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1. Estimating functions for the MSM in the exposed 

 In this section, we show that our proposed estimators are derived straightforwardly 

using the estimating equation framework in general notation. We define the full-data 

estimating function (Tsiatis, 2008; Tan, 2010) of a marginal structural model (MSM) in the 

exposed (Model 1) with the 2-dimensional weight function w(a) = (1, a)T for each member 

i = 1,..., n: 

∑ −=
a a

a
iii YawA ))(( 11 µτ . 

These are unbiased (ie, the expectation equals 0-vector) estimating functions because 

Model 1 implies the following moment conditions: 

E[Ya – µ1a | A = 1] = E[A(Ya – µ1a) | A = 1] = E[A(Ya – µ1a)]/Pr[A = 1] = 0, 

for a = 0, 1. Equating the sample means of τ1i to 0 (ie, to the population mean) yields 

asymptotically unbiased estimators of µ1a for a = 0, 1. The full-data estimating equations 

reduce to 
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Because both the counterfactual variables Yi
1 and Yi

0 cannot be observed for every i, the 

aforementioned full-data estimating equations might suffer from the missing-data problem 
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(Kang and Schafer, 2007). First, consider the second element of the estimating function, 

Ai(Yi
1 – µ11). By consistency assumption, Ai(Yi

1 – µ11) = Ai(Yi – µ11) for all i, and thus E[A(Y 

– µ11)] also equals to 0. Therefore, we can nonparametrically estimate µ11 from observed 

data without any other assumptions. 

By contrast, µ10 cannot be estimated through the first element Ai(Yi
0 – µ10), because 

Yi
0 is unavailable for population members whose Ai = 1; moreover, Ai(Yi

0 – µ10) = Ai(Yi – 

µ10) ≡ 0 for Ai = 0, which contains no information on µ10. To recover the information for µ10 

lost due to missing Yi
0, we weight the unexposed population by the inverse odds of the 

probability of their exposure (Ai = 0) based on the propensity score (PS) Pr[A = 1|X = xi] = 

π(xi), given their confounder value xi (Sato and Matsuyama, 2003; Hernán and Robins, 

2006). One can readily show that 
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XA
 = E[A(Y0 – µ10)] = 0 

under the conditional exchangeablity assumption for Yi
0 (ie, XAY 0 ). Thus, unbiased 

“observed” estimating equations that only rely on observed data but contain causal target 

parameters µ1a can be obtained as 
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where π(x; α) is a parametric model of PS π(x) and )ˆ;(ˆ αππ ii X=  is a fitted PS value for 

member i calculated from Xi and maximum likelihood estimates of α.  

The above weighted estimating functions can be improved from the viewpoints of 
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efficiency and robustness. In line with the argument of Tan (2010) that targets causal 

parameters in the total population, given any full-data estimating function targeting the 

population with exposure level a* for parameter θ, that is, I[Ai = a*]Σaηa,i(θ), whose 

expectation is 0 (e.g., in our τ1i, a* = 1 and ηa,i(µ1a) = (1, a)T(Yi
a – µ1a)), the following 

“observed” estimating function must be also mean-zero: 
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where I[⋅] is an indicator function, ]Pr[)( xXaAxa ===π , and ])(E[)( xXx aa == θηϖ . 

The estimating function is doubly robust (DR), because for unknown πa(x) and ϖa(x), its 

mean is still 0 if either πa(x) or ϖa(x), but not necessarily both, is correctly specified as a 

parametric model. The first term of the augmented estimating function is the 

aforementioned weighted estimating function when the exposure level A can only take 0 or 

1 and we choose the target as a* = 1 (ie, exposed). If conditional exchangeability for Ya (for 

all a) is correct, then E[Ya|X = x] = E[Ya|A = a, X = x] = E[Y|A = a, X = x], which may be 

modeled by regression functions ma(x; β). Applying this augmentation to our notation in the 

main text, we obtain the following augmented estimating equations: 

















=−

=







































−−−−

−
−

−
+−

−

−
−

−+−

∑

∑

−

−

.0)(

,0

])ˆ;([])ˆ;([

])ˆ;([
ˆ1

ˆ)1(])ˆ;([

)(
ˆ1

ˆ
)1()(

11
1

100111

100111

1011

1

i
ii

i

iiii

i
i

ii
ii

i
i

i
iii

YAn

XmAXmA

XmAXmA

YAYA

n

µ

µβµβ

µβ
π

πµβ

µ
π

πµ

 

3 
 

















=−

=





























−−−
−

−−

−
−

−

⇔

∑

∑

−

−

.0)(

,0
])ˆ;([])ˆ;([

ˆ1
ˆ

)1(

)(
ˆ1

ˆ
)1(

11
1

100100

10

1

i
ii

i
iii

i

i
i

i
i

i
i

YAn

XmAXmA

YA

n

µ

µβµβ
π

π

µ
π

π

 

Note that the resulting equations only contain m0(x; β) among ma(x; β), we need weaker 

conditional exchangeability for Y0 for our standardized estimator in the exposed. Solving 

the equations provides our proposed DR standardization estimators, 11DR,11 ˆˆ µµ =  and 

DR,10µ̂ . 

 
2. Influence functions and variance estimators 

Our estimators RW-IPW,1ˆ aµ  and DR,1ˆ aµ  possess their own influence functions 

because they are asymptotically linear estimators (Tsiatis, 2006). To derive their asymptotic 

variance estimators, we first obtain the influence functions of RW-IPW,1ˆ aµ  and DR,1ˆ aµ . 

 The influence function φ11,i of member i for 1DR,11RW-IPW,11 ˆˆ Y== µµ  is obtained as 

(n/n1)Ai(Yi – µ11), where n1 = ∑iAi is the size of the exposed group, because 

∑∑ −− =−=−
i

i
i

ii nYAnnnn ,11
2/1

111
2/1

1111
2/1 )()/()ˆ( φµµµ . 

Suppose that the probability limit of n1/n is present and lies between 0 and 1. Using the 

central limit theorem and Slutsky’s theorem, the asymptotic variance of 11µ̂  is obtained as 

(1/n)var(φ11), which is estimated using ∑ −−

i
ii YYAn 2

1
1

1 )]([ , the (maximum likelihood) 
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sample-variance estimator in the exposed. If Ti might be censored by Ci and Yi cannot be 

observed for all members, one may instead use the inverse-probability of censoring 

(IPC)-weighted influence function I(Ci ≠ Ti
*)φ11,i/KC(Ti

*), where Ti* = min(t, Ti, Ci) is the 

observed time and KC(t) is the probability of remaining uncensored at t (estimated using the 

Kaplan–Meier method for Ci). This does not yield an efficient influence function when 

censoring is viewed as a monotone coarsening problem (Tsiatis, 2006, section 9.3). 

However, the resulting estimator is exactly the Kaplan–Meier estimator (Satten and Datta, 

2001) adopted in the main text. 

Next, we consider the influence function φ10,IPW-RW,i of member i for RW-IPW,10µ̂ . 

Because the weighted estimator is the solution of the estimating equation 

0)ˆ(
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applying the m-estimation theory (Tsiatis, 2007, p. 30, p. 207) followed by the Taylor series 

expansion reveals that 

).1()ˆ(),()ˆ(),(),(

)ˆ,ˆ(0

T
10

10RW-IPW,10
10

10
10

RW-IPW,10

pi
i

i
i

i i

i i

oUUU

U

+−








∂
∂

+−








∂
∂

+=

=

∑∑∑

∑

αα
α

αµµµ
µ

αµαµ

αµ

 

Because α is estimated using maximum likelihood, standard theory shows that 
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where Sα(Xi) = ∂log πAi(Xi; α)/∂α is member i’s score function of a PS model. Therefore, it 

converges in probability, 
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The asymptotic variance of SM,10µ̂  is estimated using the sample variance of φ10,SM,i 

(estimates are substituted for unknowns), which can be rewritten as the sandwich variance 

formula (1/n)B–1MB–1,T, where 

B–1 (bread) = ∑ ∂
∂−

i

iU
n
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If a logistic model is used for the PS, then the sandwich formula reduces to 
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in which Xi = (1, Xi
T)T is member i’s covariate-vector with intercept, and we use the 

shorthand notation ∑−=
i

ii VnV 1][Ê . In the case of censored outcome data, one may 

replace RW-IPW,10µ̂  with )(ˆ RW-IPW,10 tµ  and )ˆ,ˆ( RW-IPW,10 αµiU  with IPC-weighted 

)(ˆ)ˆ),(ˆ(][ *
RW-IPW,10

*
iCiii TKtUTCI αµ≠ in each calculation. 
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 In a similar manner, the influence function φ10,DR,i of member i for DR,10µ̂  is 
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and Sβ(Xi) is a score function of an outcome regression model. The sample variance of the 

influence function φ10,DR,i, or equivalently the sandwich estimator (1/n)B–1MB–1,T, is 

B (bread) = nnAn
i

i 1
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if both PS and outcome regression (in the unexposed, Ai = 0) are modeled with logistic 

regression, with the shorthand notation being )ˆ;(ˆ 0,0 βii Xmm = . If Cox models are used as 

in the main text (Appendix), one may instead use the estimating function 
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and hence the sandwich estimator (1/n)B–1MB–1,T is  
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where )ˆexp(
,0

T

)ˆ;0,0|(ˆ1)(ˆ iX
i XAtStR ββ==−=  is the product-limit estimator 

(Kalbfleisch and Prentice, 2002, pp. 114–116) and )ˆ(ˆ βℑ  is an observed information 

matrix and )ˆ(βi∆  is a score residual defined by 
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Despite their lengthy algebraic form, the inverse of the observed information matrix and the 

score residual parts are obtained as building blocks of the robust sandwich formula in 

off-the-shelf software (eg, PHREG in SAS). 

8 
 



 The asymptotic variance of risk difference and ratio estimators is estimated 

through their influence functions. For standardized risk difference, the influence functions 

of RW-IPW,1011RW-IPW ˆˆˆ µµγ −=  and DR,1011DR ˆˆˆ µµγ −=  for member i are φ11,i – φ10,IPW-RW,i and φ11,i 

– φ10,DR,i, respectively. For standardized risk ratios RW-IPW,1011RW-IPW ˆˆ)ˆexp( µµδ =  and 

DR,1011DR ˆˆ)ˆexp( µµδ = , the corresponding influence functions are obtained as (1/µ10)φ11,i – 

(µ11/µ10
2)φ10,IPW-RW,i and (1/µ10)φ11,i – (µ11/µ10

2)φ10,DR,i by applying the Taylor series 

expansion. The asymptotic variance estimates are obtained using the sample variance of 

these influence functions, which is evaluated at the estimate of each parameter. For risk 

ratios, in particular, logarithmic transformation would improve approximation to normal 

distribution; using the delta method, the asymptotic variance of log risk ratio δ̂  is obtained 

as )var()]ˆvar[exp( 10,1011,11
2 µφµφδδ ii −=− , where )]ˆvar[exp(δ  is the variance of the 

influence functions for the risk ratio. 

 
3. Double-robustness property in the presence of censored outcome 

 A weighted Kaplan–Meier estimator is the maximizer of the log pseudo-likelihood 

that is the observed log likelihood with corresponding weights (Xie and Liu, 2005). Thus, 

our weighted estimate )(ˆ RW-IPW,10 tµ  is regarded as the Kaplan–Meier estimate in the 

pseudo-population with member i’s weight 
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where α* is a limiting value of α̂  in the working model );( απ X . Conversely, because 

the product-limit estimator )ˆ;0,0|(ˆ β== XAtS  is a maximum likelihood estimator 

under a Cox model Λ(s|A = 0, X = x; β) (Kalbfleisch and Prentice, 2002), a limiting value 

S0t
*(x; β*) of )ˆexp( T

)ˆ;0,0|(ˆ)ˆ;,0|(ˆ xXAtSxAtS βββ ====  with a limiting value β* of β̂  is 

present in the working Cox model. 

First, suppose that the PS model );( απ X  is correctly specified; then, π(x; α*) is 

equal to π(x) = Pr[A = 1|X = x] and )(ˆ RW-IPW,10 tµ  is also shown to converge to E[Y0|A = 1] 

= µ10 (Hernán and Robins, 2006). Similarly, the augmentation term )(ˆ aug,10 tµ  can be shown 

to converge to 
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Therefore, the consistency of )(ˆ)(ˆ)(ˆ aug,10RW-IPW,10DR,10 ttt µµµ +=  is confirmed. 

 Second, suppose that the Cox model Λ(s|A = 0, X = x; β) is correctly specified; 

then, 1 – S0t
*(x; β*) is equal to 1 – S(t|A = 0, X = x) = E[Y| A = 0, X = x] = E[Y0|X = x] = 

E[Y0|A = 1, X = x]. Thus, )(ˆ DR,10 tµ  converges to 
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Therefore, the double robustness of )(ˆ DR,10 tµ  is demonstrated. 

)(ˆ DR,10 tµ  can be regarded as a censored-outcome analog of the “B-DR” estimator 

for total population of Robins et al. (2007, p. 546), which takes the form 
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When targeting the exposed population, the formula can be modified as 
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When );(0 βiXm  is replaced with the Cox model and the sample means ][Ê ⋅  is replaced 

with the Kaplan–Meier (product-limit) estimates at t, the “B-DR” estimator reduces to 
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)(ˆ DR,10 tµ . 

 

4. Details of simulation  

First, covariates X1 (continuous) and X2 (binary) are generated by using standard 

normal distribution and Bernoulli distribution with a success probability of 0.5, respectively. 

Exposure A is assigned according to the true PS of Pr(A = 1| X1, X2) = {1 + exp(–log(0.5) – 

log(2)X1 – log(4)X2 – log(2)X1X2)}–1. Potential time-to-event Ta follows an exponential 

distribution with a rate parameter XTβ0 = log(0.1) + log(2)X1 + log(2)X2 + log(2)X1X2 under 

unexposed (T0) and XTβ1 = log(0.4) + log(4)X1 + log(4)X2 + log(2)X1X2 under exposed (T1); 

this is equivalent to the model log Ti
a = –XTβa + ei, where ei follows extreme value 

distribution. Time to be censored C is also generated independently for each member by 

using exponential distribution with a unit rate parameter. Observed time is obtained as T* = 

min(AT1 + (1 – A)T0, C, 1) and event indicator Y* (1 if T* = AT1 + (1 – A)T0, 0 otherwise). 

Consequently, we must estimate the parameters from observed data (X1i, X2i, Ai, Ti
*, Yi

*), for 

i = 1,..., n. The size of each dataset is n = 2,000 and estimation is performed in 2,000 Monte 

Carlo samples. A series of simulation studies are conducted by SAS version 9.4; SAS 

program for generating simulation data is provided below. 

 From a large dataset (n = 10,000,000) generated as above, “true” targeted 

parameters are searched using unobservable outcomes Y1 (1 if T1 < t = 1, 0 otherwise) and 

Y0 (1 if T0 < t = 1, 0 otherwise). Appendix Table summarizes these parameter values (and 

also provides, as reference, the corresponding parameters in total population). In this 

dataset, the proportion of members censored before t = 1 without event is 0.32 among the 
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exposed (0.47 in total population): if the censored members are treated as nonevents, the 

risk in the exposed would be underestimated by one-third. 

 We fit the correct and incorrect PS models 

(Correct) Pr(A = 1| X1, X2; α) = {1 + exp(–α0 – α1X1 – α2X2 – α12X1X2)}–1, 

(Incorrect) Pr(A = 1| X1, X2; α) = {1 + exp(–α0 – α1X1 – α2X2)}–1, 

and the correct and incorrect proportional hazards models for T in A = 0 

(Correct) Λ(t|A = 0, X1, X2; β) = Λ0(t)exp(β1X1 + β2X2 + β12X1X2), 

(Incorrect) Λ(t|A = 0, X1, X2; β) = Λ0(t)exp(β1X1 + β2X2), 

where Λ0(t) is the parametrically unspecified baseline cumulative hazard function. The true 

model for E[log T|A = 0, X1, X2] is an exponential regression model, and the 

aforementioned proportional hazards model includes the true model if the product term 

X1X2 is adjusted for (Kalbfleisch and Prentice, 2002). 

Appendix Table. Simulation Parameters Defined in a Large Sample (n = 10,000,000) 

Target 

Population 

E(Y1|Target) 

at t = 1 

E(Y0|Target) 

at t = 1 

Causal RD 

in Target 

Log (Causal 

RR in 

Target) 

Probability of 

Censoring Before t 

= 1 

Total 0.534 0.195 0.339 1.006 0.465 

Exposed 0.701 0.285 0.417 0.902 0.322 

RD indicates risk difference; RR, risk ratio. 
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Summary of simulation results (Tables 2 and 3): 

 As expected, the regression model-based and the IP weighted–reweighted estimators 

produced unbiased estimates only with correct model specification for outcome and 

propensity score, respectively, whereas the proposed doubly robust estimator yielded 

unbiased estimates when at least one of these model specifications was correct.  

 If the outcome model is correctly specified, regression estimator is the most efficient 

among competitors, followed by doubly robust estimator in each case.  

 Coverage proportions maintain almost nominal 95% probability in the settings where 

bias is negligible.  

 Because the influence function for the target parameter depends only on how the 

nuisance parameters are estimated, and not on whether the working models (ie, PS and 

outcome regression models) including the nuisance parameters are correct or not 

(Tsiatis, 2006), the estimated asymptotic standard errors incorporating maximum 

likelihood estimates of the nuisance parameters suitably approximate empirical (Monte 

Carlo) standard errors even if the models are incorrectly specified. 
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5. SAS program for censored outcome data 

/* ---------- Program for Point Estimation ---------- */ 

%let dsn = /* dataset name (eg, TAMDATA) */; 

%let exp = /* exposure variable (eg, TAM) */; 

%let target = /* targeted exposure level (eg, 1) */; 

%let time = /* observation time variable (eg, RECTIME) */; 

%let event = /* event indicator (eg, REC) */; 

%let t = /* time at which risk is calculated (eg, 5) */; 

%let PSmodel = /* covariates for propensity score model (eg, AGE STAGE LYM MENO) */; 

%let ORmodel = /* covariates for outcome regression model (eg, AGE STAGE LYM MENO) 

*/; 

 

/* ----- 0. Nonparametric Kaplan-Meier estimate ----- */ 

ods listing close; 

proc phreg data = &dsn; 

model &time * &event(0) = ; 

where &exp = &target; 

baseline out = mu11 survival = _all_ / method = PL; 

run; 

/* NOTE: PHREG has an advantage on computing time over LIFETEST. */ 

ods listing; 

 

data mu11; 

set mu11 end = end; 

where &time < &t; 

if end; 

mu11 = 1 - survival; 

run; 

 

/* ----- 1. Model-based maximum likelihood estimator ----- */ 

data &dsn._ML; 

set &dsn; 

targ = (&exp = &target); 
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MLwt = 1 - targ; 

/* NOTE: Trick to estimate baseline risk for members in the target in 1-step from 

the model fitted in the untargeted. */ 

 

ods listing close; 

proc phreg data = &dsn._ML; 

   model &time * &event(0) = &ORmodel; 

   weight MLwt; 

   output out = &dsn._ML xbeta = xb; 

run; 

 

data cov; 

xb = 0; 

 

proc phreg data = &dsn._ML; 

where MLwt = 1; 

model &time * &event(0)= /offset=xb; 

baseline out = base covariates = cov survival = _all_ / method = PL; 

run; 

 

data _null_; 

set base end = end; 

where &time < &t; 

if end then call symput("S0", Survival); 

run; 

 

data &dsn._ML; 

set &dsn._ML; 

R0i = 1 - &S0 ** exp(xb); 

run; 

 

proc means data = &dsn._ML; 

var R0i; 
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where targ = 1; 

output out = mu10ML mean = mu10ML; 

run; 

ods listing; 

 

data ML; 

merge mu11(keep=mu:) mu10ML(keep=mu:); 

RD_ML = mu11 - mu10ML; 

RR_ML = mu11 / mu10ML; 

run; 

 

/* One can instead use Breslow applox. for getting interval estimates automatically 

*/ 

data cov; 

set &dsn.; 

where &exp = &target; 

run; 

 

proc phreg data = &dsn.; 

where &exp = 1 - &target; 

  model &time * &event(0) = &ORmodel; 

  baseline out = base covariates = cov survival = _all_ / diradj; 

run; 

 

data mu10ML2; 

set base end = end; 

where &time < &t; 

mu10ML = 1 - survival; 

se10ML = StdErrSurvival; 

if end; 

run; 

 

data ML2; 
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format mu11 se11 mu10ML se10ML RD_ML seRD_ML logRR_ML selogRR_ML; 

merge mu11(rename = (StdErrSurvival = se11) keep = mu: StdErrSurvival) base(keep= 

mu: se:); 

RD_ML = mu11 - mu10ML; 

logRR_ML = log(mu11 / mu10ML); 

seRD_ML = sqrt(se11**2 + se10ML**2); 

selogRR_ML = sqrt(mu11**(-2) * se11**2 + mu10ML**(-2) * se10ML**2); 

/* NOTE: mu10ML is estimated through parameter estimates of a model fitted in the 

unexposed and is independent of mu11, which is estimated in the exposed. */ 

run; 

 

/* ----- 2. IPW-RW estimator ----- */ 

ods listing close; 

proc logistic data = &dsn desc; 

model &exp = &PSmodel; 

output out = &dsn._SM p = pi; 

run; 

 

data &dsn._SM; 

set &dsn._SM; 

SMW = abs((&exp - pi)/(1 - pi)); 

run;  

 

proc lifetest data = &dsn._SM outsurv = mu10SM; 

time &time * &event(0); 

where &exp = 1 - &target; 

weight SMW; 

run; 

/* NOTE: The implementation of weights in PROC LIFETEST is based on Xie and Liu (2005, 

2011). On the contrary, weights in PROC PHREG is only available for Breslow estimator. 

*/ 

 

ods listing; 
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data mu10SM; 

set mu10SM end = end; 

where &time < &t; 

if end; 

mu10SM = 1 - survival; 

run; 

 

data SM; 

merge mu11(keep=mu:) mu10SM(keep=mu:); 

RD_SM = mu11 - mu10SM; 

RR_SM = mu11 / mu10SM; 

run; 

 

/* ----- 3. DR estimator ----- */ 

data &dsn._DR; 

merge &dsn &dsn._ML(keep = R0i) &dsn._SM(keep = pi SMW); 

 

ods listing close; 

proc means data = &dsn._DR; 

var R0i; 

weight SMW; 

where &exp = 1 - &target; 

output out = mu10aug mean = mu10ML_SM; 

run; 

ods listing; 

 

data mu10DR; 

merge mu10SM mu10ML mu10aug; 

mu10DR = mu10SM + mu10ML - mu10ML_SM; 

 

data DR; 

merge mu11(keep=mu:) mu10DR(keep=mu:); 

RD_DR = mu11 - mu10DR; 
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RR_DR = mu11 / mu10DR; 

run; 

 

/* ---------- Program for Interval Estimation of Semiparametric Estimators ---------- 

*/ 

 

/* First, calculate the probability of censoring at each observed time (Ti) */ 

data &dsn._ipc; 

set &dsn.; 

censtime =min(&time, &t); 

if &time < &t and &event = 0 then cens = 1; 

else cens = 0; 

run; 

 

ods listing close; 

proc phreg data = &dsn._ipc; 

  model censtime * cens(0) = ; 

  output out = &dsn._IPC survival = pc /method = PL; 

run; 

ods listing; 

 

/* Get numbers (total and exposed sample sizes) for the influence function (IF) of 

mu11 (= phi11) */ 

ods listing close; 

proc means data=&dsn.; 

var &exp; 

output out =_ sum = n1 n = n; 

run; 

ods listing; 

 

data _null_; 

set _; 

n&target = n1*(&target) + (n - n1)*(1 - &target); 
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call symput("n", n); 

call symput("n&target", n&target); 

run; 

%put &n; 

%put &&n&target; 

 

/* ----- 1. IF for IPW-RW estimator ----- */ 

data _null_; 

set sm; 

call symput("mu11", mu11); 

call symput("mu10SM", mu10SM); 

run; 

 

data &dsn._iml; 

merge &dsn._sm &dsn._ipc(keep = pc cens); 

int = 1; 

Yt = (&event = 1)*(&time < &t); 

IPCW = 1/pc; 

run; 

 

proc iml; 

use &dsn._iml; 

read all var {int &PSmodel} into X; *nxp; 

read all var {SMW} into SMW; *nx1; 

read all var {pi} into pi; *nx1; 

read all var {cens} into cens; *nx1; 

read all var {IPCW} into IPCW; *nx1; 

read all var {Yt} into Yt; *nx1; 

read all var {&exp} into A; *nx1; 

U = (1 - cens) # IPCW # (1 - A) # SMW # (Yt - &mu10SM); *nx1; 

dU_dmu10 = (-(1 - A) # SMW # (1 - cens) # IPCW) [:]; 

dU_dalpha = ((1 - cens) # IPCW # (1 - A) # SMW # (Yt - &mu10SM))` * X; *1xp; 

Iinv = ginv((pi # (1 - pi) # X)` * X); *pxp; 
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score = (A - pi) # X; *nxp; 

phi10SM = ginv(dU_dmu10) * (U + ((dU_dalpha * Iinv) * score`)`); 

name = {'phi10SM'}; 

create phi10SM from phi10SM[colname = name]; 

append from phi10SM; 

close phi10SM; 

quit; 

 

data &dsn._iml; 

merge &dsn._iml phi10SM; 

phi11 = &exp * (Yt - &mu11) * (&n/&&n&target)/sqrt(&n) * (1 - cens) * IPCW; 

phi10SM = phi10SM/sqrt(&n); 

phiRD_SM = phi11 - phi10SM; 

philogRR_SM = (phi11/&mu11) - (phi10SM/&mu10SM); 

run; 

 

proc means data = &dsn._iml N mean var std; 

var phi11 phi10SM phiRD_SM philogRR_SM; 

run; 

 

/* ----- 2. IF for DR estimator ----- */ 

data _null_; 

set dr; 

call symput("mu11", mu11); 

call symput("mu10DR", mu10DR); 

run; 

 

data &dsn._iml2; 

merge &dsn._DR &dsn._ipc(keep = pc cens); 

int = 1; 

Yt = (&event = 1)*(&time < &t); 

IPCW = 1/pc; 

run; 
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ods listing close; 

ods output covb = cov; 

proc phreg data = &dsn._ML; 

  model &time * &event(0) = &ORmodel / covb; 

  weight MLwt; 

  output out = res ressco = res1-res1000; 

run; 

 

proc contents data = res(keep = res:) out = nvar; 

run; 

ods listing; 

 

data _null_; 

set nvar; 

call symput("nvar", _n_); 

run; 

 

data res; 

set res(keep = res:); 

array res{*} res1 - res%eval(&nvar); 

do i = 1 to &nvar; 

if res{i} = . then res{i} = 0; 

end; 

drop i; 

run; 

 

proc iml; 

use &dsn._iml2; 

read all var {int &PSmodel} into X_PS; * nx(p+1); 

read all var {&ORmodel} into X_OR; * nxp; 

read all var {SMW} into SMW; * nx1; 

read all var {pi} into pi; * nx1; 
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read all var {R0i} into R0; * nx1; 

read all var {cens} into cens; * nx1; 

read all var {IPCW} into IPCW; * nx1; 

read all var {Yt} into Yt; * nx1; 

read all var {&exp} into A; * nx1; 

use cov; 

read all var {&ORmodel} into cov; 

use res; 

read all into res; 

U = (1 - cens) # IPCW # (1 - A) # SMW # (Yt - &mu10SM) - ((1 - A) # SMW # (R0 - 

&mu10DR) - A # (R0 - &mu10DR) ); * nx1; 

dU_dmu10 = (-(1 - A) # SMW # (1 - cens) # IPCW + (1 - A) # SMW - A) [:]; * 1x1; 

dU_dalpha = ((1 - cens) # IPCW # (1 - A) # SMW # (Yt - R0))` * X_PS; * 1x(p+1); 

Iinv_alpha = ginv((pi # (1 - pi) # X_PS)` * X_PS); * 1x(p+1); 

score_alpha = (A - pi) # X_PS; * 1x(p+1); 

S0 = max(1 - R0, 0.0000000001); 

dU_dbeta = ((pi - A) # 1/(1 - pi) # (S0) # log(S0))` * X_OR; * 1xp; 

/* NOTE: Avoiding undefined operation log(0). Because limit xlog(x) = 0 (as x goes 

to +0), dU_dbeta of those with S0 = 1 goes to 0 */ 

phi10DR = ginv(dU_dmu10) * (U + ((dU_dalpha * Iinv_alpha) * score_alpha`)` + 

((dU_dbeta * cov) * res`)`); 

name = {'phi10DR'}; 

create phi10DR from phi10DR[colname = name]; 

append from phi10DR; 

close phi10DR; 

quit; 

 

data &dsn._iml2; 

merge &dsn._iml2 phi10DR; 

phi11 = &exp * (Yt - &mu11) * (&n/&&n&target)/sqrt(&n) * (1 - cens) * IPCW; 

phi10DR = phi10DR/sqrt(&n); 

phiRD_DR = phi11 - phi10DR; 

philogRR_DR = (phi11/&mu11) - (phi10DR/&mu10DR); 
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run; 

 

proc means data = &dsn._iml2 N mean var std; 

var phi11 phi10DR phiRD_DR philogRR_DR; 

run; 
 

/* ---------- Program for Simulating Data ---------- */ 

* Simulation size; 

%let nsamp = 2000; 

%let sampsiz = 2000; 

* Time t; 

%let t = 1; 

* PS model; 

%let alpha0 = log(0.5); 

%let alpha1 = log(2); 

%let alpha2 = log(4); 

%let alpha12 = log(2); 

* OR model; 

%let beta0 = log(0.1); 

%let beta1 = log(2); 

%let beta2 = log(2); 

%let beta12 = log(2); 

%let betaA = log(4); * Exposure effect; 

%let betaA1 = log(2); * Exposure effect; 

%let betaA2 = log(2); * Exposure effect; 

%let betaA12 = log(1); * Exposure effect; 

 

data sim; 

call streaminit(20141203); 

 do replicate = 1 to &nsamp; 

 do i = 1 to &sampsiz; 

 

 * Covariates; 
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 X1 = rand("Normal"); 

 X2 = rand("Bernoulli", 0.5); 

 

 * Exposure; 

 do A = rand("Bernoulli", 1/(1 + exp(- &alpha0 - &alpha1*X1 - &alpha2*X2 - 

&alpha12*X1*X2))); 

 

 * Outcome; 

 UT = rand("Uniform"); 

 ErrT = log(-log(1 - UT)); 

 T0 = exp(- &beta0 - &beta1*X1 - &beta2*X2 - &beta12*X1*X2 + ErrT); 

 T1 = exp(- &beta0 - &beta1*X1 - &beta2*X2 - &beta12*X1*X2 - &betaA - &betaA1*X1 

- &betaA2*X2 - &betaA12*X1*X2 + ErrT); 

 Y0= (T0 < &t); 

 Y1= (T1 < &t); 

 T = (A = 1)*T1 + (A = 0)*T0; 

 C = rand("Exponential", 1); 

 time = min(T, C, &t); 

 event = (time = T); 

 

 output; 

 end; 

 end; 

 end; 

run; 
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