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Results with parametric model

We investigate the asymptotic bias of the natural direct and indirect effects based on two

regression models for the outcome and the mediator.

When the outcome is continuous, we model both the mediator and the outcome using the

linear link, and allow the outcome model to include exposure-mediator interaction.

E(M | A = a,C = c) = β0 + β1a+ β′
2c

E(Y | A = a,M = m,C = c) = θ0 + θ1a+ θ2m+ θ3am+ θ′
4c.

However, we can observe only Y ∗, and thus we can operate only with the observed re-

gression model for the outcome:

E(Y ∗ | M = m,A = a,C = c) = θ∗0 + θ∗1a+ θ∗2m+ θ∗3am+ θ∗′

4 c.

Let θ̂∗ = (θ̂∗1, θ̂
∗
2, θ̂

∗
3, θ̂

∗
4) be the naive MLE. Let X = (A,M,AM,C) and assume that X

is centered. Let ∆ = E[X
′
X] and δij denote an element of the inverse of ∆. We can obtain

the asymptotic bias of parameters of the outcome regression:

ABIAS(θ̂∗) = limE(θ̂∗)− θ = limE{(X ′
X)−1X ′Y ∗ − (X

′
X)−1X ′Y }

= limE{(X ′
X)−1X ′U} = ∆−1E(X ′U) = 0.

Therefore, we can consistently estimate the direct and indirect effects using the observed

outcome.

1



When the outcome is binary and is modeled with a logit link, the outcome model can be

replaced by :

logit{P (Y = 1 | M = m,A = a,C = c)} = θ0 + θ1a+ θ2m+ θ3am+ θ′
4c,

and the observed regression model is:

logit{P (Y ∗ = 1 | M = m,A = a,C = c)} = θ0 + θ1a+ θ2m+ θ3am+ θ′
4c,

Following the reasoning of Neuhaus1, we can deduce that the parameter estimates from

the observed regression for a general link function will approximately converge to θH(θ0),

where

H(θ0) =
(SN + SP − 1)g′{(SN + SP − 1)g−1(θ0) + 1− SP}

g′{g−1(θ0)}
, and g(x) = log{x/(1− x)}.

The above formula provides some intuition for the bias. If there is no misclassification, then

SP = SN = 1, hence H(θ0) = 1. The observed regression model can consistently estimate

the true parameters. When misclassification presents, we have

1

g′{(SN + SP − 1)g−1(θ0) + θ0}+ 1− SP

=
1

g′{(SN + SP − 1)g−1(θ0) + (2− SP − SN)(1− SP )/(2− SP − SN)}

≥ SN + SP − 1

g′{g−1(θ0)}
+

2− SN − SP

g′{(1− SP )/(2− SP − SN)}
≥ SN + SP − 1

g′{g−1(θ0)}
.

The first inequality is due to the concavity of 1/g′(x) = x(1 − x). Thus, we obtain that

0 ≤ H(θ0) ≤ 1, which means that using the observed outcome leads to attenuated estimates

of the outcome regression model. It is straightforward to obtain the asymptotic biases of the

direct and indirect effects by Plugging the regression models into (1) to (3).
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Correction approach for direct and indirect effect estimators

We use the EM algorithm to correct the bias result from the misclassified outcome. For the

correction approach, we should first specify the sensitivity and specificity parameters, then

implement the EM algorithm to obtain the parameter estimates of the regression models. Es-

timates of direct and indirect effects are recovered by plugging the estimated parameters in

(1) to (3).

Dempster, Laird and Rubin2 propose the Expectation-Maximization (EM) algorithm to

obtain the maximum likelihood estimation when there is missing data. In our problem mis-

classification of the true outcome Y can be seen as a type of missing data problem, and we

can write the log-likelihood as:

l(θ) = lY |A,M,C(θ|Yi, Ai,Mi, Ci)

= YilY |A,M,C(θ|Yi = 1, Ai,Mi, Ci) + (1− Yi)lY |A,M,C(θ|Yi = 0, Ai,Mi, Ci).

The EM algorithm consists of two steps, the E-step and the M-step. At the E-step, we

calculate the expectation of the log-likelihood conditioning on the current parameters and the

observed data {A,M, Y ∗,C}. Denote this expectation by Q(θ|θ(k)), we have that:

Q(θ|θ(k)) =
n∑

i=1

wit(θ
(k))lY |A,M,C(θ|Yi, Ai = t,Mi, Ci),

where

wit(θ
(k)) = P (Yi = y|Y ∗

i , Ai,Mi, Ci)

=
P (Y ∗

i |Yi = y)P (Yi = y|Ai,Mi, Ci)∑
y′=0,1 P (Y ∗

i |Yi = y′)P (Yi = y′|Ai = t,Mi, Ci)
.

In the above formula, P (Y ∗
i |Yi) depends on the pre-specified SN and SP. In practice, we

can set a plausible range of values for sensitivity analysis.
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At the M-step, we update the parameters by maximizing Q(θ) using weighted logistic

regression.
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