Web Appendix for Effect Estimation using Structural
Nested Models and G-estimation

Anonymized authors.

Introductory concepts and notation

First, we provide some additional details on the general data framework within which G-
estimation may be applied. An important concept is that we work in stages: treatment
decisions are taken at fixed points in time, with such decisions potentially depending on a
patient’s current covariates as well as past information including treatment history. While
the theory can be applied to a situation where a single treatment decision is made (the
single-stage or cross-sectional setting) we are primarily interested in the general, multi-stage
case.
We use the following notation:

e y: Patient outcome;

e a;: The stage j treatment decision (with j = 1,...,.J), with a} denoting “no treatment”
(such as a control or standard care);

e x,;: Non-treatment information (e.g. age, disease severity, response to previous treat-
ments) measured immediately prior to the j* treatment decision;

and at each stage, specify models of the relationship between patient history up until that
point and three variables:

e Treatment model: the observed treatment a;.

e Treatment-free model: the expected outcome assuming no treatment is received at or
after stage j.

e Blip model: the expected change in outcome given a; is received and no treatment is
received after stage j. (This is the structural nested mean model referred to in the
accompanying letter.)

The stage j treatment, treatment-free and blip models are parameterized by «;, 8; and v,
respectively, with model covariates denoted by hf, hf and h}p.

The blip model characterizes our primary interest: the effect of treatment at any given
stage on the outcome y, including any interactions between treatment and covariates. A
useful step is to view the relationship between our outcome and covariates/treatments as

J

y=Gi(hy:B) + Y 7ilay, hiiay).

J=1
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Viewed this way, we can see that the stage 1 treatment-free model is simply Gl(hf i B1) (set-
ting all treatments to 0), the stage 2 treatment-free model is Gl(hf; B1) + n(a, h’f;%) =
Gg(hg ; B2) (setting all treatments from stage 2 onwards to 0 and reparameterizing), and so on.
The effect of treatment at each stage, meanwhile, is characterized by the blip ’yj(ajhg’; ;).
Of particular use is that treatment effects may be estimated solely through estimation of the
blip parameters ;: we do not need to correctly estimate the parameters of our treatment-
free models 3;. In practice, we assume linear models for the treatment-free and blip models:
G;(h};B;) = h{Bi and 7;(a;, hY;1;) = a;hYe; (but note that, as with any standard re-
gression setup, functions of covariates such as logarithms or squares can be used for greater
flexibility).

Finally, an essential component of G-estimation are what we term the stage-specific
pseudo-outcomes, defined in terms of our blip parameters ¢ as y; = y—Zi:jH Ve (P, ag; V).
Defined in this way, y; may be thought of as the expected outcome assuming a patient receives
no treatment subsequent to stage j - this is slightly different to the stage j treatment-free
outcome, which is expected outcome assuming no treatment from stage j onwards. We may
also write this as y; = y;j+1 — vj41(hj, aj;1;): the stage j pseudo-outcome being equal to the
stage 7 + 1 pseudo-outcome minus the effect of observed treatment at stage j + 1.

We note, however, that with the exception of 3, which is equal to the observed outcome
y, each of these pseudo-outcomes depend on the blip parameters at future stages. As such,
G-estimation proceeds recursively: the final stage blip parameters 1; are estimated first,
before working backwards until every stage has been analyzed. By working recursively we
are able to estimate each pseudo-outcome by ‘plugging in’ all future blip parameters.

G-estimation

While typically presented in more complex theoretical terms, G-estimation may in fact be
conducted as a relatively straightforward series of matrix equations. In addition, effectively
the same procedure is conducted at each stage, and so for convenience we can suppress our
stage-specific notation and write h,, hg and h, instead of h{, hf and h;b, respectively.
At each stage G-estimation consists of three steps:

1. Specify each of the treatment, treatment-free, and blip models, and form the pseudo-
outcome g for that stage.

2. Estimate the parameters of the treatment model, such as by logistic or linear regression
of treatment on covariates h,. Use the results to estimate & = E[A|h,; &] and construct
d: the diagonal n x n matrix with (i,7)"" entry equal to a — a for the i'* subject.

3. Construct the matrix w = d" — d"hg (hghg)fl hg and estimate ¢ by solving
5 -1 N
¢ = [hjwahy,]  hjwij. (1)

While the formulation of the matrix w appears slightly complex, the resulting form of the
estimator (1) for zﬁ is fairly simple (and, in fact, is almost identical to a standard weighted
ordinary least squares-type estimator). As such, analysis at each stage may proceed by form-
ing the pseudo-outcome v, constructing the above matrices, then directly calculating the blip
parameter estimates by matrix calculations; implementable in most software environments.



Inference

A further issue is that of inference about our blip parameters ¢. This is complicated by the
process estimating nuisance parameters [ and «, although theory for estimating a ‘corrected’
standard error that takes this into account has been developed (1, 2). However, in our
experience a standard robust (or sandwich) variance estimator that ignores the nuisance
parameter estimation typically performs as well as the bootstrap or the nuisance parameter
corrected standard error (3).

While our derivation above is more simplistic, it is grounded in the fundamental idea
that we obtain estimates of 1) by considering the estimating equations

U(y; ;&) = hjw(j — ahyt)

and finding ¢ that solve E,,[U (¢; B, &)] = 0, where E,, denotes the empirical average function.
Standard estimating equation theory leads to the sandwich estimator via

Vil —0) = N,(0, B\ F(BT)™) (2)

where B = —E [g—fﬂ = E[hjwahy] (the ‘bread’) and F = Var[U] = E[UU ] (the filling),
both of which can be estimated from the matrices we use to construct U.

By comparison with (1, 2) we note that the formulation of G-estimation presented here
means that the above sandwich estimator already accounts for the estimation of the nuisance
parameters 5 (but not «). Correcting for the estimation of « relies on a number of Taylor
expansions that can make implementation challenging but, in our experience, make little
difference to inference. The results of the Honolulu Heart Program analysis presented in the
letter contain three different approaches to inference: the ‘standard’ sandwich above, the
‘corrected’ (or adjusted) sandwich (available in our R routine), and the bootstrap.

R code for simulated datasets

Along with our R package (discussed below), we also present how G-estimation may be
conducted via matrix equations using R. The associated R code is available as a file to
download as Web Material. We present the code here with comprehensive comments for
reference. We note that the code presented could be far more concise, but it is deliberately
thorough to ease comprehension.

We begin by generating a dataset as per our setup. First, our stage 1 data are generated as
X; ~ N(0,1) and P(A; = 1| X = 1) = expit(xy):

# Sample size

n <- 1000

# Stage 1 data:

X1 <- rnorm(n)
Al <- rbinom(n,1,1/(1+exp(-X1)))

Next, our stage 2 data are generated as Xy ~ N(aq,1) and Ay ~ N(xa,1):



# Stage 2 data:
X2 <- A1l + rnorm(n)
A2 <- X2 + rnorm(n)

Our stage 3 data are generated as X3 ~ N(ag, 1) and P(A; = 1| X35 = x3) = expit(z3):

# Stage 3 data:
X3 <- A2 + rnorm(n)
A3 <- rbinom(n,1,1/(1+exp(-X3)))

Finally, our outcome Y ~ N(1 + z1 + a1 (1 + z1) + as(1 + z3) + az(1 + z3),1)
# Outcome Y = ’baseline’ outcome + treatment effects (blips)
Y <- 1 + X1 + A1x(1+X1) + A2%(1+X2) + A3*(1+X3) + rnorm(n)

Analysis proceeds on a stage-by-stage basis as follows:

Stage 3 (treatment model correctly specified, treatment-free model mis-specified)
1. (a) Estimate ag by logistic regression of az on hg, write az = E[A3|h$; ds).

# treatment model correct:

H3.alpha <- cbind(rep(1l,n),X3)

# estimate treatment model

A3hat <- fitted(glm(A3~0+H3.alpha,binomial))

1. (b) Using the estimates a3 from (a), write
Uz =y;
ds for the diagonal matrix with entries (az — az)?

-1
wy = dj — iR} |(h))ThE] (BT

# pseudo-outcome
Y3 <-Y
# treatment-free model incorrect
H3.beta <- cbind(rep(1l,n))
# blip model
H3.psi <- cbind(rep(1,n),X3)
# w-matrix for analysis
W3 <- diag(A3-A3hat) - (A3-A3hat)x*H3.beta
%*% solve(t(H3.beta) %x*% H3.beta) %*% t(H3.beta)

R -1
1. (c) Estimate 5 by solving ¢)3 = | (k%) wsashy| (hY)Twsjs.

!Note that in our R code we do not form the matrix d; explicitly, but instead include it in our definition
of w; as this gains us some computational efficiency.



# estimate parameters
psi3 <- solve(t(H3.psi) %*% W3 %x% (A3*H3.psi))
%*x%h t(H3.psi) %x% W3 %x*x% Y3

Stage 2 (treatment model mis-specified, treatment-free model correctly specified)
2. (a) Estimate oy by linear regression of ay on hS, write as = E[As|hS; Ao

# treatment model incorrect
H2.alpha <- rep(l,n)

# estimate treatment model

A2hat <- fitted(lm(A2~0+H2.alpha))

2. (b) Using the estimates 5 from Step 1 and @, from (a), write

Yo=Yy — 73(’7'37 as; 1&3) =Y—- a3(1ﬂ30 + 1&31$3);
d; for the diagonal matrix with entries (as — az)

-1
wy =dj —d R [(R))TRE| (AT

# pseudo-outcome
Y2 <- Y - A3*(H3.psi %*% psi3)
# treatment-free model correct
H2.beta <- cbind(rep(1l,n),X1,A1,A1*X1)
# blip model
H2.psi <- cbind(rep(1,n),X2)
# w-matrix for analysis
W2 <- diag(A2-A2hat) - (A2-A2hat)=*H2.beta
%*% solve(t(H2.beta) %*% H2.beta) %*% t(H2.beta)

. -1
2. (c) Estimate by by solving ¢y = |(h%)Twsashy|  (hY)Twags.

# estimate parameters
psi2 <- solve(t(H2.psi) %% W2 %x)% (A2xH2.psi))
%% t(H2.psi) %*% W2 %*% Y2

Stage 1 (both models mis-specified)
3. (a) Estimate «y by logistic regression of a; on h{, write a; = E[A;|h{; d1].

# treatment model incorrect

H1l.alpha <- rep(1l,n)

# estimate treatment model

Alhat <- fitted(glm(A1~0+H1.alpha,binomial))



3. (b) Using the estimates b, from Step 2 and a; from (a), write, write
i1 = G2 — Ya(ha, a2;¥2) = §o — as (a0 + Yo s);
d; for the diagonal matrix with entries (a; — a;)

-1
wi =df —dh] |(B])"R]|  (R))T

# pseudo-outcome
Y1 <- Y2 - A2x(H2.psi %*% psi2)
# treatment-free incorrect
Hl.beta <- cbind(rep(1l,n))
# blip model
H1.psi <- cbind(rep(1,n),X1)
# weight-1like matrix for analysis
Wl <- diag(Al-Athat) - (Al-Alhat)*H1l.beta
h*% solve(t(H1.beta) %*% Hl.beta) %x)% t(H1.beta)

R -1
3. (c) Estimate t; by solving ¢, = |(h)Twiaih?|  (hY)Tw, gy

# estimate parameters
psil <- solve(t(H1l.psi) %*x% W1 %x% (AlxH1.psi))
hx% t(HL1.psi) %x% W1 %x% Y1

R package DTRreg

Our R package DTRreg was originally designed to be used within the dynamic treatment
regimen environment, but includes the option to apply it within the setting focused on here
as well. It accepts inputs for the blip, treatment, and treatment free models as lists of formula
objects. Such objects, most familiar within commands such as 1m for linear regression, take
the form of an outcome variable, followed by a tilde, followed by an equation detailing the
relationship between the expected outcome and the covariates. For example, in our three-
stage example we specify our treatment models by a list of three formulas, one for each
stage, where the j* formula specifies the stage j treatment as the outcome and the variables
thought to influence it as covariates:

# treatment model:
treat.mod <- list(Al~1,A2~1,A3~X3)

The first two entries tell the command that A1 and A2 are, respectively, the stage 1 and
stage 2 treatment variables, and that both treatment models are intercept-only. The third
entry indicates that the stage 3 treatment model includes the variable X3. As with other
regression-like commands, when other covariates are specified the intercept term is assumed
implied and does not require explicit inclusion. The command infers whether treatments
are binary or continuous based on whether they take on more than two values, and applies
logistic or linear regression to estimate these models accordingly.

The blip and treatment-free models are even more straightforward, as in these cases we
do not specify an outcome variable. Instead we simply need to include the terms in the
corresponding models:



# blip model:

blip.mod <- list(~X1,~X2,~X3)

# treatment-free model:

tf.mod <- list(~1,~X1+A1+A1:X1,~1)

The most illuminating example is the stage 2 treatment-free model, which through this
input is specified to take the form [og + Bo171 + Booay + Bozaixi. Finally, we put all this
together into the command itself, whose basic syntax takes the form

mod <- DTRreg(Y,blip.mod,treat.mod,tf.mod,
var .est="sandwich",type="alt")

where the option var.est = "sandwich" specifies that covariate variance estimation should
be performed by the corrected (or adjusted) sandwich approach detailed above, and type="alt"
indicates we are not working within the dynamic treatment regimen environment. From this
command, summary(mod) and coef (mod) return summaries and blip parameter estimates
in a similar fashion to more familiar commands such as 1m (for linear regression) and glm
(for generalized linear models). In addition to the basic specification of outcome, blip, treat-
ment and treatment-free models, the command offers a variety of more complex options,
including variance estimation via the bootstrap instead of the adjusted sandwich. This is
specified by a combination of var.est = "boot" and B = n for the number of bootstrap
replications. In addition, when treatment is binary and the true treatment model is known
(as may be the case, for example, in a randomized trial) then this may be specified by set-
ting treat.mod.man as a list of vectors which gives the probability of receiving treatment
for each subject at each stage. Finally, DTRreg will automatically ignore any subjects with
missing data (thereby carrying out a complete-cases analysis), but if the option missing =
"ipcw" is specified, then inverse probability of censored weights is used with the probability
of censoring estimated via logistic regression on the full covariate history up to that point.

The Honolulu Heart Program

We now illustrate how G-estimation may be applied to a real dataset. The Honolulu
Heart Program (HHP) is a prospective study of causes of cardiovascular disease among
Japanese Americans living in Hawaii (4). Run by the National Heart, Lung, and Blood
Institute (NHLBI) it began in 1965 and consists of a series of examinations, the last of
which was conducted during 1991-1993. Similar to Talbot et al. (5), we focus on the effect
of physical activity level on blood pressure, using data from questionnaires administered at
Exam 1 (1965-1968) and Exam 2 (1968-1971). We therefore pursue a 2-stage setup, with
stage 1 corresponding to Exam 1, and stage 2 to Exam 2.

Within this dataset, activity level is defined in multiple ways. At both examinations
data were recorded on activity level at work and at home separately, coded as either “Mostly
sitting”, “Moderate”, or “Much”, while at Exam 1 an ‘activity score’ was calculated based on
how long participants spent at a variety of activity levels during a 24 hour period. Typically,
we may wish to dichotomize such variables (perhaps as ‘active’ and ‘inactive’), but in doing
so we also lose information; especially so with the activity score which can reasonably be
regarded a continuous variable. As G-estimation does not require treatment variables be
binary, we are able to combine both binary and continuous variables at each of our treatment
stages. As such, we shall dichotomize our treatment variable at stage 2, while using the



continuous activity score at stage 1. At Exam 2 we follow Talbot et al. and define participants
as active if they reported their activity level as ‘Moderate’ or ‘Much’ at home or at work.

Next, we must specify our blip, treatment-free, and treatment models. To allow easier
comparison with the results of Talbot et al. our first analysis is restricted to blip models
which are solely functions of the treatment, and do not include any interaction terms with
non-treatment covariates as in our simulated example. Our treatment models, meanwhile,
are inspired by Talbot et al. Activity at Exam 1 is modeled via a linear regression on age
and whether the participant was employed at the time. At Exam 2, meanwhile, a logistic
regression model was fit with the following covariates: Exam 1 activity level, Exam 1 body
mass index and whether the participant was receiving treatment for high blood pressure
at Exam 1, and age and whether the participant was employed at Exam 2. Finally, our
treatment-free models consist of the covariates contained within the corresponding treatment
models. Like Talbot et al., body mass index and hypertension medication use at Exam 1
are not included in either the treatment or treatment-free models at stage 1 as these are
considered to be effects of the stage 1 treatment, although SNMs can incorporate such
covariates.

The complete dataset contains information on 8,006 participants. In the interests of
simplicity we shall conduct a complete-cases analysis, and only include those who have data
available on all of the covariates of interest at both stages. (Although we note that, if desired,
missing data may be accommodated by standard methods such as multiple imputation or
weighting.) This reduced our dataset to 7,374 participants, with summary statistics of our
variables of interest presented in Table 1 (where we note that activity level score at stage 1
has been divided by 100 from the original scale).

We conduct our analysis in a similar manner to the first two stages of the simulated
example of the previous section. Specifically, the matrices h{ and hf are the same as each
other, containing an intercept term, Exam 1 age and Exam 1 employment, while h§ and hg
contain an intercept term, Exam 1 activity level, Exam 1 body mass index, Exam 1 blood
pressure treatment, Exam 2 age and Exam 2 employment. Both blip matrices htf and h?
simply contain an intercept term, as both blip models are of the form a;t; with v; the
effect estimate of stage j activity level. The results are summarized in Table 2, where we
estimated 95% confidence intervals using the unadjusted sandwich, the ‘adjusted’ sandwich
(accommodating the estimation of nuisance parameters as per (1, 2)), and the standard
bootstrap (with 1,000 resamples).

As we might expect, at both stages there is evidence that activity level is associated with
a decrease in both systolic and diastolic blood pressure. These results seem largely consistent
with those presented in Talbot et al., although we observe that their setup was somewhat
different, using a binary measure of activity level at both stages and assuming the treatment
effect was the same at both stages. Furthermore, there is very little difference between our
three different inferential approaches.

While the preceding analysis was conducted without any terms interacting with treatment
to ease comparison with previous results, we note that one of the key properties of SNMs
over MSMs is their capacity to handle such interaction terms. To illustrate how they may be
interpreted, we conducted a secondary analysis of the data in a manner almost identical to the
above, with the exception that our blip models are now of the form ~; = a;(1jo + ;1 Ageg;),
where Agep; is a participant’s age at stage j, dichotomized so that it takes the value 1 if
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aged 60 years and over, and 0 otherwise.

This analysis returned blip parameter estimates of (z@lg, @Elo) = (—1.048, —0.367) at stage
1, and (1hg0, 1g0) = (—1.194, —3.488) at stage 2 when the outcome was taken as systolic blood
pressure at Exam 2 (with similar results for diastolic blood pressure) and may be interpreted
just like those in more standard regression analyses. For example, at stage 2 we might observe
that an active (rather than inactive) lifestyle would be associated with a decrease in blood
pressure of —1.194 mmHg among those under 60, and a decrease of —1.194 —3.488 = —4.682
mmHg among those over 60. In other words, this might suggest an interaction between
activity and age, with older participants experiencing a greater ‘benefit’ from exercise. We
note, however, that the confidence intervals associated with these estimates were large and
covered zero, so these results come with considerable uncertainty (and reinforce our initial
assumption of no interaction between treatment and time-varying covariates).
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Figure 1. Step-by-step implementation of G-estimation for our simulated example using
matrix equations (underlying theory detailed in eAppendix).

Our step-by-step analysis is as follows:
1. (a) Estimate ag by logistic regression of ag on h$; write ag = E[A3|h§; ds].
(b) Using the estimates a3 from (a), write
Ys = y;
d; for the diagonal matrix with (i,4)" entry (as — as) for subject i; and
-1
wy = dj {In ~ B |(B5)TRS | <h§>T}-
. -1
(c) Estimate 13 by solving 13 = [(h?f)ngagh;f} (h%) Twsis.
2. (a) Estimate oy by linear regression of ay on h$; write ds = E[A3|hS; do.
(b) Using the estimates 3 from Step 1 and as from (a), write
G2 =y — ya(ha, ag; s) = y — as(tbso + Parws);
d, for the diagonal matrix with (i,4)" entry (as — ao) for subject i; and
-1
wo = af {1, - n () n] ).
. -1
(c) Estimate 15 by solving 1y = [(hg’)T'wQaghﬂ (hY) T wsis.
3. (a) Estimate oy by logistic regression of a; on h{; write a; = E[A;|h{; d1].
(b) Using the estimates 15 from Step 2 and a; from (a), write
i1 = i2 — Y2(ha, az; ¥n) = G — az(thao + o1 72);
d; for the diagonal matrix with (i,4)"" entry (a; — a,) for subject i; and
-1
wi =y {1, - nf [ty n] ).

R -1
(c) Estimate v, by solving ¢, = [(h’f)T'wlalhﬂ (h) T w7
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Table 1. Covariates Summary for Honolulu Heart Program Participants, 1965-1971.

Variable Type Summary
Exam 1 Age (years) Categorical <50: 1,741
50-54: 2,591
55-59: 1.463
60-64: 1,185
> 65: 394
Employed Binary Employed: 6,820
BMI Continuous Mean (sd): 23.85 (3.05)
BP treatment Binary Receiving treatment: 726
Activity level Continuous Mean (sd): 327.7 (45.2)
Exam 2 Age (years) Categorical 48-54: 3,337
55-59: 1,898
60-64: 1,285
65-70: 854
Employed Binary Employed: 6,513
Activity level Binary Active: 6,664
SBP (mmHg) Continuous Mean (sd): 134.1 (20.8)
DBP (mmHg) Continuous Mean (sd): 84.1 (11.3)
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Table 2. Effect Estimates of Activity Level on Systolic and Diastolic Blood Pressure in
Honolulu Heart Program Participants, 1965-1971.

95% confidence interval

Blood pressure Parameter Estimate Sandwich Adj. Sandwich Bootstrap
Systolic U1 -1.105 -2.120-0.091  -2.120,-0.091 -2.123,-0.088

(0 -1.959 -3.535,-0.201 -3.531,-0.206 -3.494,-0.243

Diastolic (N -1.307 -1.874,-0.736 -1.874,-0.736  -1.848,-0.762

vy -0.901 -1.831,0.028  -1.831,0.028 -1.816,0.014
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