
 

Supplementary Material  

(Schomaker,M., Hogger, S., Johnson, L., Hoffmann, C., Bärnighausen, T., Heumann, C., Simultaneous Treatment 

of Missing Data and Measurement Error in HIV Research using Multiple Overimputation, 2015, Epidemiology) 

eTable 1: Mortality in South African patients after starting antiretroviral treatment. Cox 

regression estimates, reported as hazard ratios, for a complete case analysis, multiple 

imputation and multiple overimputation. 95% confidence intervals are reported in brackets. 

All results relate to the data from the illustrative example and should not be interpreted 

causally. 

  

  Complete Cases Multiple Imputation Multiple Overimputation 

Baseline CD4     

<25 1 1 1 

25-50 0.73 [0.62;0.87] 0.74 [0.67;0.82] 0.63 [0.58;0.70] 

50-100 0.47 [0.40;0.56] 0.49 [0.45;0.54] 0.47 [0.43;0.52] 

100-200 0.33 [0.28;0.38] 0.33 [0.30;0.36] 0.34 [0.30;0.38] 

>200 0.38 [0.29;0.48] 0.29 [0.25;0.34] 0.21 [0.18;0.24] 

Baseline log10 viral load     

<4  1 1 1 

4 to 5 1.29 [1.07;1.57] 1.18 [1.07;1.31] 1.20 [1.08;1.33] 

5 to 6 1.54 [1.26;1.88] 1.41 [1.26;1.57] 1.42 [1.27;1.59] 

>6 1.71 [1.27;2.29] 1.60 [1.34;1.91] 1.66 [1.37;2.01] 

     

Sex     

Female 1 1 1 

Male 1.34 [1.19;1.51] 1.31 [1.22;1.40] 1.31 [1.22;1.41] 

    

Age     

<25 1 1 1 

25-35 1.01 [0.81;1.26] 1.00 [0.87;1.16] 1.04 [0.90;1.20] 

35-45 1.05 [0.83;1.32] 1.09 [0.94;1.26] 1.14 [0.99;1.32] 

>45 1.22 [0.95;1.57] 1.36 [1.16;1.59] 1.37 [1.17;1.60] 

    

Year     

before 2004 1 1 1 

2004-2006 0.94 [0.75;1.18] 1.27 [1.06;1.50] 1.27 [1.06;1.50] 

2007 and after 1.01 [0.76;1.34] 1.52 [1.25;1.84] 1.53 [1.26;1.85] 

     

Cohort     

A  1 1 1 

B 0.81 [0.67;0.97] 0.93 [0.83;1.04] 0.93 [0.83;1.04] 

C 0.70 [0.44;1.13] 0.88 [0.76;1.00] 0.89 [0.78;1.02] 

D 0.85 [0.71;1.01] 0.96 [0.88;1.06] 0.95 [0.86;1.04] 



 

eTable 2: Mortality in South African patients after starting antiretroviral treatment.  

Estimates from a Cox regression model, reported as hazard ratios, if baseline viral load was 

not included in the analysis. Results are reported for a complete case analysis, multiple 

imputation and multiple overimputation. 95% confidence intervals are reported in brackets. 

All results relate to the data from the illustrative example and should not be interpreted 

causally. 

 

  Complete Cases Multiple Imputation Multiple Overimputation 

Baseline CD4     

<25 1 1 1 

25-50 0.75 [0.63;0.89] 0.73 [0.66;0.81] 0.62 [0.57;0.68] 

50-100 0.47 [0.40;0.56] 0.48 [0.44;0.53] 0.46 [0.42;0.50] 

100-200 0.32 [0.27;0.37] 0.32 [0.29;0.35] 0.33 [0.29;0.36] 

>200 0.36 [0.28;0.46] 0.28 [0.24;0.33] 0.20 [0.17;0.23] 

    

Sex    

Female 1 1 1 

Male 1.36 [1.21;1.53] 1.33 [1.24;1.42] 1.33 [1.24;1.43] 

    

Age    

<25 1 1 1 

25-35 1.00 [0.80;1.25] 1.00 [0.87;1.15] 1.04 [0.90;1.21] 

35-45 1.04 [0.83;1.31] 1.09 [0.94;1.26] 1.15 [1.00;1.33] 

>45 1.22 [0.95;1.57] 1.36 [1.16;1.59] 1.39 [1.19;1.62] 

    

Year    

before 2004 1 1 1 

2004-2006 0.96 [0.76;1.20] 1.28 [1.07;1.52] 1.27 [1.07;1.52] 

2007 and after 0.99 [0.74;1.31] 1.51 [1.24;1.83] 1.52 [1.25;1.85] 

    

Cohort    

A  1 1 1 

B 0.86 [0.72;1.03] 0.98 [0.88;1.10] 0.99 [0.88;1.11] 

C 0.73 [0.45;1.16] 0.89 [0.77;1.02] 0.90 [0.78;1.03] 

D 0.81 [0.69;0.95] 0.91 [0.83;1.00] 0.90 [0.82;0.99] 

 

 

 

 

 



 

eTable 3: Mortality in South African patients after starting ART. Estimates from a Cox 

regression model, reported as hazard ratios, if baseline TB, WHO stage, and haemoglobin 

are added to the analysis. Results are reported for a complete case analysis, multiple 

imputation and multiple overimputation. 95% CI’s are reported in brackets. All results relate 

to the data from the illustrative example and should not be interpreted causally. 

  Complete Cases Multiple Imputation Multiple Overimputation 

Baseline CD4 
 

  

<25 1 1 1 

25-50 0.74 [0.58;0.94] 0.80 [0.72;0.88] 0.68 [0.62;0.74] 

50-100 0.5 [0.39;0.63] 0.56 [0.51;0.62] 0.50 [0.45;0.55] 

100-200 0.48 [0.39;0.6] 0.41 [0.37;0.45] 0.37 [0.33;0.42] 

>200 0.49 [0.35;0.7] 0.37 [0.32;0.44] 0.24 [0.21;0.28] 

Baseline log10 viral load 
 

  

<4  1 1 1 

4 to 5 1.43 [1.07;1.91] 1.11 [1.01;1.23] 1.14 [1.03;1.27] 

5 to 6 1.53 [1.14;2.06] 1.24 [1.11;1.38] 1.26 [1.13;1.42] 

>6 1.28 [0.85;1.94] 1.32 [1.11;1.58] 1.43 [1.18;1.73] 

Prevalent TB 
 

  

no 1 1 1 

yes 1.98 [1.38;2.83] 1.11 [0.96;1.28] 1.07 [0.93;1.24] 

Baseline WHO stage 
 

  

I & II 1 1 1 

III 2.45 [1.68;3.56] 1.4 [1.26;1.55] 1.34 [1.21;1.48] 

IV 3.40 [2.27;5.1] 1.85 [1.67;2.05] 1.77 [1.60;1.96] 

Hemoglobin  
 

  

per gm/dL 0.85 [0.82;0.88] 0.9 [0.89;0.91] 0.89 [0.88;0.9] 

Sex    

Female 1 1 1 

Male 1.34 [1.13;1.59] 1.44 [1.34;1.54] 1.44 [1.34;1.54] 

Age    

<25 1 1 1 

25-35 0.93 [0.7;1.24] 1 [0.87;1.16] 1.04 [0.91;1.21] 

35-45 0.91 [0.68;1.24] 1.1 [0.95;1.27] 1.17 [1.01;1.36] 

>45 1.14 [0.81;1.58] 1.39 [1.19;1.62] 1.44 [1.23;1.68] 

Year    

before 2004 1 1 1 

2004-2006 0.77 [0.56;1.08] 1.32 [1.11;1.57] 1.33 [1.12;1.58] 

2007 and after 0.77 [0.51;1.16] 1.56 [1.29;1.89] 1.61 [1.32;1.95] 

Cohort    

A 1 1 1 

B 0.59 [0.45;0.76] 0.86 [0.77;0.97] 0.87 [0.77;0.98] 

C ---
1
 0.87 [0.76;1] 0.88 [0.77;1.01] 

D ---
1 

0.97 [0.88;1.07] 0.97 [0.88;1.07] 

                                                           
1
 Cohorts C and D are excluded in the complete case analysis because of missing WHO stage data 



 

eTable 4: Mortality in South African patients after starting antiretroviral treatment. Cox 

regression estimates, reported as hazard ratios, based on the longitudinal data, stratified by 

cohort. Results are reported for a complete case analysis, multiple imputation and multiple 

overimputation. 95% confidence intervals are reported in brackets. All results relate to the 

data from the illustrative example and should not be interpreted causally. 

  Complete Cases Multiple Imputation Multiple Overimputation 

Time-updated CD4     

<25 1 1 1 

25-50 0.76 [0.56;1.03] 0.72 [0.63;0.82] 0.45 [0.40;0.51] 

50-100 0.39 [0.29;0.52] 0.42 [0.37;0.48] 0.25 [0.22;0.29] 

100-200 0.25 [0.19;0.33] 0.22 [0.19;0.25] 0.14 [0.12;0.16] 

>200 0.10 [0.07;0.16] 0.13 [0.11;0.15] 0.06 [0.05;0.08] 

Time-updated     

virological sup.     

unsuppressed 1 1 1 

suppressed 0.28 [0.16;0.47] 0.67 [0.59;0.76] 0.60 [0.55;0.66] 

Sex     

Female 1 1 1 

Male 1.39 [1.13;1.70] 1.21 [1.11;1.33] 1.19 [1.08;1.30] 

Age     

<25 1 1 1 

25-35 0.92 [0.61;1.36] 0.99 [0.83;1.19] 1.03 [0.85;1.23] 

35-45 1.07 [0.72;1.61] 1.19 [0.91;1.32] 1.15 [0.95;1.39] 

>45 1.31 [0.85;2.03] 1.45 [1.19;1.76] 1.43 [1.17;1.75] 

Year     

before 2004 1 1 1 

2004-2006 0.83 [0.58;1.19] 1.20 [0.99;1.45] 1.11 [0.91;1.36] 

2007 and after 0.60 [0.38;0.96] 1.08 [0.86;1.35] 0.96 [0.76;1.20] 

 

 

 

 

 

 

 

 

 



 

eTable 5: Mortality in South African patients after starting antiretroviral treatment.  

Estimates from a Cox regression model, reported as hazard ratios, if the variables and 

categorizations from the predictive model of May et al.2 (developed in 3 sub-Saharan 

countries) are used. The analysis is restricted to one year on antiretroviral treatment. 95% 

confidence intervals are reported in brackets. All results relate to the data from the 

illustrative example and should not be interpreted causally. 

 

  Complete Cases Multiple 
Imputation 

Multiple 
Overimputation 

May et al.
2 

Baseline CD4      

<25 1 1 1 1 

25-50 0.67 [0.51;0.88] 0.76 [0.68;0.85] 0.61 [0.55;0.67] 0.76 [0.62; 0.94] 

50-100 0.39 [0.29;0.52] 0.51 [0.46;0.57] 0.43 [0.39;0.48] 0.46 [0.38; 0.57] 

100-200 0.34 [0.26;0.43] 0.34 [0.30;0.38] 0.31 [0.27;0.35] 0.35 [0.28; 0.42] 

>200 0.34 [0.22;0.52] 0.32 [0.26;0.38] 0.20 [0.17;0.24] 0.29 [0.22; 0.38] 

     

Sex     

Male 1 1 1 1 

Female 0.8 [0.66;0.98] 0.71 [0.66;0.77] 0.71 [0.66;0.77] 0.68 [0.58; 0.79] 

     

Weight (in kg)     

<45 1 1 1 1 

45-50 0.65 [0.49;0.87] 0.69 [0.61;0.78] 0.68 [0.61;0.77] 0.59 [0.48; 0.72] 

50-60 0.33 [0.26;0.43] 0.41 [0.37;0.46] 0.39 [0.35;0.44] 0.40 [0.33; 0.48] 

>60 0.24 [0.18;0.32] 0.30 [0.27;0.34] 0.29 [0.26;0.33] 0.24 [0.19; 0.30] 

     

WHO stage     

I and II 1 1 1 1 

III and IV 2.49 [1.58;3.92] 1.61 [1.44;1.81] 1.69 [1.51;1.9] 2.72 [1.87; 3.95] 

     

Age (in years)     

<40  1 1 1  

>40 1.07 [0.86;1.33] 1.23 [1.13;1.34] 1.21 [1.11;1.32] 1.43 [1.23; 1.66] 

 

 

 

 

 

                                                           
2
 May M, Boulle A, Phiri S, et al. Prognosis of patients with HIV-1 infection starting therapy in sub-Saharan 

Africa: a collaborative analysis of scale-up programmes. Lancet. 2010;376:449-457. 



 

eFigure 1: Results of the Cox regression analysis when using different assumptions about the 

measurement error variance: (a) σUij

2 =0.202 for CD4 count and σUij

2 =0.152for log viral load 

(b) σUij

2 =0.302 for CD4 count and σUij

2 =0.312 for log viral load. 

(a) (b) 

  

  
 

 

 

 

 

 

 



eFigure 2: Results of variations of the simulation study. The settings specified in the captions refer to changes compared to
the main setting in the manuscript.

Variation of missingness assumption

(a) Data missing completely at random, with 10% missingness for both X1 and X2 (b) Data missing completely at random, with 40% missingness for both X1 and X2
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Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.033 -0.048 0.0018 0.0034

Multiple imputation 0.035 -0.049 0.0019 0.0036

Multiple overimputation 0.024 -0.019 0.0014 0.0023

Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.033 -0.048 0.0020 0.0040

Multiple imputation 0.042 -0.054 0.0028 0.0047

Multiple overimputation 0.024 -0.018 0.0019 0.0033
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(c) Data missing at random, but with higher missingness probability, ca. 20% for

both X1 and X2, defined via πX(T ) = 1− {0.02T 2 + 1}−1
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Complete cases 0.060 -0.073 0.0043 0.0065

Multiple imputation 0.058 -0.069 0.0041 0.0062

Multiple overimputation 0.038 -0.032 0.0025 0.0033
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Variation of the measurement error variance

(d) Larger measurement error variance, 0.32 and 0.312 for both X1 and X2 respec-

tively, no missing data

(e) Larger measurement error variance, 0.32 and 0.312 for both X1 and X2 respec-

tively, with missing data
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true parameter
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multiple imputation
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Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.045 -0.065 0.0026 0.0052

Multiple imputation – – – –

Multiple overimputation 0.023 -0.019 0.0015 0.0022

Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.043 -0.062 0.0025 0.0048

Multiple imputation 0.040 -0.059 0.0022 0.0045

Multiple overimputation 0.017 -0.009 0.0013 0.0022

3



(f) Smaller measurement error variance, 0.22 and 0.152 for both X1 and X2 respec-

tively, no missing data

(g) Smaller measurement error variance, 0.22 and 0.152 for both X1 and X2 respec-

tively, with missing data
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Complete cases 0.019 -0.022 0.0010 0.0016

Multiple imputation – – – –

Multiple overimputation 0.023 -0.019 0.0014 0.0019

Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.017 -0.018 0.0009 0.0015

Multiple imputation 0.012 -0.015 0.0009 0.0015

Multiple overimputation 0.017 -0.009 0.0012 0.0019
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Variation of the linear predictor

(h) The linear predictor Xβ is defined as −0.1 lnX1 + 0.1 log10X2, no missing data (i) The linear predictor Xβ is defined as −0.1 lnX1 + 0.1 log10X2, with missing data
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Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.012 -0.017 0.0007 0.0014

Multiple imputation – – – –

Multiple overimputation 0.005 -0.005 0.0009 0.0018

Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.011 -0.016 0.0008 0.0015

Multiple imputation 0.010 -0.015 0.0008 0.0015

Multiple overimputation 0.004 -0.001 0.0011 0.0023
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(j) Additional 4 covariates: X3 ∼ Binom(0.65), X4 ∼ Weibull(1.75, 1.9), X5 ∼
Exp(1), X6 ∼ Gamma(0.25, 2), β = (−0.3, 0.3, 0, 0, 0, 0), no missing data

(k) Additional 4 covariates: X3 ∼ Binom(0.65), X4 ∼ Weibull(1.75, 1.9), X5 ∼
Exp(1), X6 ∼ Gamma(0.25, 2), β = (−0.3, 0.3, 0, 0, 0, 0), with missing data
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Complete cases 0.033 -0.050 0.0018 0.0035

Multiple imputation – – – –

Multiple overimputation 0.023 -0.018 0.0015 0.0023

Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.031 -0.049 0.0018 0.0037

Multiple imputation 0.027 -0.047 0.0016 0.0035

Multiple overimputation 0.018 -0.014 0.0015 0.0027
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Wrong assumption for measurement error variance used

(l) Wrong assumption used for measurement error variance: 0.362 and 0.3552 for X1

and X2 respectively, no missing data

(m) Wrong assumption used for measurement error variance: 0.362 and 0.3552 for

X1 and X2 respectively, with missing data
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Complete cases 0.034 -0.048 0.0018 0.0033

Multiple imputation – – – –

Multiple overimputation -0.013 0.040 0.0012 0.0039

Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.033 -0.045 0.0017 0.0030

Multiple imputation 0.029 -0.042 0.0015 0.0028

Multiple overimputation 0.017 -0.009 0.0012 0.0021
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eText 1: Outline of the technical background of multiple overimputation. More details can be found in both

the main body and the appendices of Blackwell et al. (2014) and Honaker and King (2010). For a better

understanding of the technical details the reader may also wish to consult Rubin (1996) for more insight on

multiple imputation, King et al. (2001) for useful technicalities of an algorithm similar to EMB, Dempster

et al. (1977) for the EM algorithm, and Goodnight (1979) for the details of the sweep operator.

1. Data and notation: Consider a data set X consisting of observations xi = (xi1, . . . ,xip). Let eij be

an indicator whether xij was measured with error and mij be an indicator if xij is missing. The

data may consist of perfectly measured values xobs
i = {xij ; eij = mij = 0}, values which are missing,

xmis
i = {xij ;mij = 1}, and values measured with error (wij) as a proxy to the latent ‘true’ unobserved

values xerrij , xerr
i = {xij ; eij = 1}, wi = {wij ; eij = 1}. Thus, the observed data for any observation is

di = (xobs
i ,wi) while the true underlying data is xi = (xobs

i ,xerr
i ,xmis

i ).

2. Observed data probability density function: The probability density function for the observed data

equates to

p(di,mi, ei|θ, γ, φ) =

∫ ∫
p(xi|θ)p(wi|xi, γ)p(mi, ei|di,xi, φ) dxerr

i dxmis
i (1)

whereby θ refers to the parameterization of the true underlying data, γ to the error distribution, and φ

to the joint distribution of mi and ei. Using the mismeasured at random (MMAR) assumption, which

is p(mi, ei|di,xi, φ) = p(mi, ei|di, φ), (1) can be written as

p(di,mi, ei|θ, γ, φ) = p(mi, ei|di, φ)p(di|θ, γ) (2)

which is proportional to

p(di|θ, γ) =

∫ ∫
p(xi|θ)p(wi|xi, γ) dxerr

i dxmis
i . (3)

Note that from a Bayesian perspective, for a given prior on (θ, γ), this gives us a posterior distribution

for p(θ, γ|di) which makes use of only observed quantities.

3. Posterior predictive distribution of the unobserved data: To obtain valid inference with multiple impu-

tation (MI), one needs to draw from the posterior predictive distribution of the unobserved data. If

one were to omit mismeasured data and thus define xerrij = xmis
ij MI would already yield valid inference

but omit important information. Given that both missing and latent values are unobserved, draws

from the predictive posterior distribution of this unobserved data relate to:

p(xerr
i ,xmis

i ) =

∫
p(xerr

i ,xmis
i |di, θ, γ)p(θ, γ|di)dθdγ . (4)

4. Multiple imputation with EMB: To draw values from (4) one needs to (i) draw (θ(i), γ(i)) from its

posterior distribution p(θ, γ|di) and then (ii) draw (xerr
i ,xmis

i ) from p(xerr
i ,xmis

i |di, θ, γ). The EMB

algorithm utilizes this (i) by means of the EM algorithm to obtain an unbiased estimate θ̂ in the

presence of unobserved data, and (ii) by repeating this for different bootstrap samples of d. Specifically,

under the assumption of a multivariate normal distribution for the data, X ∼ N(µ,Σ), and under the

assumption of no measurement error, EMB does the following:

i) The Expectation-Maximization (EM) algorithm estimates θ = (µ,Σ) in the presence of unobserved

data. In the E(xpectation)-Step the algorithm fills in estimates for the missing values using

conditional expectations; in the M(aximazation)-Step the complete data parameters are estimated

(from the sufficient statistics) using the available and filled-in data. These two steps are repeated

until the parameter estimates converge and one obtains (µ̂, Σ̂), see Dempster et al. (1977) for the

technical details. Thus, an estimate of θ can be drawn from N(µ̂, Σ̂). This step simulates draws

from p(θ, γ|di) related to (3).

ii) The draws from N(µ̂, Σ̂) are used to obtain β̃ (an estimate of β) via the sweep operator and

impute missing values via xij = xobsi,−j β̃ + ε̃. We refer the reader to Goodnight (1979) and the

appendix of Honaker and King (2010) for the details on how µ̂ and Σ̂ relate to β̃.
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iiii) Repeating this procedure for M bootstrap samples of d yields M different imputations ade-

quately reflecting estimation uncertainty. They can be seen as draws from (4) for xerr
i = ∅.

5) Incorporating measurement error into EMB via prior distributions: To simulate proper draws from

(4) one needs to first simulate proper draws from the posterior relating to (3). Blackwell et al. (2014)

show that under the setting of (3) the EM-algorithm needs to estimate

E(T (xi)|di, θ
(t), γ) =

∫ ∫
T (xi) p(x

err
i ,xmis

i |xobs
i , θ(t))︸ ︷︷ ︸

imputation

p(wi|xi, γ)︸ ︷︷ ︸
mismeasurement

dxerr
i dxmis

i (5)

in the E-Step. Note that θ(t) refers to the tth updated estimate of θ and T (xi) to the complete data

sufficient statistic (from which θ can be derived; under multivariate normality T (x) = X′X). Now, if

we assume a classical measurement error model we implicitly specify

wij ∼ N(xij , λ
2
ij) ∀wij ∈ wi . (6)

Putting (6) into (5) and using the normality assumptions xerr
i |xobs

i , θ ∼ N(µe|o,Σe|o), wi|xerr
i , λ2i ∼

N(xerr
i ,Λi) yields the following distribution

(xerr
i |di, θ

(t), λ2i ) ∼ N(µ∗,Σ∗) with Σ∗ = (Λ−1i + Σ−1e|o)−1, µ∗ = Σ∗(Λ−1i wi + Σ−1e|oµe|o) , (7)

as demonstrated by Blackwell et al. (2014). Thus, to calculate the expectation on the left hand side of

(5) for each cell with error, the E-Step needs simply make use of (7). This will result in overall proper

multiple overimputations drawn from (4).

6) Implications for the Implementation with Amelia II: The standard EMB algorithm is implemented in

the R-package Amelia II (Honaker et al., 2011). It allows the incorporation of prior distribution for

single cells, i.e xij ∼ N(µij,0, κ
2
ij,0). If using µij,0 = wij and κ2ij,0 = λ2ij one obtains the same results

as in (7), see the appendix of Honaker and King (2010); and thus, using priors for mismeasured cells

which equal xij ∼ N(wij , λ
2
ij) yields draws from the modified EMB algorithm described in step 5, and

therefore proper multiple overimputations. To specify the mismeasured cells one needs the overimp

option of the function amelia, and to specify the priors for the respective cells one needs the priors

option.

7) Combining estimates after multiple overimputation: After generating M overimputed datasets by

means of multiple overimputation, the analysis model (e.g. any regression model) can be fitted on

each overimputed dataset and the M results will be combined as follows: the point estimate of θ (here

implicitly referring to the parameters in the analysis model) is

θ̂MI =
1

M

M∑
m=1

θ̂(m) (8)

where θ̂(m) refers to the estimate of θ in the mth overimputed set of data D(m), m = 1, . . . ,M . Based

on the average within imputation covariance Ŵ = M−1
∑

m Ĉov(θ̂(m)) and the between imputation

covariance B̂ = (M − 1)−1
∑

m(θ̂(m) − θ̂MI)(θ̂
(m) − θ̂MI)

′
one obtains variance estimates via

Ĉov(θ̂MI) = Ŵ +
M + 1

M
B̂ =

1

M

M∑
m=1

Ĉov(θ̂(m)) +
M + 1

M(M − 1)

M∑
m=1

(θ̂(m) − θ̂MI)(θ̂
(m) − θ̂MI)

′
(9)

To construct confidence intervals for θ̂MI in the scalar case, it may be assumed that V̂ar(θ̂MI)
− 1

2 (θ̂MI−θ)
follows a tR-distribution with approximately R = (M − 1)[1 + {MŴ/(M + 1)B̂}]2 degrees of freedom.

Instead of computing these quantities by hand the function mi.inference in the R-package norm

can be used; or, alternatively, the functionalities in the R-package Zelig or the Stata commands mi

estimate or mim can be used.
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eText 2: Simulation of viral loads and the misclassification proportion related to measurement error.

R-code:

# Generating true data

n=30000

VL <- rlnorm(n, meanlog=10.760, sdlog=1.808607)

# Generating mismeasured data

VL_measured <- 10^(log10(VL)+rnorm(n,0,0.255))

# Virological suppression if VL<1000

VL_supp <- as.numeric(VL<1000)

VL_measured_supp <- as.numeric(VL_measured<1000)

# Evaluating misclassification

VL_total <- cbind(VL_supp,VL_measured_supp)

misclass_FN <- as.numeric(VL_total[,1]==1 & VL_total[,2]==0)

misclass_FP <- as.numeric(VL_total[,1]==0 & VL_total[,2]==1)

mean(misclass_FN)+mean(misclass_FP) # overall misclassification

With z0.985 = 2.17 and a standard deviation of 0.23 one obtains about 1.5% misclassification by eval-

uating the confidence intervals related to the prior distributions used during multiple overimputation for

the mismeasured values. For example, if a patient had a virological failure (VLsupp = 0) we impose a prior

normal distribution, N(0, 0.23), on the mismeasured value which implies that the upper limit of a 98.5%

confidence interval corresponds to 0+2.17·0.23 = 0.499 and thus 1.5% of values from this normal distribution

are > 0.499 and therefore get rounded off to 1 which relates to virological failure and thus misclassification.

The motivation and more details on how to use prior normal distributions for categorical variables can be

found in Section 3.2 of Blackwell et al. (2014).
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