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eAppendix 1

A property holds for almost all distributions compatible with a graph if all exceptions are defined by a countable number of constraints, and each constraint leading to an exception defines a set of lower dimension than the space of all the compatible distributions (a more general definition is possible, replacing “lower dimension” by measure zero over the space of compatible distribution). Faithfulness is an example of such a property, for unfaithful exceptions are defined by independence constraints (which reduce the dimension of the space of possible distributions), and there are only a finite number of such constraints among variables in a finite graph. Both confounding by C and noncollapsibility over C also hold for almost all compatible distributions when C affects both E and D (as in Figures 2 and 3), corresponding to the fact that nonconfounding and collapsibility represent dimension-reducing constraints when they cannot be derived from the diagram.

If a property holds for almost all distributions and we do not assign special probability mass to constraints that lead to exceptions, the exceptions will have zero probability and the property is said to hold almost surely under our probability assignments. When we allow for the underlying discreteness of actual measurements and data, as opposed to theoretical distributions, near-exceptions are left with some small positive probability, and hence in practical terms we say that we “usually expect” the property to hold.

eAppendix 2

We show that, if the odds ratio is simply collapsible, the collapsed (“crude”) risk ratio RRED is bounded by the stratum-specific risk ratios RRED|C=1 and RRED|C=0, thus constraining confounding of RRED by C. There are two cases to consider:

i) No confounding by C: In this case the risk ratio is known to be collapsible over C1,4 and the claim is immediately satisfied. If in addition the OR is simply collapsible then Figure 1 (as well as 2) must be violated, so that either 

(a) C is has no effect on E and E has no effect on D, so 

ORED = ORED|C=1 = ORED|C=0  = RRED = RRED|C=1 = RRED|C=0 = 1, 

or 

(b) C has no independent effect on D, so cannot be a modifier (RRED|C=1 = RRED|C=0).  

In either case, RR will be simply collapsible over C as well (RRED = RRED|C=1 = RRED|C=0).

ii) Confounding by C: This case is represented in Appendix Table 1. Note that OR = ab is simply collapsible and that the assumptions ab ≠ 1, and x0y1 ≠ x1y0 imply confounding by C. Table 2 is an example with x1 = 60, x0 = 20, y1 = 20, y0  = 90, a = 3 , and b = 2. 

Assume without loss of generality that RRED|C=1 > RR ED|C=0. Note that 

RRED|C=1 – RR ED|C=0

= [ax1/(ax1+y1)]/[x1/(x1+by1)] – [ax0/(ax0+y0)]/[x0/(x0+by0)]

= a[(x1+by1)/(ax1+y1) – (x0+by0)/(ax0+y0)].

Thus, RRED|C=1 > RR ED|C=0 implies that 

[(x1ax0 + x1y0 + by1ax0 + by1y0) – (x0ax1 + x0y1 + by0ax1 + by0y1)] 

= (x1ax0–x0ax1) + (x1y0 – x0y1) + (by1ax0 –y0ax1) + (by1y0 – by0y1) 

= 0 + (x1y0 - x0y1) + (ab(y1x0 - y0x1)) + 0 = (ab–1) (y1x0 – y0x1) > 0. 

Now 

RRED = [a(x1+x0)/(a(x1+x0)+y1+y0))]/[(x1+x0)/(x1+x0+b(y1+y0))].

The claim follows by noting that RRED > RRED|C=1 and RRED < RRED|C=0 reduce to (ab–1)(y1x0 – y0x1) < 0, because

First, note that RRED – RR ED|C=1 

= [a(x1+x0)/(a(x1+x0)+y1+y0))]/[(x1+x0)/(x1+x0+b(y1+y0))] -  [ax1/(ax1+y1)]/[x1/(x1+by1)] 

= a[(x1+x0+b(y1+y0))/(a(x1+x0)+y1+y0)) -(x1+by1)/(ax1+y1)]. 

Thus, RRED > RR ED|C=1 implies that 
[((x1+x0)ax1) + ((x1+x0)y1) + (b(y1+y0)ax1) + (b(y1+y0)y1)] – [(x1a(x1+x0)) + (x1(y1+y0)) + (by1a(x1+x0)) + (by1(y1+y0))] 

= [((x1+x0)ax1) – (x1a(x1+x0))]  + [((x1+x0)y1) – x1(y1+y0))] + [(b(y1+y0)ax1) – (by1a(x1+x0))] + [(b(y1+y0)y1) - (by1(y1+y0))] 

= 0 + (x1y1 - x1y1) + (x0y1 – x1y0) + (ba(y1x1 - y1x1)) + (y0x1 – y1x0) + 0 

= 0 + (x0y1 – x1y0) + 0 + (ba(y0x1 – y1x0)) 

= (ba–1)(y0x1 – y1x0) > 0 

which is equivalent to (ab–1)(y1x0 – y0x1) < 0. 
Second, note that 

RRED – RR ED|C=0 

= [a(x1+x0)/(a(x1+x0)+y1+y0))]/[(x1+x0)/(x1+x0+b(y1+y0))] – [ax0/(ax0+y0)]/[x0/(x0+by0)] 

= a[(x1+x0+b(y1+y0))/(a(x1+x0)+y1+y0)) -(x0+by0)/(ax0+y0)]. 

Thus, RRED < RR ED|C=0 implies that 

[((x1+x0)ax0) + ((x1+x0)y0) + (b(y1+y0)ax0) + (b(y1+y0)y0)] – [(x0a(x1+x0)) + (x0(y1+y0)) + (by0a(x1+x0)) + (by0(y1+y0))] 

= [((x1+x0)ax0) – (x0a(x1+x0))]  + [((x1+x0)y0) – x0(y1+y0))] + [(b(y1+y0)ax0) – (by0a(x1+x0))] + [(b(y1+y0)y0) - (by0(y1+y0))] 

= 0 + (x0y0 – x0y0) + (x1y0 – x0y1) + (ba(y0x0 – y0x0)) + (y1x0 – y0x1) + 0 

= 0 + (x1y0 – x0y1) + 0 + (ba(y1x0 – y0x1)) = (ab – 1)( (y1x0 – y0x1) < 0. 
The proofs for the other case (i.e., RRED|C=1 < RR ED|C=0) follow by symmetric arguments. Note that RRED, RRED|C=1 and RR ED|C=0 cannot all be equal when ab ≠ 1 and x0y1 ≠ x1y0.           

eAppendix Table 1. OR Collapsibility with confounding* 
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*a, b, x1, x0, y1 and y0 are positive integers, ab ≠ 1, and x0y1 ≠ x1y0

