
E-Appendix for “Variable Selection for Propensity

Score Estimation via Balancing Covariates”

1. METHODS

We first define some notation. Let Y denote the response of interest and X denote a

p-dimensional vector of covariates. Let T denote a binary indicator of treatment exposure:

T = 1 if treated, T = 0 if control. (Yi,Xi, Ti), i = 1, . . . , n, is a random sample from

(Y,X, T ). We further define Y (1) as the potential outcome if the subject were treated

and Y (0) as the potential outcome if the subject were assigned to the control group.1,2,3

Depending on the type of the outcome variable, the causal estimands can be defined as the

difference between Y (1) and Y (0) if Y is continuous or the odds ratio if Y is binary. We

further denote the propensity score as π(X) = Pr(T = 1|X).4 In observational studies, π(X)

is unknown and needs to be estimated from the data.

Next, we briefly review the generalized boosted model (GBM)5 and covariate balancing

propensity scores (CBPS).6 Both approaches estimate propensity scores by achieving balance

in the covariates.

1.1 Generalized Boosted Model

GBM employs a boosting algorithm to estimate propensity scores. Boosting belongs to the

category of so-called ensemble methods: instead of generating one classification/regression

tree, it generates multiple trees. Each tree is constructed on a bootstrapped sample of the

original data. The final estimator is the aggregation of the estimates from each tree.7 In

GBM, let g(X) = log[π(X)/(1 − π(X))] and the maximum likelihood function for T given

X can be written as:

l(g) =
n∑
i=1

Tig(Xi)− log{1 + exp[g(Xi)]}. (1)

To maximize l(g) in equation (1), g(X) is updated at each iteration with g(X)+αh(X) where

h(X) is the fitted value from a regression tree which models γi = Ti − 1/{1 + exp[−g(Xi)]},
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the largest increase in equation (1). α is a shrinkage parameter, which is smaller than 1 to

prevent the algorithm from changing too fast at each step. Since h(X) is fitted by a tree

structure, this approach is nonparametric; it picks important covariates, nonlinear terms and

interaction terms by optimizing some nonparametric information criterion without specifying

a parametric model.5

In GBM, the number of trees is an important tuning parameter. When the number of

trees gets larger, the model gets more complicated and the variance of the estimates in-

creases and the bias decreases in general. To avoid over-fitting, McCaffrey et al.5 suggested

selecting the optimal number of trees by minimizing the standardized absolute mean differ-

ence (ASAM) among the covariates. The underlying idea is that if the propensity score is

correctly estimated, the covariates should be distributed almost the same among different

treatment groups. Here, the distribution of the covariates is characterized by the weighted

group mean of the covariates. For a single covariate x, the standardized difference is defined

as:

d =
x̄wtreated − x̄wcontrol√
(s2treated + s2control)/2

,

where x̄wtreated is the weighted average of x in the treatment group and x̄wcontrol is the weighted

average of x in the control group. When estimating the average treatment effect (ATE),

x̄wtreated =
∑n
i=1 xiTi/π̂i∑n
i=1 Ti/π̂i

and x̄wcontrol =
∑n
i=1 xi(1−Ti)/(1−π̂i)∑n
i=1(1−Ti)/(1−π̂i)

, where π̂i is the estimated propensity

score for subject i; when estimating the average treatment effect among the treated (ATT),

x̄wtreated =
∑n
i=1 xiTi∑n
i=1 Ti

and x̄wcontrol =
∑n
i=1 xi(1−Ti)π̂i/(1−π̂i)∑n
i=1(1−Ti)π̂i/(1−π̂i)

. The ASAM is simply the average of

|d| over all the covariates.

Although GBM automatically performs variable selection by splitting trees on different

covariates, the determination of the number of trees depends on which set of covariates

are included in the balancing condition, i.e., the covariates that we aim to balance. For

example, in some data applications, if we include all the covariates in the GBM model and

choose the optimal number of trees that leads to the smallest ASAM value, the standardized

mean differences for some covariates increase after the propensity score adjustment. This is
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because we focus on minimizing the average value over all the covariates. We often find that

focusing on a subset of covariates may lead to better performance.

1.2 Covariate Balancing Propensity Scores

CBPS aims to estimate propensity scores by optimizing the covariate balance. Different

from GBM, CBPS assumes the propensity score follows a logistic regression model, i.e.,

πβ(X) =
exp(X

′
β)

1 + exp(X′β)
.

β is solved by satisfying the balancing condition:

E{ T X̃

πβ(X)
− (1− T )X̃

1− πβ(X)
} = 0, (2)

where X̃ is a function of X specified by the researcher. For example, X̃ = X implies the

weighted mean value of each covariate is the same between the treatment and the control

group. If setting X̃ =
dπβ(X)

dβ
, we are solving the maximum likelihood estimator (MLE) of β

because equation (2) is the score function for MLE.6

The above condition is for the estimation of ATE. For estimating ATT, the balancing

condition is

E{T X̃− πβ(X)(1− T )X̃

1− πβ(X)
} = 0. (3)

If CBPS is employed to estimate propensity scores and X̃ = X, then the standardized

absolute mean difference is zero for each covariate and consequently, the ASAM value equals

zero. Similar to GBM, CBPS depends on the set of variables that are included in X̃. For

simplicity, we assume X̃ only contains first-order terms of the selected covariates.
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2. DETAILS ON THE SIMULATION STUDY

In the simulation study, we first generate three covariates, (X1, X2, X3), from a standard

normal distribution. Then, the treatment indicator is generated from a Bernoulli distribution

with

Pr(T = 1|X1, X2, X3) = Φ(β0 + β1X1 + β2X2 + β3X3),

where (β0, β1, β2, β3) = (0, 0.5, 0, 0.75). The outcome variable Y is generated from a Poisson

model with

E(Y |T,X1, X2, X3) = exp{α0 + α1((1 + exp(−3X1))
−1 + α2X2 + α3X3 + α4T},

where (α0, α1, α2, α3) = (0.5, 4, 1, 0) and the true treatment effect α4 = 0.5. Based on the

simulation setup, X1 is the real confounder which jointly affects the treatment and the

outcome variable; X3 is only related to the treatment variable while X2 is only related to

the outcome variable.

We employ two different approaches to estimate the treatment effect: inverse probability

weighting (IPW) and matching. In IPW, we assign each subject a weight: for those who

receive the treatment, the weight is 1/π̂, where π̂ is the estimated propensity score from

either a CBPS model or a GBM model; for those who receive the control, the weight is

1/(1− π̂). Then, we conduct a weighted Poisson regression, i.e., fitting the following model:

E(Y |T ) = exp{α0+γT}, where γ̂ is the estimated treatment effect. In matching, we perform

a one-to-one matching with replacement on π̂. Then, we fit an unweighted Poisson model on

the matched data instead of the whole data set. Again, γ̂ is the estimated treatment effect.

For CBPS, we employ the CBPS package in R to estimate propensity scores. For GBM,

we employ the twang package and specify interaction.depth=1 and stop.method=“es.mean”,

which means we only allow main effects in each fitted tree and the stopping criterion is based

on ASAM. However, the ps function in twang only produces results when there are two or

more covariates in the model. Therefore, we only report the results for four different models

in the eTable 1.
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eTable 1. Simulation results for the estimated treatment effect; the propensity scores are
estimated by GBM

X1, X2 X1, X3 X2, X3 X1, X2, X3 Reference
n = 500

Inverse Probability Weighting
Bias 0.0832 0.1311 0.7313 0.1565 0.0080
Var 0.0240 0.0489 0.0356 0.0338 0.0289
MSE 0.0309 0.0661 0.5704 0.0582 0.0290

Matching
Bias -0.0757 -0.0314 0.7614 -0.0410 0.0043
Var 0.0193 0.0676 0.0427 0.0620 0.0362
MSE 0.0250 0.0685 0.6223 0.0637 0.0362
n = 2500

Inverse Probability Weighting
Bias 0.0361 0.0671 0.7384 0.0833 -0.0029
Var 0.0046 0.0121 0.0067 0.0080 0.0061
MSE 0.0059 0.0166 0.5519 0.0150 0.0061

Matching
Bias -0.0344 -0.0240 0.7480 -0.0224 0.0002
Var 0.0029 0.0147 0.0078 0.0105 0.0064
MSE 0.0040 0.0153 0.5673 0.0110 0.0064

Lastly, in the simulation study, we only allow main effects for each fitted tree by GBM.

Similarly, for CBPS, we let X̃ = X . However, for both algorithms, more flexible models

can be fitted. For example, in GBM, we may specify the model to include at most three-

way interactions in the covariates. For CBPS, we can add (X2
1 , . . . , X

2
p ) into the balancing

conditions in equation (2) or equation (3). Future studies may investigate how robust our

findings are to more complex models.
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3. R CODES

The following is the R codes for the simulation study:

library(CBPS)

library(twang)

library(Matching)

n = 500

repe =1000

fnames=paste("sim",1:repe,".dat",sep="")

for (i in 1:repe){

X1 = rnorm(n,0,1)

X2 = rnorm(n,0,1)

X3 = rnorm(n,0,1)

A = rbinom(n,1,pnorm(0 + 0.5*X1 + 0*X2 + 0.75*X3,0,1))

Y = rpois(n, exp(0.5 + 4*(1/(1+exp(-3*X1))-0.5)+1*X2+0*X3 + 0.5*A))

write.table(cbind(A,Y,X1,X2,X3),file=fnames[i],row.names=FALSE,

col.names=FALSE,append=FALSE)

}

gamma = matrix (NA,repe,12)

gamma2= matrix (NA,repe,12)

wt=matrix(NA,n,12)

PS = matrix(NA,n,12)

for (i in 1:repe){

data=read.table(file=fnames[i],header=FALSE)

A=data[,1]

Y=data[,2]

X1=data[,3]

X2=data[,4]

X3=data[,5]

PS[,1]=CBPS(A ~ X1, ATT = FALSE, method = "exact")$fitted.values

PS[,2]=CBPS(A ~ X2, ATT = FALSE, method = "exact")$fitted.values

PS[,3]=CBPS(A ~ X3, ATT = FALSE, method = "exact")$fitted.values

PS[,4]=CBPS(A ~ X1+X2, ATT = FALSE, method = "exact")$fitted.values

PS[,5]=CBPS(A ~ X1+X3, ATT = FALSE, method = "exact")$fitted.values

PS[,6]=CBPS(A ~ X2+X3, ATT = FALSE, method = "exact")$fitted.values

PS[,7]=CBPS(A ~ X1+X2+X3, ATT = FALSE, method = "exact")$fitted.values

dataset=data.frame(A=A,X1=X1,X2=X2,X3=X3)

model1 <- ps(A ~ X1+X2, data = dataset,interaction.depth=1,
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stop.method = "es.mean")

PS[,8] <- as.matrix(model1$ps)[,1]

model2 <- ps(A ~ X1+X3, data = dataset, interaction.depth=1,

stop.method = "es.mean")

PS[,9] <- as.matrix(model2$ps)[,1]

model3 <- ps(A ~ X2+X3, data = dataset, interaction.depth=1,

stop.method = "es.mean")

PS[,10] <- as.matrix(model3$ps)[,1]

model4 <- ps(A ~ X1+X2+X3, data = dataset, interaction.depth=1,

stop.method = "es.mean")

PS[,11] <- as.matrix(model4$ps)[,1]

PS[,12] = glm(A ~ X1+X2, family = "binomial" (link = "probit"))$fitted.values

# Inverse Probability Weighting

for (j in 1:12){

wt[,j]=1/PS[,j]*A+1/(1-PS[,j])*(1-A)

}

for (j in 1:12){

gamma[i,j] = glm(Y ~ A, weights=wt[,j], family = "poisson")$coef[2]

}

# Matching

mydata=data.frame(A=A,Y=Y)

for (j in 1:12){

mydata.treat = mydata[Match(Y=NULL, Tr=A, X=PS[,j],

estimand="ATE")$index.treated,]

mydata.control = mydata[Match(Y=NULL, Tr=A, X=PS[,j],

estimand="ATE")$index.control,]

wholedata=rbind(mydata.treat,mydata.control)

gamma2[i,j]=glm(Y~A,family="poisson",data=wholedata)$coef[2]

}

}

bias = apply(gamma, FUN = mean, MARGIN = 2) - 0.5

variance = apply(gamma, FUN = var, MARGIN = 2)

MSE = apply((gamma - 0.5)^2, FUN = mean, MARGIN = 2)

bias2 = apply(gamma2, FUN = mean, MARGIN = 2) - 0.5

variance2 = apply(gamma2, FUN = var, MARGIN = 2)

MSE2 = apply((gamma2 - 0.5)^2, FUN = mean, MARGIN = 2)
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