equations (S5) and (S6), change from basetina §iven exposurg;, C; andage(t;)
can be written as :

ABP (age (t:), Ei, Mi, C)) =BPT*"" (agei(t,), Ei, Mi, C)) — BPY""" (age (1), C) (S7)
ABP (age (ta), Ei, Mi, C) =10(1 + Ryi) + 100(n2 + Ryi) + (60 + &ai) M

+ [(6o + £ai) + 10(61 + £1i) + 100(62 + £2i)] Ei

+[10(A1 + £y) + 100(22 + £2)] C;

+20(n2 + Rx) age (ty)

+ [(01 + £1) + 20(02 + £2)] Ei age(ty)

+20(A2 + £2) C; age(ty)

+ (62 + &) Ei [age ()]

The expected causaffect on change from baseline of @& 1) vs do(E = 0) for a givenage(t;) is
the same as in equation (S4).

We can see in equation (S7) thatlif = 1, = & = ¢ = 0 (i.e. when the &ect ofC on BP(t;) and
BP(t,) is not modified byage(t;)), thenABP does not depend o@ so that Figures 2A and 2B can be
simplified into Figures 2C and 2D.

We did not simulate data from Figure 2B as it does not provatiteonal information to the results
observed from Figures 2A, 2C and 2D. We defined the followiagmeters for the simulated data sets:
e Cis a binary variable, simulated from a binomial distribuatiaf probabilityP (C = 1) = 0.40

¢ C influences the probability of being exposedEoE was simulated from a conditional binomial
distribution of probability

b

P(E | C) = expit

0.25
In (1_—025) + In(3) x C

where expitk) = exp()/[1 + exp(x)], so thatP (E = 1| C = 0) = 25% and the #ect ofC onE is
characterized by an odds ratio (OR) of 3.



e C influences blood pressure at the beginning and at the enceddttidy: individuals exposed to
C =1 had a BP1y = 15 mmHg higher than individuals unexposedXto

¢ the random variablé&,; was simulated from a Gaussian distribution of standardadievi 5 mmHg,
adding some inter-individual variability to théfect of C on BP(t;) andBP(ty).

In Figures 2A, 2C and 2D in the main text, we used the same peamas in Figures 1A and 1B
regarding:no ~ 1218, n; ~ 0.0214 andyp, ~ 0.00286,6, = -5, 6, = —0.05 andd, = —1/1800. The
random variable®y, Ry, Ry, &, &1 andé, have been simulated in the same way as in Figures 1A and 1B.

In Figure 2A, the &ect of C on BP(t;) andBP(t,) is modified byage(t;), using the following param-
eters:1; = 0.02,1, = 0.003. The random variablgs andZ, were simulated from Gaussian distributions
of respective standard deviationy, = 0.005,0,, = 0.0005, to create inter-individual variability of the
effect modification byage(t,).

In Figures 2C and 2D, theffect of C on BP(t;) and BP(ty) is not modified byage(t;), so that
A1 = A, = 0 and the random variablég and/, do not have to be simulated.

In Figure 2D in the main text, the binary variatVeandey have been simulated in the same way as
in Figures 1B. The parametés = +5 mmHg.

Relationships between these variables can be represeittedaditional measurement errors on
BP(t;) andBP(t,) as in Figure S4.
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Figure S4: Non-randomized studies with confoundetsetween the exposure and blood pressure

2.4 Non-randomized Studies where the Observed Baseline Quaime Influences
the Exposure

Data set simulation for the DAGs of Figures 3A and 3B

To simulate blood pressure values at tim@ndt, for the individuali in the scenarios of Figure 3, we
used the same equations (S1) and (S2) than for the randocor¢mblled trial data set.



In Figures 3A and 3B in the main text, the observed baselinedpressur®P*(t;) influences the
probability of being exposed t& at the beginning of the studyE was simulated from a conditional
binomial distribution of probability

P(E | BP'(ty)) ~ expit[-9.13+ In(2"%%) x BP'(t,)|,

so thatP (E = 1| BP*(t;) = 100 = 10% and the odds d?(E = 1) is multiplied by 2 for a 10 mmHg
increase oBP*(ty).

In Figures 3A and 3B in the main text, we used the same parasmeten Figures 1A and 1B regard-
ing: no ~ 1218, n; ~ 0.0214 andy, ~ 0.00286,9, = -5, 6; = —0.05 andd, = —1/1800. The random
variablesRy, Ry, Ry, &, &1 andé; have been simulated in the same way as in Figures 1A and 1B.

In Figure 3B in the main text, the binary varialiie and the variable, have been simulated in the
same way as in Figure 1B. The parameige +5 mmHg.

Relationships between the variables corresponding tor€sgBA and 3B can be represented with
additional measurement errors BR(t;) andBP(t,) as in Figure S5.

E
R
BP(t;) — M — BP(t,)
age(ty) l
BP*(t1) BP*(t2)
T T
Ugp, Ugp,

Figure S5: Non-randomized studies whé&i (t,) influences the exposure
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Data set simulation for the DAG of Figure 3C

In Figure 3C in the main text, the probability of being expbse E at the beginning of the study is
influenced by a pre-existing value of blood pressBiRé(tp), which have been measured 10 years earlier

(agetto) = age(t) - 10).
In order to simulate blood pressure value at tighéor the individuali, we used an equation similar
to (S1) withage(ty) instead ofage(t,):

BPY*"" (age (to)) = [170 + Roi] + [ + Rui] (gei(to)) + [12 + Rai] (2gei(to))? (S8)
The exposur& was simulated from a conditional binomial distribution ebpability
P (E | BP(to)) ~ expit|-9.13+ In(2"*%) x BP*(to) |,

so thatP (E = 1| BP*(tp) = 100 = 10% and the odds dP(E = 1) is multiplied by 2 for a 10 mmHg
increase oBP*(to).

Blood pressure values at tintegandt, for the individuali, have been simulated using the same equa-
tions (S1) and (S2) as in Figures 3A and 3B, with the same pateasy, ~ 1218, n; ~ 0.0214 and
n, ~ 0.00286,00 = -5, 8; = —0.05 andd, = —1/1800. The random variablé®, R;, R, &, & andé;
have also been simulated in the same way as in Figures 3A and 3B

Relationships between the variables corresponding tar&€gBC can be represented with additional
measurement errors @P(ty), BP(t;) andBP(t,) as in Figure S6.

E

BP(t1) BP(t2)

age(to) l
BP*(to) BP*(t1) BP*(t2)
7 7 7
U BP U BP; U BP,

Figure S6: Non-randomized studies whé&i& (o) influences the exposure
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2.5 Non-randomized Studies where the Exposure Starts beferthe Beginning of
the Study

In DAGs of Figures 4 in the main text, the exposure startg @diefore the beginning of the study). As
previously, BP evolves according to a growth curve, so AR depends on the length of the exposure
at timet,, length(t;) = age(t;) — age(ty) (i.e. the individual change score depends on laggt,) and
age(ty)). In order to know the value adge(ty) for individuals unexposed tB = 1, we must assume that
the exposur& has to potentially occur at the sarage(ty) for every subject (or at a time origin that can
be clearly defined from some common event known for everyestipjIf we do not know the age at the
time of potential exposure for subjects who happened to ke&posed tdE, the consistency assumption
(the fact that an individual’s potential outcome under adtiiptical intervention is the observed outcome
if the intervention happened to materialize) does not haldivee cannot estimate the causfitet of E

on ABP.[5]

To simulate blood pressure values at timandst, for the individuali in the scenarios of Figure 4, we
used the following equations:

BRI (lengthi(t.). E) = [0 + (6 + o) Ei + Rol
+ [7]1 + (091 + fli) Ei + Rli] (Iength, (tl)) (Sg)
+ [7]2 + (92 + §2i) Ei + RZi] (Iength. (tl))z

and
BPY"" (lengthi(t2), i, Mi) = [10 + (4o + &a) Ei + (60 + 0) Mi + Ro
+[n1 + (61 + &€1) Ei + Rui] (Iengthi(t;) + 10) (S10)
+[12 + (82 + £€2) Ei + Ra] (lengthy(ty) + 10)
where:

e A random half of the population is exposedBdE; = 1) at the age of 20 years. If, contrary to the
fact, unexposed individuals had been exposed, the expaswulel have also started at the age of
20 years

e Thelengthi(t,) variable is the potential length of the exposure at theriegg ¢,) of the study for
the individuali, defined bylength;(t,) = age(t;) — 20

e The potential length of the exposure at the efdf the study idength;(t,) = length;(t;) + 10

According to equations (S9) and (S10), change from basting given exposur&; andlength;(t;)
can be written as :

ABP (lengthi(ty), Ei, M;) =BPY*" (lengthi(t,), Ei, M;) — BPY"" (lengthi(t), E;) (S11)
ABP (lengthi(ty), Ei, M;) =10(571 + Ry) + 1000772 + Ryi) + (60 + &ai) M;

+ [10(01 + &1) + 100(02 + &) | Ei

+ 20(2 + Ry) lengthy(ty)

+20(02 + &2) Ej length(ty)
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It should be noted that in this causal structuvijs a function ofE;.

The expected causafect on change from baseline of @€ 1) vsdo(E = 0) for a givenength(t;) =
(t.age(ty) + 30) is equal to:

E (ABP(do(E = 1), length(ty), Mi goe-1)) — ABP (do(E = 0), length(ty), M ao(e-0)) =
100, + 7006, + 200, t.age(tl)
+60[P(M = 1] doE = 1), lengthi(ty)) = P (M = 1| do(E = 0), length (tn))] (S12)

As previouslyage(t,) is an dfect modifier of the causal risk fierence ofe on ABP (the causal dif-
ference is not constant age(t,)), and we will focus on theféect of E on ABP for the mearage(t,) value.

In Figures 4A and 4B, we used the following parameters:

e 10 = 125,79, = 1/20 andny, = 3/200 to characterize the general quadratic shape of the BRe.cur
For individuals unexposed 6 and M, these values corresponded to a mean BP of 140 mmHg at
age 50 with a slow quadratic BP increaserdD mmHg between age 50 and 60.

¢ the random variableRy, R, andR, were simulated from Gaussian distributions of respectian-s
dard deviatiorog, = 2, og, = 0.1, andog, = 0.001, to create some inter-individual variability in
the general shape of the BP curve

In Figure 4A:

e 0y =-5,0; = —3/100 and¥, = —97/7000, so that the averagé&ect of the exposurg on change
ABP is equal to-10 mmHg for subjects aged 50 at the beginning of the study.

e The random variable%, £; andé, were simulated from Gaussian distributions of respectian-s
dard deviatioro, = 2, 0, = 0.1 ando,, = 0.001, to create inter-individual variability of the
exposure fect.

In Figure 4B, we used the same parametgrs -5, 6; = —3/100 andd, = —97/7000 as in Figure
4A and the variable&, £, andé; have been simulated in the same way.

The binary variabléM and the variable, have been simulated in the same way as in Figure 1B. The
effect of M on BP(t,) was higher than previously witfy = +15 mmHg.

We can calculate from the equationB®®(t,):

P (BP(t;) > 140| do(E = 0), age(t;) = 50) » 50%
and
P (BP(t;) > 140| do(E = 1), age(t;) = 50)  0.024%

As the binary variabl® appears in 60% of the subjects wh@&¥(t,) value is higher than 140 mmHg,
the “true” dfect of E on change\BP for individuals aged 50 is:

7' = —10+ 6y x 0.6 x (0.024- 0.50) ~ —~14.50mmHg

Relationships between these variables can be represeitiecadditional measurement errors on
BP(t;) andBP(t,) as in Figure S7.
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Figure S7: Non-randomized studies whéretarts before the beginning of the study
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Frkkxkikkixekkxkkk Simulation code for Stata/SE 11

Frkxkrkkkkkkkkkxx Estimating the causal effect of
*kkkkkkkkkkkkkkkkkk 2014 J u ne

set mem 1g

program linear_regressions_of_change
version 11
args BP1_mes BP2_mes E agel
sum “agel'
scalar mean_age = r(mean)
gen age_c = "agel' - mean_age
gen age_c2 = age_c"2

gen dif = "BP2_mes' - ‘BP1_mes'

* model 4) linear regression adjusted on BP1 +/- E
xi: regress dif 'E' 'BP1_mes' age_ci.’'E*age_ci.
scalar adj_Ir_age2 = _b['E]

xi: regress dif 'E' 'BP1_mes' age_ci.'E*age_c
scalar adj_Ir_age = _b['E"]

xi: regress dif 'E' 'BP1_mes'
scalar adj_Ir = _b['E']

* model 5) linear regression unadjusted on BP1 +/-
xi: regress dif 'E' age_c i."E*age_c i."E"*age_c2
scalar unadj_Ir_age2 = _b['E']

xi: regress dif 'E' age_c i."E'*age_c
scalar unadj_Ir_age = _b['E]

xi: regress dif "E'
scalar unadj_Ir = _b['E"]

drop age_c age_c2 dif
end

*** [) Randomized control trial datasets simulation

* * * * *

* * * *

*** 1A) Figure 1A

clear

set seed X64ad479b45c155c3ddda364fd8449359000243b6
set obs 525000

genid=_n

gen n_simu=int( ( (id-1)/500) + 1)

gen agel = 40 + (20*runiform())

2

an exposure on change from baseline using DAGs and

*age and E*age”2 interaction terms
"E*age_c2

E*age and E*age”2 interaction terms

path analysis

*kkkkkkkkk
Kkkkkkkkkkk

Kkkkkkkkkkk



gen eta0 =121.78571
gen etal = 0.0214288
gen eta2 = 0.00285714

gen RO = rnormal(0,2)
gen R1 =rnormal(0,0.1)
gen R2 = rnormal(0,0.001)
gen BP1 =[eta0 + RO] + [etal + R1]*agel + [eta2 + R2]*(agel”2)
gen theta0 = -5

gen thetal = -0.05

gen theta2 = -1/1800

gen xi0 = rnormal(0,2)
gen xil = rnormal(0,0.1)
gen xi2 = rnormal(0,0.001)
gen E = rbinomial(1,0.5)

gen BP2 = [eta0 + (thetaO + xi0)*E + RO] + [etal + (thetal + xil)*E + R1]*(agel + 10) ///
+ [eta2 + (theta2 + xi2)*E + R2]*((agel + 10)"2)

gen Ubpl =rnormal(0,5.7735027)
gen Ubp2 =rnormal(0,5.7735027)

gen BP1_mes = BP1 + Ubpl
gen BP2_mes = BP2 + Ubp2

keep n_simu id BP1_mes BP2_mes E agel
save "D:\...simulation_file_path...\sim_1a.dta", re place

*** Analyses

forvalues i = 1/1050 {

use "D:\...simulation_file_path...\sim_1la.dta", cle ar
drop if n_simu!="i"

linear_regressions_of _change BP1_mes BP2_mes E agel

gen effect_adj_age2=scalar(adj_Ir_age?2)
gen effect_unadj_age2=scalar(unadj_Ir_age2)

gen bias_adj_age2 = effect_adj_age2 + 10
gen bias_unadj_age2 = effect_unadj_age2 + 10

gen id_bis=id - (('i-1)*500)

keep if id_bis==1
keep n_simu effect_adj_age2 effect_unadj_age2 bias_ adj_age?2 bias_unadj_age2

save "D:\...simulation_file_path...\results_sim_1a_ ‘i'.dta", replace



}

use "D:\...simulation_file_path...\results_sim_1a 1 .dta", clear

forvalues i = 2/1050 {
append using "D:\...simulation_file_path...\results _sim_la_'i'.dta"

save "D:\...simulation_file_path.. \results_sim_1la. dta", replace

forvalues i = 1/1050 {

erase "D:\...simulation_file_path...\results_sim_1la _itdta"
}
*** Results simulation Figure 1A
use "D:\...simulation_file_path...\results_sim_1a.d ta", clear
tabstat bias_adj_age?2 bias_unadj_age2, statistics(m ean sd) columns(statistics)
tabstat effect_adj_age?2 effect_unadj_age?2, statisti cs(mean sd) columns(statistics)
* * * * * * * * * * *kkkkkkkkk
*** 1B) Figure 1B
clear

set seed Xf73e2f9f2b0a423625¢c79d6ba81d8ec800024che
set obs 525000

genid=_n

gen n_simu=int( ( (id-1)/500) + 1)

gen agel = 40 + (20*runiform())

gen eta0 = 121.78571
gen etal = 0.0214288
gen eta2 = 0.00285714

gen RO = rnormal(0,2)
gen R1 =rnormal(0,0.1)
gen R2 = rnormal(0,0.001)

gen BP1 = [eta0 + RO] + [etal + R1]*agel + [eta2 + R2]*(agel”2)
gen M = rbinomial(1,0.6) if BP1>=140

replace M = 0 if BP1<140

gendeltaO =5

gen epsO=rnormal(0,2)

gen E = rbinomial(1,0.5)

gen thetaO = -5

gen thetal = -0.05

gen theta2 = -1/1800

gen xi0 = rnormal(0,2)



gen xil = rnormal(0,0.1)
gen xi2 = rnormal(0,0.001)

gen BP2 = [eta0 + (thetaO + xi0)*E + (delta0 + eps0
+ [eta2 + (theta2 + xi2)*E + R2]*((agel +

gen Ubpl =rnormal(0,5.7735027)
gen Ubp2 =rnormal(0,5.7735027)

gen BP1_mes = BP1 + Ubpl
gen BP2_mes = BP2 + Ubp2

keep n_simu id BP1_mes BP2_mes E agel
save "D:\...simulation_file_path...\sim_1b.dta", re

*** Analyses

forvalues i = 1/1050 {

use "D:\...simulation_file_path...\sim_1b.dta", cle
drop if n_simu!="i"

linear_regressions_of _change BP1_mes BP2_mes E agel

gen effect_adj_age2=scalar(adj_Ir_age?2)
gen effect_unadj_age2=scalar(unadj_Ir_age2)

gen bias_adj_age2 = effect_adj_age2 + 10
gen bias_unadj_age2 = effect_unadj_age2 + 10

gen id_bis=id - (('i-1)*500)

keep if id_bis==1
keep n_simu effect_adj_age2 effect_unadj_age2 bias_

save "D:\...simulation_file_path...\results_sim_1b_

}

use "D:\...simulation_file_path...\results_sim_1b_1

forvalues i = 2/1050 {
append using "D:\...simulation_file_path...\results

save "D:\...simulation_file_path...\results_sim_1b.

forvalues i = 1/1050 {
erase "D:\...simulation_file_path...\results_sim_1b

}

*** Results simulation Figure 1B

use "D:\...simulation_file_path...\results_sim_1b.d
tabstat bias_adj_age?2 bias_unadj_age2, statistics(m
tabstat effect_adj_age?2 effect_unadj_age2, statisti

)*M + ROQ] + [etal + (thetal + xil1)*E + R1]*(agel +
10)"2)

place

ar

adj_age?2 bias_unadj_age2

‘i'.dta", replace

.dta", clear

_sim_1b_‘i".dta"

dta", replace

_jdta”

ta", clear
ean sd) columns(statistics)
cs(mean sd) columns(statistics)

10) /I



* * * * *

*** [[) Non-randomized Studies with Confounding Fac

* * * * *

*** 2A) Figure 2A
clear

set seed X8a8d036b45674c0eec8a50a508fed9f500020f2a

set obs 525000
genid=_n
gen n_simu=int( ( (id-1)/500) + 1)

gen agel = 40 + (20*runiform())

gen C = rbinomial(1,0.40)
gen E = rbinomial(1, invlogit( In(0.25/(1-0.25)) +

gen eta0 =121.78571
gen etal = 0.0214288
gen eta2 = 0.00285714

gen RO = rnormal(0,2)
gen R1 =rnormal(0,0.1)
gen R2 = rnormal(0,0.001)

gen lambda0 = 15
gen zeta0 = rnormal(0,5)

*gen lambdal = 0.01

gen lambdal = 0.02

gen zetal = rnormal(0,0.005)
*gen lambda2 = 0.001

gen lambda2 = 0.003

gen zeta2 = rnormal(0,0.0005)

gen BP1 = [eta0 + (lambda0 + zeta0)*C + RO] + [etal

gen thetaO = -5
gen thetal = -0.05
gen theta2 = -1/1800

gen xi0 = rnormal(0,2)
gen xil = rnormal(0,0.1)
gen xi2 = rnormal(0,0.001)

gen BP2 = [eta0 + (thetaO + xi0)*E + (lambda0 + zet
+ [eta2 + (theta2 + xi2)*E + (lambda2 + ze

gen Ubpl =rnormal(0,5.7735027)
gen Ubp2 =rnormal(0,5.7735027)

* * * * *

tors between the Exposure and the Outcome

* * * * *

C*In(3)) )

+ (lambdal + zetal)*C + R1]*agel + [eta2 + (lambda

a0)*C + RO] + [etal + (thetal + xi1)*E + (lambdal +
ta2)*C + R2]*((agel + 10)"2)

Kkkkkkkkkkk
Kkkkkkkkkkk

*kkkkkkkkk

2 + zeta2)*C + R2]*(agel”2)

zetal)*C + R1]*(agel + 10) ///



gen BP1_mes = BP1 + Ubpl
gen BP2_mes = BP2 + Ubp2

keep n_simu id BP1_mes BP2_mes E agel
save "D:\...simulation_file_path...\sim_2a.dta", re

*** Analyses

forvalues i = 1/1050 {

use "D:\...simulation_file_path...\sim_2a.dta", cle
drop if n_simu!="i"

linear_regressions_of _change BP1_mes BP2_mes E agel

gen effect_adj_age2=scalar(adj_Ir_age?2)
gen effect_unadj_age2=scalar(unadj_Ir_age2)

gen effect_adj=scalar(adj_Ir)
gen effect_unadj=scalar(unadj_lIr)

gen bias_adj_age2 = effect_adj_age2 + 10
gen bias_unadj_age2 = effect_unadj_age2 + 10

gen bias_adj = effect_adj + 10
gen bias_unadj = effect_unadj + 10

gen id_bis=id - (('i-1)*500)

keep if id_bis==1
keep n_simu effect_adj_age2 effect_unadj_age2 bias_

save "D:\...simulation_file_path...\results_sim_2a_

}

use "D:\...simulation_file_path...\results_sim_2a_ 1

forvalues i = 2/1050 {
append using "D:\...simulation_file_path...\results

save "D:\...simulation_file_path.. \results_sim_2a.

forvalues i = 1/1050 {
erase "D:\...simulation_file_path...\results_sim_2a

}

*** Results simulation Figure 2A

use "D:\...simulation_file_path...\results_sim_2a.d
tabstat bias_adj_age?2 bias_unadj_age2, statistics(m
tabstat effect_adj_age?2 effect_unadj_age2, statisti

place

ar

adj_age?2 bias_unadj_age2

‘i'.dta", replace

dta", clear

_sim_2a_'i".dta"

dta", replace

_jdta”

ta", clear
ean sd) columns(statistics)
cs(mean sd) columns(statistics)



*kkkkkkkkk

*** 2C) Figure 2C

clear

set seed Xbac0c56195¢254508582d28d7a2e469100022645
set obs 525000

genid=_n

gen n_simu=int( ( (id-1)/500) + 1)

gen agel = 40 + (20*runiform())

gen C = rbinomial(1,0.40)
gen E = rbinomial(1, invlogit( In(0.25/(1-0.25)) + C*In(3)) )

gen eta0 = 121.78571
gen etal = 0.0214288
gen eta2 = 0.00285714

gen RO = rnormal(0,2)
gen R1 =rnormal(0,0.1)
gen R2 = rnormal(0,0.001)

gen lambda0 = 15
gen zetaO = rnormal(0,5)

gen BP1 = [eta0 + (lambda0 + zeta0)*C + RO] + [etal + R1]*agel + [eta2 + R2]*(agel”2)

gen theta0 = -5
gen thetal = -0.05
gen theta2 = -1/1800

gen xi0 = rnormal(0,2)
gen xil = rnormal(0,0.1)
gen xi2 = rnormal(0,0.001)

gen BP2 = [eta0 + (thetaO + xi0)*E + (lambda0 + zet a0)*C + RQ] + [etal + (thetal + xi1)*E + R1]*(agel +10) /1
+ [eta2 + (theta2 + xi2)*E + R2]*((agel + 10)72)

gen Ubpl =rnormal(0,5.7735027)
gen Ubp2 =rnormal(0,5.7735027)

gen BP1_mes = BP1 + Ubpl
gen BP2_mes = BP2 + Ubp2

keep n_simu id BP1_mes BP2_mes E agel
save "D:\...simulation_file_path...\sim_2c.dta", re place

*** Analyses

forvalues i = 1/1050 {

use "D:\...simulation_file_path...\sim_2c.dta", cle ar
drop if n_simu!="i"

linear_regressions_of _change BP1_mes BP2_mes E agel



gen effect_adj_age2=scalar(adj_Ir_age?2)
gen effect_unadj_age2=scalar(unadj_Ir_age2)

gen effect_adj=scalar(adj_Ir)
gen effect_unadj=scalar(unadj_lIr)

gen bias_adj_age?2 = effect_adj_age2 + 10
gen bias_unadj_age2 = effect_unadj_age2 + 10

gen bias_adj = effect_adj + 10
gen bias_unadj = effect_unadj + 10

gen id_bis=id - (('i-1)*500)

keep if id_bis==1
keep n_simu effect_adj_age2 effect_unadj_age2 bias_

save "D:\...simulation_file_path...\results_sim_2c_

}

use "D:\...simulation_file_path...\results_sim_2c_1

forvalues i = 2/1050 {
append using "D:\...simulation_file_path...\results

save "D:\...simulation_file_path...\results_sim_2c.

forvalues i = 1/1050 {
erase "D:\...simulation_file_path...\results_sim_2c

}

*** Results simulation Figure 2C

use "D:\...simulation_file_path...\results_sim_2c.d
tabstat bias_adj_age?2 bias_unadj_age2, statistics(m
tabstat effect_adj_age?2 effect_unadj_age2, statisti

*** 2D) Figure 2D
clear

set seed X505828a031e9171c1b7dcd60f31936¢300022033

set obs 525000
genid=_n
gen n_simu=int( ( (id-1)/500) + 1)

gen agel = 40 + (20*runiform())

gen C = rbinomial(1,0.40)
gen E = rbinomial(1, invlogit( In(0.25/(1-0.25)) +

adj_age?2 bias_unadj_age2

‘i'.dta", replace

.dta", clear

_sim_2c_‘i'.dta"

dta", replace

_jdta”

ta", clear
ean sd) columns(statistics)
cs(mean sd) columns(statistics)

C*In(3)) )

kkkkkkkkkk



gen eta0 =121.78571
gen etal = 0.0214288
gen eta2 = 0.00285714

gen RO = rnormal(0,2)
gen R1 =rnormal(0,0.1)
gen R2 = rnormal(0,0.001)

gen lambda0 = 15
gen zeta0 = rnormal(0,5)

gen BP1 = [eta0 + (lambda0 + zeta0)*C + RQ] + [etal

gen thetaO = -5
gen thetal = -0.05
gen theta2 = -1/1800

gen xi0 = rnormal(0,2)
gen xil = rnormal(0,0.1)
gen xi2 = rnormal(0,0.001)

gen M = rbinomial(1,0.6) if BP1>=140
replace M = 0 if BP1<140

gen deltaO =5

gen epsO=rnormal(0,2)

gen BP2 = [eta0 + (thetaO + xi0)*E + (delta0 + eps0
+ [eta2 + (theta2 + xi2)*E + R2]*((agel +

gen Ubpl =rnormal(0,5.7735027)
gen Ubp2 =rnormal(0,5.7735027)

gen BP1_mes = BP1 + Ubpl
gen BP2_mes = BP2 + Ubp2

save "D:\...simulation_file_path...\sim_2d.dta", re

*** Analyses

forvalues i = 1/1050 {

use "D:\...simulation_file_path...\sim_2d.dta", cle
drop if n_simu!="i"

keep n_simu id BP1_mes BP2_mes E agel

linear_regressions_of _change BP1_mes BP2_mes E agel

gen effect_adj_age2=scalar(adj_Ir_age?2)
gen effect_unadj_age2=scalar(unadj_Ir_age2)

gen bias_adj_age2 = effect_adj_age2 + 10
gen bias_unadj_age2 = effect_unadj_age2 + 10

+ R1]*agel + [eta2 + R2]*(agel”2)

)*M + (lambdaO + zeta0)*C + RQ] + [etal + (thetal +

10)"2)

place

ar

Xi1)*E + R1]*(agel + 10) /I/



gen id_bis=id - (('i-1)*500)

keep if id_bis==1
keep n_simu effect_adj_age2 effect_unadj_age2 bias_

save "D:\...simulation_file_path...\results_sim_2d_

}

use "D:\...simulation_file_path...\results_sim_2d_1

forvalues i = 2/1050 {
append using "D:\...simulation_file_path...\results

save "D:\...simulation_file_path...\results_sim_2d.

forvalues i = 1/1050 {
erase "D:\...simulation_file_path...\results_sim_2d

}

*** Results simulation Figure 2D

use "D:\...simulation_file_path...\results_sim_2d.d
tabstat bias_adj_age?2 bias_unadj_age2, statistics(m
tabstat effect_adj_age?2 effect_unadj_age?2, statisti

* * * * *

*** [[I) Non-randomized Studies where the Observed

*** 3A) Figure 3A
clear

set seed Xa8e910a73f9ebfo951ff8adeee201b13800022eel

set obs 525000
genid=_n
gen n_simu=int( ( (id-1)/500) + 1)

gen agel = 40 + (20*runiform())
gen eta0 =121.78571

gen etal = 0.0214288

gen eta2 = 0.00285714

gen RO = rnormal(0,2)

gen R1 =rnormal(0,0.1)

gen R2 = rnormal(0,0.001)

gen BP1 =[eta0 + RO] + [etal + R1]*agel + [eta2 +

adj_age?2 bias_unadj_age2

‘i'.dta", replace

.dta", clear

_sim_2d_‘i'.dta"

dta", replace

_jdta”

ta", clear
ean sd) columns(statistics)
cs(mean sd) columns(statistics)

* * * * *

Baseline Outcome Influences the Exposure

R2]*(agel”2)

*kkkkkkkkk

*kkkkkkkkk

*kkkkkkkkk



gen Ubpl =rnormal(0,5.7735027)
gen BP1_mes = BP1 + Ubpl

gen E = rbinomial(1,invlogit((logit(0.10) - (In(2"0

gen thetaO = -5
gen thetal = -0.05
gen theta2 = -1/1800

gen xi0 = rnormal(0,2)
gen xil = rnormal(0,0.1)
gen xi2 = rnormal(0,0.001)

gen BP2 = [eta0 + (thetaO + xi0)*E + RO] + [etal +
+ [eta2 + (theta2 + xi2)*E + R2]*((agel +

gen Ubp2 =rnormal(0,5.7735027)
gen BP2_mes = BP2 + Ubp2

keep n_simu id BP1_mes BP2_mes E agel
save "D:\...simulation_file_path...\sim_3a.dta", re

*** Analyses

forvalues i = 1/1050 {

use "D:\...simulation_file_path...\sim_3a.dta", cle
drop if n_simu!="i"

linear_regressions_of _change BP1_mes BP2_mes E agel

gen effect_adj_age2=scalar(adj_Ir_age?2)
gen effect_unadj_age2=scalar(unadj_Ir_age2)

gen bias_adj_age?2 = effect_adj_age2 + 10
gen bias_unadj_age2 = effect_unadj_age2 + 10

gen id_bis=id - (('i-1)*500)

keep if id_bis==1

keep n_simu effect_adj_age2 effect_unadj_age2 bias_

save "D:\...simulation_file_path...\results_sim_3a_

}

use "D:\...simulation_file_path...\results_sim_3a_1

forvalues i = 2/1050 {
append using "D:\...simulation_file_path...\results

save "D:\...simulation_file_path...\results_sim_3a.

forvalues i = 1/1050 {
erase "D:\...simulation_file_path...\results_sim_3a

.1)*100)) + BP1_mes*In(270.1) ) )

(thetal + xil)*E + R1]*(agel + 10) ///
10)"2)

place

ar

adj_age?2 bias_unadj_age2

‘i'.dta", replace

dta", clear

_sim_3a_’i".dta"

dta", replace

_jdta”



}

*** Results simulation Figure 3A

use "D:\...simulation_file_path...\results_sim_3a.d
tabstat bias_adj_age?2 bias_unadj_age2, statistics(m
tabstat effect_adj_age?2 effect_unadj_age?2, statisti

* * * * *

*** 3B) Figure 3B
clear

set seed X1546¢h3eae93f0add3fc4d9a993e791900021adl

set obs 525000
genid=_n

gen n_simu=int( ( (id-1)/500) + 1)
gen agel = 40 + (20*runiform())

gen eta0 =121.78571
gen etal = 0.0214288
gen eta2 = 0.00285714

gen RO = rnormal(0,2)
gen R1 =rnormal(0,0.1)
gen R2 = rnormal(0,0.001)

gen BP1 =[eta0 + RO] + [etal + R1]*agel + [eta2 +

gen Ubpl =rnormal(0,5.7735027)
gen BP1_mes = BP1 + Ubpl

gen M = rbinomial(1,0.6) if BP1>=140
replace M = 0 if BP1<140

gendeltaO =5

gen epsO=rnormal(0,2)

gen E = rbinomial(1,invlogit((logit(0.10) - (In(2"0
gen thetaO = -5

gen thetal = -0.05

gen theta2 = -1/1800

gen xi0 = rnormal(0,2)

gen xil = rnormal(0,0.1)

gen xi2 = rnormal(0,0.001)

gen BP2 = [eta0 + (thetaO + xi0)*E + (delta0 + epsO
+ [eta2 + (theta2 + xi2)*E + R2]*((agel +

gen Ubp2 =rnormal(0,5.7735027)

ta", clear
ean sd) columns(statistics)
cs(mean sd) columns(statistics)

R2]*(agel”2)

.1)*100)) + BP1_mes*In(270.1) ) )

)*M + RO] + [etal + (thetal + xi1l)*E + R1]*(agel +
10)"2)

Kkkkkkkkkkk

10) /i



gen BP2_mes = BP2 + Ubp2

keep n_simu id BP1_mes BP2_mes E agel
save "D:\...simulation_file_path...\sim_3b.dta", re

*** Analyses

forvalues i = 1/1050 {

use "D:\...simulation_file_path...\sim_3b.dta", cle
drop if n_simu!="i"

linear_regressions_of _change BP1_mes BP2_mes E agel

gen effect_adj_age2=scalar(adj_Ir_age?2)
gen effect_unadj_age2=scalar(unadj_Ir_age2)

gen bias_adj_age?2 = effect_adj_age2 + 10
gen bias_unadj_age2 = effect_unadj_age2 + 10

gen id_bis=id - (('i-1)*500)

keep if id_bis==1
keep n_simu effect_adj_age2 effect_unadj_age2 bias_

save "D:\...simulation_file_path...\results_sim_3b_

}

use "D:\...simulation_file_path...\results_sim_3b_1

forvalues i = 2/1050 {
append using "D:\...simulation_file_path...\results

save "D:\...simulation_file_path.. \results_sim_3b.

forvalues i = 1/1050 {
erase "D:\...simulation_file_path...\results_sim_3b

}

*** Results simulation Figure 3B

use "D:\...simulation_file_path...\results_sim_3b.d
tabstat bias_adj_age?2 bias_unadj_age2, statistics(m
tabstat effect_adj_age?2 effect_unadj_age?2, statisti

* * * * *

*** 3C) Figure 3C
clear

set seed X18f05abd3ce62fe6ae24356b77ee2b6300024d8a

set obs 525000
genid=_n
gen n_simu=int( ( (id-1)/500) + 1)

place

ar

adj_age?2 bias_unadj_age2

‘i'.dta", replace

dta", clear

_sim_3b_'i".dta"

dta", replace

_jdta”

ta", clear
ean sd) columns(statistics)
cs(mean sd) columns(statistics)

Kkkkkkkkkkk



gen agel = 40 + (20*runiform())
gen age0 =agel - 10

gen eta0 =121.78571
gen etal = 0.0214288
gen eta2 = 0.00285714

gen RO = rnormal(0,2)
gen R1 =rnormal(0,0.1)
gen R2 = rnormal(0,0.001)

gen BPO = [eta0 + RO] + [etal + R1]*age0 + [eta2 +
gen BP1 =[eta0 + RO] + [etal + R1]*agel + [eta2 +

gen UbpO =rnormal(0,5.7735027)
gen BPO_mes = BP0 + Ubp0

gen Ubpl =rnormal(0,5.7735027)
gen BP1_mes = BP1 + Ubpl

gen E = rbinomial(1,invlogit((logit(0.10) - (In(2"0

gen thetaO = -5
gen thetal = -0.05
gen theta2 = -1/1800

gen xi0 = rnormal(0,2)
gen xil = rnormal(0,0.1)
gen xi2 = rnormal(0,0.001)

gen BP2 = [eta0 + (thetaO + xi0)*E + RO] + [etal +
+ [eta2 + (theta2 + xi2)*E + R2]*((agel +

gen Ubp2 =rnormal(0,5.7735027)
gen BP2_mes = BP2 + Ubp2

keep n_simu id BPO_mes BP1_mes BP2_mes E agel

save "D:\...simulation_file_path...\sim_3c.dta", re

*** Analyses

forvalues i = 1/1050 {

use "D:\...simulation_file_path...\sim_3c.dta", cle
drop if n_simu!="i"

linear_regressions_of _change BP1_mes BP2_mes E agel

gen effect_adj_age2=scalar(adj_Ir_age?2)
gen effect_unadj_age2=scalar(unadj_Ir_age2)

gen bias_adj_age2 = effect_adj_age2 + 10
gen bias_unadj_age2 = effect_unadj_age2 + 10

R2]*(age0”2)
R2]*(agel”2)

.1)*100)) + BPO_mes*In(270.1) ) )

(thetal + xil)*E + R1]*(agel + 10) ///
10)"2)

place

ar



gen id_bis=id - (('i-1)*500)

keep if id_bis==1
keep n_simu effect_adj_age2 effect_unadj_age2 bias_

save "D:\...simulation_file_path...\results_sim_3c_

}

use "D:\...simulation_file_path...\results_sim_3c_1

forvalues i = 2/1050 {
append using "D:\...simulation_file_path...\results

save "D:\...simulation_file_path...\results_sim_3c.

forvalues i = 1/1050 {
erase "D:\...simulation_file_path...\results_sim_3c

}

*** Results simulation Figure 3C

use "D:\...simulation_file_path...\results_sim_3c.d
tabstat bias_adj_age?2 bias_unadj_age2, statistics(m
tabstat effect_adj_age?2 effect_unadj_age?2, statisti

*** |\/) Non-randomized Studies where the Exposure S

* * * * *

*** AN) Figure 4A

clear

set seed X0346fb596e19cde3d79bd25d550949ee00024b20
set obs 525000

genid=_n

gen n_simu=int( ( (id-1)/500) + 1)

gen agel = 40 + (20*runiform())
gen lengthl = agel - 20

gen eta0 = 125
gen etal = 1/20
gen eta2 = 3/200

gen RO = rnormal(0,2)
gen R1 =rnormal(0,0.1)
gen R2 = rnormal(0,0.001)

adj_age?2 bias_unadj_age2

‘i'.dta", replace

.dta", clear

_sim_3c_’i'.dta"

dta", replace

_jdta”

ta", clear
ean sd) columns(statistics)
cs(mean sd) columns(statistics)

tarts Before the Beginning of the Study

*kkkkkkkkk
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gen theta0 = -5
gen thetal = -3/100
gen theta2 = -97/7000

gen xi0 = rnormal(0,2)
gen xil = rnormal(0,0.1)
gen xi2 = rnormal(0,0.001)

gen E = rbinomial(1,0.5)

gen BP1 = [eta0 + (thetaO + xi0)*E + RO] + [etal + (thetal + xi1)*E + R1]*lengthl + [eta2 + (theta2 +
gen BP2 = [eta0 + (thetaO + xi0)*E + RO] + [etal + (thetal + xil)*E + R1]*(lengthl + 10) ///
+ [eta2 + (theta2 + xi2)*E + R2]*((lengthl + 10) n2)

gen Ubpl =rnormal(0,5.7735027)
gen Ubp2 =rnormal(0,5.7735027)

gen BP1_mes = BP1 + Ubpl
gen BP2_mes = BP2 + Ubp2

keep n_simu id BP1_mes BP2_mes E agel
save "D:\...simulation_file_path...\sim_4a.dta", re place

*** Analyses

forvalues i = 1/1050 {

use "D:\...simulation_file_path...\sim_4a.dta", cle ar
drop if n_simu!="i"

linear_regressions_of _change BP1_mes BP2_mes E agel

gen effect_adj_age=scalar(adj_Ir_age)
gen effect_unadj_age=scalar(unadj_Ir_age)

gen bias_adj_age = effect_adj_age - (-10)
gen bias_unadj_age = effect_unadj_age - (-10)

gen id_bis=id - (('i-1)*500)

keep if id_bis==1

keep n_simu effect_adj_age effect_unadj_age bias_ad j_age bias_unadj_age
save "D:\...simulation_file_path...\results_sim_4a_ ‘i'.dta", replace

}

use "D:\...simulation_file_path...\results_sim_4a_1 .dta", clear

forvalues i = 2/1050 {
append using "D:\...simulation_file_path...\results _sim_4a_’i'.dta"

save "D:\...simulation_file_path...\results_sim_4a. dta", replace

xi2)*E + R2]*(length172)



forvalues i = 1/1050 {
erase "D:\...simulation_file_path...\results_sim_4a

}

*** Results simulation Figure 4A

use "D:\...simulation_file_path...\results_sim_4a.d
tabstat bias_adj_age bias_unadj_age, statistics(mea
tabstat effect_adj_age effect_unadj_age, statistics

* * * * *

*** AB) Figure 4B

clear

set seed Xabdf30f08f5f321c6clce432bbceeebc00024cc9
set obs 525000

genid=_n

gen n_simu=int( ( (id-1)/500) + 1)

gen agel = 40 + (20*runiform())
gen lengthl = agel - 20

gen eta0 = 125
gen etal = 1/20
gen eta2 = 3/200

gen RO = rnormal(0,2)
gen R1 =rnormal(0,0.1)
gen R2 = rnormal(0,0.001)

gen thetaO = -5
gen thetal = -3/100
gen theta2 = -97/7000

gen xi0 = rnormal(0,2)

gen xil = rnormal(0,0.1)

gen xi2 = rnormal(0,0.001)

gen E = rbinomial(1,0.5)

gen BP1 = (eta0 + (thetaO + xi0)*E + RO) + (etal +
gen M = rbinomial(1,0.6) if BP1>=140

replace M = 0 if BP1<140

gen delta0 = 15

gen epsO=rnormal(0,2)

gen BP2 = [eta0 + (thetaO + xi0)*E +(deltaO + eps0)
+ [eta2 + (theta2 + xi2)*E + R2]*((lengthl + 10)"2)

gen Ubpl =rnormal(0,5.7735027)

_jdta”

ta", clear
n sd) columns(statistics)
(mean sd) columns(statistics)

(thetal + xil)*E + R1)*lengthl + (eta2 + (theta2 +

*M + RO] + [etal + (thetal + xi1)*E + R1]*(lengthl

K*kkkkkkkkk

xi2)*E + R2)*(length1/2)

+10) /l/



gen Ubp2 =rnormal(0,5.7735027)

gen BP1_mes = BP1 + Ubpl
gen BP2_mes = BP2 + Ubp2

keep n_simu id BP1_mes BP2_mes E agel
save "D:\...simulation_file_path...\sim_4b.dta", re

*** Analyses

forvalues i = 1/1050 {

use "D:\...simulation_file_path...\sim_4b.dta", cle
drop if n_simu!="i"

linear_regressions_of _change BP1_mes BP2_mes E agel

gen effect_adj_age=scalar(adj_Ir_age)
gen effect_unadj_age=scalar(unadj_Ir_age)

gen true_effect = -10 + 15*0.6*[(1 - normal( (140-(
(3072)*(0.172+0.172)+(3074)*(0.00112+0.001"2) ))) /
- (1 - normal( (140-(125+0.05*30

gen bias_adj_age = effect_adj_age - true_effect
gen bias_unadj_age = effect_unadj_age - true_effect

gen id_bis=id - (('i-1)*500)

keep if id_bis==1
keep n_simu effect_adj_age effect_unadj_age bias_ad

save "D:\...simulation_file_path...\results_sim_4b_

}

use "D:\...simulation_file_path...\results_sim_4b_1

forvalues i = 2/1050 {
append using "D:\...simulation_file_path...\results

save "D:\...simulation_file_path.. \results_sim_4b.

forvalues i = 1/1050 {
erase "D:\...simulation_file_path...\results_sim_4b

}

*** Results simulation Figure 4B

use "D:\...simulation_file_path...\results_sim_4b.d
tabstat bias_adj_age bias_unadj_age, statistics(mea
tabstat effect_adj_age effect_unadj_age, statistics

place

ar

125-5+(0.05-3/100)*30+(0.015-97/7000)*(30"2)) )/ sq
I
+0.015%(3072)))/sqrt((2°2) + (3072)*(0.12)+(30"4)*

j_age bias_unadj_age

‘i'.dta", replace

dta", clear

_sim_4b_"i'.dta"

dta", replace

_jdta”

ta", clear
n sd) columns(statistics)
(mean sd) columns(statistics)

rt((272+2"2) +

(0.00172)) )]



