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1 Causal effects under the counterfactual framework and
their estimators

We let Ta and Ma denote respectively the values of the time-to-event outcome and me-
diator that would have been observed had the exposure A been set to level a. We let
Tam denote the value of the time-to-event outcome that would have been observed had
the exposure, A, and mediator, M , been set to levels a and m, respectively. The average
controlled direct effect comparing exposure level a to a∗ and fixing the mediator to level
m on the mean survival time ratio scale is defined by CDEa,a∗(m) = E[Tam]/E[Ta∗m].
The average natural direct effect is then defined by NDEa,a∗(a

∗) = E[TaMa∗ ]/E[Ta∗Ma∗ ].
The average natural indirect effect can be defined as NIEa,a∗(a) = E[TaMa ]/E[TaMa∗ ],
which compares the effect of the mediator at levels Ma and Ma∗ on the survival outcome
when exposure A is set to a. Controlled direct effects and natural direct and indirect
effects within strata of C = c are then defined by: CDEa,a∗|c(m) = E[Tam|c]/E[Ta∗m|c],
NDEa,a∗|c(a

∗) = E[TaMa∗ |c]/E[Ta∗Ma∗ |c] and NIEa,a∗|c(a) = E[TaMa |c]/E[TaMa∗ |c] re-
spectively. For an arbitrary time-to-event variable V , let λV (t) and λV (t|c) denote the
hazard or hazard conditional on covariates c at time t, that is the instantaneous rate of
the event conditional on V ≥ t. The causal effects can also be defined on the hazard
ratio scale, replacing E[·] with λ(·).

If we let X ⊥ T |Z denote that X is independent of T conditional on Z, then the iden-
tification assumptions for the causal effects previously defined can be expressed formally
in terms of counterfactual independence as (i) Tam ⊥ A|C, (ii) Tam ⊥ M |{A,C}, (iii)
Ma ⊥ A|C, and (iv) Tam ⊥Ma∗ |C. Assumptions (i) and (ii) suffice to identify controlled
direct effects; assumptions (i)-(iv) suffice to identify natural direct and indirect effects
(Pearl, 2001; VanderWeele and Vansteelandt, 2009). The intuitive interpretation of
these assumptions follows from the theory of causal diagrams (Pearl, 2001). Alternative
identification assumptions have also been proposed (Imai 2010; Hafeman and Vander-
Weele, 2011). However, it has been shown that the intuitive graphical interpretation of
these alternative assumptions are in fact equivalent (Shpitser and VanderWeele, 2011).
Technical examples can be constructed where one set of identification assumptions holds
and another does not, but on a causal diagram corresponding to a set of non-parametric
structural equations, whenever one set of the assumptions among those in VanderWeele
and Vansteelandt (2009), Imai (2010), and Hafeman and VanderWeele (2011) holds, the
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others will also.

Models and Estimators for Causal Effects: Continuous Mediator and Time-to-event
Outcome

Let M be a continuous mediator following a linear model, A be an exposure and C
be additional covariates. Assume that the outcome T is a failure time variable following
a Cox-proportional hazard model or an accelerated failure time (AFT) model. We can
define the mediator regression as

E(M |A,C) = β0 + β1a+ β′2c (1)

We define the outcome model either as Cox proportional hazard:

λT (t|a,m, c) = λT (t|0, 0, 0)eγ1a+γ2m+γ3am+γ′4c (2)

or as accelerated failure time model:

log(T ) = θ0 + θ1a+ θ2m+ θ3am+ θ′4c+ νε (3)

where ε follows the extreme value distribution and ν is a shape parameter taking
value ν = 1 if the exponential distribution is assumed and allowed to take different
values if the Weibull distribution is assumed.

If the no-unmeasured confounding assumptions hold, the model for the continuous
mediator and for the outcome are correctly specified, and the Cox regression is employed,
then controlled direct effect, natural direct and natural indirect effects estimators on the
hazard ratio scale are given by (VanderWeele, 2011):

λTam(t|c)/λTa∗m(t|c) = exp{(γ1 + γ3m)(a− a∗)}
λTaMa∗

(t|c)/λTa∗Ma∗ (t|c) ≈ exp[{γ1 + γ3(β0 + β1a
∗ + β′2c+ γ2σ

2)}(a− a∗) + 0.5γ2
3σ

2(a2 − a∗2)]

λTaMa (t|c)/λTaMa∗ (t|c) ≈ exp{(γ2β1 + γ3β1a)(a− a∗)}

The approximations to estimate natural direct and natural indirect effects apply if
the outcome is rare at the end of follow-up.

If the no-unmeasured confounding assumptions hold, the model for the continuous
mediator and for the outcome are correctly specified, and the AFT model is employed,
then controlled direct effect, natural direct and natural indirect effects estimators on
the mean survival time ratio scale are given by (VanderWeele, 2011):

E[Tam]/E[Ta∗m] = exp{(θ1 + θ3m)(a− a∗)}
E[TaMa∗ ]/E[Ta∗Ma∗ ] = exp[{θ1 + θ3(β0 + β1a

∗ + β′2c+ θ2σ
2)}(a− a∗) + 0.5θ2

3σ
2(a2 − a∗2)]

E[TaMa ]/E[TaMa∗ ] = exp{(θ2β1 + θ3β1a)(a− a∗)}
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Note that under the AFT the rare outcome assumption is not required to estimate
natural direct and indirect effects.

Models and Estimators for Causal Effects: Binary Mediator and Time-to-event Out-
come

Let T denote the time-to-event outcome modeled either as in (2) or (3). Let M be
a binary mediator following a logistic model.

We can define the mediator regression as:

logit{P (M = 1|A,C)} = β0 + β1a+ β′2c (4)

If the no-unmeasured confounding assumptions hold, the model for the binary me-
diator and for the outcome are correctly specified, and the Cox regression is employed,
then controlled direct effect, natural direct and natural indirect effects estimators on
the hazard ratio scale are given by (see eAppendix section 4 for proof):

λTam(t|c)/λTa∗m(t|c) = exp{(γ1 + γ3m)(a− a∗)}

λTaMa∗
(t|c)/λTa∗Ma∗ (t|c) ≈ exp(γ1a){1 + exp(γ2 + γ3a+ β0 + β1a

∗ + β′2c)}
exp(γ1a∗){1 + exp(γ2 + γ3a∗ + β0 + β1a∗ + β′2c)}

λTaMa (t|c)/λTaMa∗ (t|c) ≈ {1 + exp(β0 + β1a
∗ + β′2c)}{1 + exp(γ2 + γ3a+ β0 + β1a+ β′2c)}

{1 + exp(β0 + β1a+ β′2c)}{1 + exp(γ2 + γ3a+ β0 + β1a∗ + β′2c)}

The approximations to estimate natural direct and natural indirect effects apply if
the outcome is rare at the end of follow-up.

If the no-unmeasured confounding assumptions hold, the model for the binary me-
diator and for the outcome are correctly specified, and the AFT model is employed,
then controlled direct effect, natural direct and natural indirect effects estimators on
the mean survival ratio scale are given by (see eAppendix section 4):

E[Tam]/E[Ta∗m] = exp{(θ1 + θ3m)(a− a∗)}

E[TaMa∗ ]/E[Ta∗Ma∗ ] =
exp(θ1a){1 + exp(θ2 + θ3a+ β0 + β1a

∗ + β′2c)}
exp(θ1a∗){1 + exp(θ2 + θ3a∗ + β0 + β1a∗ + β′2c)}

E[TaMa ]/E[TaMa∗ ] =
{1 + exp(β0 + β1a

∗ + β′2c)}{1 + exp(θ2 + θ3a+ β0 + β1a+ β′2c)}
{1 + exp(β0 + β1a+ β′2c)}{1 + exp(θ2 + θ3a+ β0 + β1a∗ + β′2c)}

Note that under the AFT the rare outcome assumption is not required to estimate
natural direct and indirect effects.

2 Description of the SAS macro

The present software is designed to enable the investigator to easily implement media-
tion analysis in the presence of exposure-mediator interaction accounting for different
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types of outcomes (normal, dichotomous (with logit or log link), poisson, negative bi-
nomial, failure time (with Cox PH model or AFT Weibull or AFT exponential), can
be assumed) and mediators of interest (normal or dichotomous with logit link). The
logit link for dichotomous outcomes and Cox model for survival outcome should only
be used if the outcome is rare. If the outcome is not rare and binary the log link can
be used (though the outcome model may not always converge) and failure times could
be modeled using AFT. For binary outcomes, in the case of logit link the direct and
indirect effects are on the odds ratio scale and in the case of using the log link the direct
and indirect effects are on the risk ratio scale. For survival outcomes, in the case of
Cox model the direct and indirect effects are on the hazard ratio scale and in the case
of using the AFT model the direct and indirect effects are on the mean survival ratio
scale. This SAS macro, provides estimates, and confidence intervals for the direct and
indirect effects defined in Valeri and VanderWeele (2013). The estimates assume the
model assumptions are correct and the identifiability assumptions discussed in Valeri
and VanderWeele (2013) hold.

In order to implement mediation analysis via the mediation macro in SAS the inves-
tigator first inputs the data which has to include the outcome, treatment and mediator
variables. The investigator inputs also the covariates to be adjusted for in the model.
Macro activation requires the investigator to save the macro script and input informa-
tion in the statement

%mediation(data=,yvar=,avar=,mvar=,cvar=,a0=,a1=,m=,yreg=, mreg=,interaction=,cens=)

run;

First one inputs the name of the dataset, then the name of the outcome variable
(yvar =), the treatment variable (avar =), the mediator variable (mvar =), the other
covariates (cvar =). Then the investigator needs to specify the baseline level of the
exposure a∗ (a0 =), the new exposure level a (a1 =) and the level of mediator m at which
the controlled direct effect is to be estimated. The user must also specify which types
of regression have to be implemented. In particular either linear, logistic, loglinear,
poisson, negbin, survCox, survAFT exp, or survAFT weibull can be specified in the
option yreg. If survCox, survAFT exp, or survAFT weibull for failure time outcome
are specified, the user need to specify the censoring variable (cens =) which has to take
value 1 if the event is censored and 0 if the failure time is observed. For the option mreg
either linear or logistic regressions are allowed.

Finally, the analyst needs to specify whether an exposure-mediator interaction is
present (true or false). The software provides the following output: first the outcome
and mediator regression output are provided. The output in the SAS macro is derived
from the procedures of proc reg when the variable is continuous and proc logistic when
the variable is binary. When the outcome is specified as poisson, negative binomial or
log-linear the procedure proc genmod is employed. When the outcome is failure time
and the Cox model is specified, the procedure phreg is employed while if accelerated
failure time model is specified, the procedure lifereg is employed.
The SAS macro is case-sensitive and the options specified should be given in lower-case
letters, unless otherwise specified.



5

A table with direct and indirect effects together with total effects and proportion
mediated follows. The total effect is computed as the sum of the natural direct effect
and the natural indirect effect when the outcome is continuous and the product of the
natural direct and indirect effects in the other cases. The proportion mediated can be
defined as the ratio of the natural indirect effect over the total effect when the outcome
is continuous; the proportion mediated on outcome difference scale is given in the other
cases using a transformation of the ratio scale (VanderWeele and Vansteelandt, 2010).
The effects are reported for the mean level of the covariate C. The table contains p-
values, and confidence intervals for each effect.

The reduced output is the default option. The table will just display controlled
direct effect, natural direct effect, natural indirect effect, total effect and proportion
mediated. When the option output=full is used, both conditional effects and effects
evaluated at the mean covariate levels are shown. When output equal to full is chosen
as an option, the investigator must enter fixed values for the covariates C at which to
compute conditional effects. The macro statement is then as follows:

%mediation(data=,yvar=,avar=,mvar=,cvar=,a0=,a1=,m=,yreg=,mreg=,interaction=,cens=,output=,c=)

run;

When these commands are added, in addition to controlled direct effect, and the
natural direct and indirect effect described above, two other effects are displayed. The
natural direct and indirect effects we have been considering are sometimes called the
”pure” natural direct effect and the ”total” natural direct effect (Robins, Greenland,
1992). We can also consider the ”total” natural direct effect and the ”pure” natural
indirect effect. The total natural direct effect expresses how much the outcome would
change on average if the exposure changed from level a∗ = 0 to level a = 1, but the
mediator for each individual was fixed at the natural level which would have taken at
exposure level a = 1. The pure natural indirect effect expresses how much the outcome
would change on average if the exposure were controlled at level a∗ = 0 but the mediator
were changed from the natural level it would take if a∗ = 0 to the level that would
have taken at exposure level a = 1. These effects are also reported if the user selects
output = full. For an in-depth description of these causal effects the interested reader
can refer to VanderWeele and Vansteelandt (2009).

Finally, the investigator has the option of implementing mediation analysis when
data arise from a case-control design, provided the outcome in the population is rare.
The formulas for the effects remain the same, however the mediator regression will be
run only for controls, in order to minimize the bias due to the design, and since with a
rare outcome Y the controls will approximate the distribution of M in the population.
To do so the option casecontrol=true can be used. In this case the macro statement
changes to

%mediation(data=,yvar=,avar=,mvar=,cvar=,a0=,a1=,m=,yreg=,mreg=,interaction=,cens=,casecontrol=)

run;

Finally, the investigator can choose whether to obtain standard errors and confidence
intervals via the delta method or a bootstrapping technique. The default is the delta
method. To use bootstrapping the option boot true can be given. In this case the macro
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will compute 1,000 bootstrap samples from which causal effects are obtained along with
their standard errors (SE) and percentile confidence intervals. If the investigator wishes
to use a higher number of bootstrap samples, instead of ”true” he or she inputs the
number of bootstrap samples desired (e.g., boot = 5000 would estimate standard errors
and confidence intervals using 5,000 bootstrap samples). When using the bootstrap the
macro statement changes to

%mediation(data=,yvar=,avar=,mvar=,cvar=,a0=,a1=,m=,yreg=,mreg=,interaction=,cens=,boot=)

run;

Note that if the investigator wants to add a categorical variable as covariate, this
must be recoded as a series of indicator variables.

3 Example

We present in this section an example of using the mediation macro when the outcome is
failure time. The example is to be considered for illustration purposes only. Suppose in-
terest lies in the effects of socio-economic position (SEP) on survival of colorectal cancer
patients. SEP is measured by percentage of people living below the poverty line in the
patients’ county of residence. In this example, stage at diagnosis, measured as advanced
vs non-advanced is investigated as a potential mediator of the relationship between re-
siding in poor counties and the survival outcome. Data for Surveillance Epidemiology
End Results (SEER) linked to American Community Survey (ACS) data for patients
diagnosed in 1992-2005 and followed up to 2010 is employed to address this question.

In the present analysis we allow for interaction between the SEP measure and stage
at diagnosis. Furthermore we adjust for potential confounders: gender, age at diagnosis,
year at diagnosis and state of residence. Since the outcome is failure time we define a
censoring variable taking value 1 if the individual is censored or value 0 if the event is
observed.

After having saved the dataset and inserted macro script we run the following com-
mand

%mediation(data=dat,yvar=survival,avar=new_poverty,mvar=grade,cvar=race date_c sex age_c state_2 state_3 state_4

state_5 state_6 state_7 state_8 , a0=0,a1=0.3,m=0,yreg=survAFT_exp,mreg=logistic,interaction=true, cens=censor)

run;

The first output provided is the results of the outcome and mediator regressions.
Then the direct and indirect effects follow. We give the reduced output which provides
estimates for the controlled direct effect, the natural direct and indirect effect, total
effect and percentage mediated. We fit the survival outcome with accelerated failure
time model since the event is non rare by the end of follow-up in this population. By
inspecting Kaplan-Meier survival curves by quartiles of the exposure, the assumption
of proportional hazard appears satisfied and we therefore fit the AFT model assuming
exponential distribution. The survival analysis yields a negative effect of poverty on
survival, marginally significant adjusting for grade. A positive, significant interaction
between tumor stage at diagnosis and poverty is detected. The logistic regression anal-
ysis shows that the SEP measure is positively associated with stage at diagnosis. We
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The SAS System 

 
The LIFEREG Procedure 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard Error 95% Confidence Limits Chi-Square Pr > ChiSq 

Intercept 1 4.6888 0.0104 4.6684 4.7092 202593 <.0001 

new_poverty 1 -0.1941 0.1110 -0.4117 0.0235 3.06 0.0804 

grade 1 -1.9766 0.0068 -1.9900 -1.9633 84535.5 <.0001 

int 1 -0.8043 0.1374 -1.0737 -0.5349 34.24 <.0001 

RACE 1 -0.2530 0.0087 -0.2701 -0.2359 844.10 <.0001 

date_c 1 0.0106 0.0010 0.0086 0.0125 111.33 <.0001 

SEX 1 0.1715 0.0053 0.1611 0.1819 1040.26 <.0001 

age_c 1 -0.0492 0.0002 -0.0497 -0.0487 40841.6 <.0001 

state_2 1 0.1033 0.0431 0.0189 0.1877 5.75 0.0164 

state_3 1 0.0168 0.0096 -0.0019 0.0356 3.09 0.0787 

state_4 1 -0.0640 0.0093 -0.0821 -0.0458 47.67 <.0001 

state_5 1 -0.0533 0.0146 -0.0819 -0.0248 13.41 0.0003 

state_6 1 -0.0583 0.0150 -0.0876 -0.0290 15.20 <.0001 

state_7 1 0.0219 0.0102 0.0019 0.0420 4.59 0.0322 

state_8 1 0.0053 0.0075 -0.0094 0.0200 0.50 0.4808 

Scale 0 1.0000 0.0000 1.0000 1.0000     

Weibull Shape 0 1.0000 0.0000 1.0000 1.0000   
 

 
The LOGISTIC Procedure 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Intercept 1 -1.5229 0.0213 5098.1448 <.0001 

new_poverty 1 0.8926 0.1884 22.4510 <.0001 

RACE 1 0.2881 0.0170 286.4012 <.0001 

date_c 1 -0.0116 0.00209 30.9004 <.0001 

SEX 1 -0.00647 0.0109 0.3504 0.5539 

age_c 1 -0.00754 0.000417 327.0952 <.0001 

state_2 1 0.0806 0.0802 1.0103 0.3148 

state_3 1 0.0801 0.0201 15.8235 <.0001 

state_4 1 0.1100 0.0192 32.7443 <.0001 

state_5 1 0.0443 0.0303 2.1451 0.1430 

state_6 1 -0.0257 0.0313 0.6728 0.4121 

state_7 1 0.0353 0.0213 2.7512 0.0972 

state_8 1 0.1267 0.0156 66.3337 <.0001 

 

Figure 1: Output of accelerated failure time outcome regression and mediator logistic
regression
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Obs Effect Estimate p_value _95__CI_lower _95__CI_upper 

1 cde 0.94344 0.59996 0.75896 1.17276 

2 nde 0.93693 0.04717 0.87855 0.99919 

3 nie 0.95126 0.00001 0.93017 0.97284 

4 total effect 0.89127 0.00089 0.83278 0.95386 

 

 

 

Obs Effect Estimate 

1 proportion mediated 0.41995 

 

Figure 2: Output of mediation analysis with causal effects estimated for a change in the
exposure from 0 to 0.3 and at the mean level of the covariates
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estimate a total effect of 0.89 indicating that the mean survival time of individuals liv-
ing in counties with 30% of the population living below the poverty level is 89% that
of individuals living in counties with no individuals living below the poverty line. The
controlled direct effect, controlling the mediator at level m = 0, reveals that, had we
intervened setting stage at diagnosis to be non-advanced for all individuals, the mean
survival time of individuals living in counties with 30% of the population living below
the poverty level would be 94% that of individuals living in counties with no individuals
living below the poverty line. Natural direct and natural indirect effects take values
93% and 95%, respectively and stage at diagnosis is found to mediate 42% of the effect
of poverty on survival. The results of this example should be interpreted with caution
as several biases might be present. First, an aggregate, rather than an individual-level
measure of socio-economic position is employed, potentially introducing ecologic bias.
Second, the no-unmeasured confounding assumptions are likely violated in this example.

4 Estimators for direct and indirect when the outcome is
failure time and the mediator is binary

In this section we derive estimators of direct and indirect causal effects when the out-
come is failure time modeled using either Cox proportional hazard model or accelerated
failure time models (AFT) and the binary mediator is modeled using logistic regression.
The results coincide with the ones obtained for direct and indirect effects when outcome
and mediator are binary as derived in Valeri and VanderWeele (2013). The causal effects
have hazard ratio interpretation if the Cox model is employed and mean survival ratio
interpretation under the AFT model. Notably, the derivations under the Cox model
assume that the failure event is rare while this assumption is not required if AFT is
employed.

Models

Let M be a binary mediator following a logistic model, A be an exposure and C be
additional covariates. Assume that the outcome T is a failure time variable following a
cox-proportional hazard model or an accelerated failure time model. We can define the
mediator regression as

logit{P (M = 1|A,C)} = β0 + β1a+ β′2c (5)

We define the outcome model either as

λT (t|a,m, c) = λT (t|0, 0, 0)eγ1a+γ2m+γ3am+γ′4c (6)

or as

log(T ) = θ0 + θ1a+ θ2m+ θ3am+ θ′4c+ νε (7)

where ε follows the extreme value distribution and ν is a shape parameter taking
value ν = 1 if the exponential distribution is assumed and allowed to take different
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values if the Weibull distribution is assumed.

Cox-proportional hazard model for the outcome

Consider λTaMa∗
(t|c) =

fTaMa∗
(t|c)

STaMa∗
(t|c)

where,

fTaMa∗
(t|c) =

∫
fTam(t|Ma∗ = m, c)dPMa∗ (m|c)

=
∫
fTam(t|c)dPMa∗ (m|c) by assumption (iv)

=
∫
fT (t|a,m, c)dPM (m|a∗, c) by assumptions (i)− (iii)

=
∫
λT (t|0, 0, 0)eγ1a+γ2m+γ3am+γ′4cexp{−ΛT (t|0, 0, 0)eγ1a+γ2m+γ3am+γ′4c}dPM (m|a∗, c)

where ΛT (t|0, 0, 0) =
∫ t

0 λT (t|0, 0, 0)dt, and

STaMa∗
(t|c) =

∫
exp{−ΛT (t|0, 0, 0)eγ1a+γ2m+γ3am+γ′4c}dPM (m|a∗, c).

Thus,

λTaMa∗
(t|c) =

∫
λT (t|0,0,0)eγ1a+γ2m+γ3am+γ′4cexp{−ΛT (t|0,0,0)eγ1a+γ2m+γ3am+γ′4c}dPM (m|a∗,c)∫

exp{−ΛT (t|0,0,0)eγ1a+γ2m+γ3am+γ′4c}dPM (m|a∗,c)

∼ λT (t|0, 0, 0)eγ1a+γ′4c
∫
e(γ2+γ3a)mdPM (m|a∗, c) = λT (t|0, 0, 0)eγ1a+γ′4cE[e(γ2+γ3a)M ]

The approximation holds if we assume rare outcome so that ΛT (t|0, 0, 0) ∼ 0 which
implies exp{−ΛT (·)e(·)} ∼ 1.

Now, considering that M ∼ Be(p) with p =
exp(β0+β1a+β′2c)

1+exp(β0+β1a+β′2c)
, by the properties of the

moment generating functions

E[etM ] = 1− p+ pet

and we finally obtain

λTaMa∗
(t|c) = λT (t|0, 0, 0)eγ1a+γ′4c(1− exp(β0 + β1a

∗ + β′2c)

1 + exp(β0 + β1a∗ + β′2c)
+
exp(β0 + β1a

∗ + β′2c+ γ2 + γ3a)

1 + exp(β0 + β1a∗ + β′2c)
)

Define the conditional total hazard ratio by λTEc =
λTaMa
λTa∗Ma∗

. Likewise, we define the

pure direct effect hazard ratio by λNDEc =
λTaMa∗
λTa∗Ma∗

and the total indirect effect hazard
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ratio by λNIEc =
λTaMa
λTaMa∗

. Then we have the following decomposition can be given:

λTEc = λNDEc × λNIEc

and

λNDEc =
λTaMa∗
λTa∗Ma∗

= eγ1(a−a∗)
1− exp(β0+β1a∗+β′2c)

1+exp(β0+β1a∗+β′2c)
+

exp(β0+β1a∗+β′2c+γ2+γ3a)
1+exp(β0+β1a∗+β′2c)

1− exp(β0+β1a∗+β′2c)
1+exp(β0+β1a∗+β′2c)

+
exp(β0+(β1+γ3)a∗+β′2c+γ2)

1+exp(β0+β1a∗+β′2c)

λNIEc =
λTaMa
λTaMa∗

=
1− exp(β0+β1a+β′2c)

1+exp(β0+β1a+β′2c)
+

exp(β0+β1a+β′2c+γ2+γ3a)
1+exp(β0+β1a+β′2c)

1− exp(β0+β1a∗+β′2c)
1+exp(β0+β1a∗+β′2c)

+
exp(β0+β1a∗+γ3a+β′2c+γ2)

1+exp(β0+β1a∗+β′2c)

Accelerated failure time model for the outcome

Consider the counterfactual TaMa∗ .

E[TaMa∗ ] =
∫
E[Tam|Ma∗ , c]dPMa∗ (m|c)

=
∫
E[Tam|c]dPMa∗ (m|c) by assumption (iv)

=
∫
E[T |a,m, c]dPM (m|a∗, c) by assumptions (i)− (iii)

=
∫
E[eθ0+θ1a+θ2m+θ3am+θ′4c+νε]dPM (m|a∗, c)

= eθ0+θ1a+θ′4cE[eνε]E[e(θ2+θ3a)M ]

= eθ0+θ1a+θ′4cE[eνε](1− exp(β0+β1a∗+β′2c)
1+exp(β0+β1a∗+β′2c)

+
exp(β0+β1a∗+β′2c+θ2+θ3a)

1+exp(β0+β1a∗+β′2c)
)

If we consider the mean survival time conditional on the vector of covariates C as
our measure of interest, the following decomposition can be given

E(TaMa)}/{E(Ta∗Ma∗ ) = [{E(TaMa∗ )}/{E(Ta∗Ma∗ )}]× [{E(TaMa)}/{E(Ta∗Ma∗ )}]

where the total effect, given by {E(TaMa)}/{E(Ta∗Ma∗ )}, decomposes in pure direct
effect

{E(TaMa∗ )}/{E(Ta∗Ma∗ )} = eθ1(a−a∗)
1− exp(β0+β1a∗+β′2c)

1+exp(β0+β1a∗+β′2c)
+

exp(β0+β1a∗+β′2c+θ2+θ3a)
1+exp(β0+β1a∗+β′2c)

1− exp(β0+β1a∗+β′2c)
1+exp(β0+β1a∗+β′2c)

+
exp(β0+(β1+θ3)a∗+β′2c+θ2)

1+exp(β0+β1a∗+β′2c)

times total indirect effect
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{E(TaMa)}/{E[(TaMa∗ )} =
1− exp(β0+β1a+β′2c)

1+exp(β0+β1a+β′2c)
+

exp(β0+β1a+β′2c+θ2+θ3a)
1+exp(β0+β1a+β′2c)

1− exp(β0+β1a∗+β′2c)
1+exp(β0+β1a∗+β′2c)

+
exp(β0+β1a∗+θ3a+β′2c+θ2)

1+exp(β0+β1a∗+β′2c)

These estimators coincide with the ones obtained when a rare binary outcome is
modeled using logistic regression and a binary mediator is modeled using logistic regres-
sion (Valeri and VanderWeele, 2013). Note that when a survival outcome is modeled
using Cox proportional hazard model the event is assumed to be rare. This assumption
is not required if an accelerated failure time model is employed instead.
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