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eAppendix A: Other scales

All results in the article extend immediately to other scales. Let Y be a dichotomous
outcome coded 0 or 1. Then the effect (5) can be written as
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on the odds ratio scale. The effect (7) can likewise be computed. Finally, the effect (8)
can be written as
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on the odds ratio scale. Each of the components of these effects can be calculated using
the Monte-Carlo approach proposed in the main text of the article.

eAppendix B: More than two mediators

With more than two mediators M1, ...,Mt, the effect of exposure on outcome can be
decomposed into many different path-specific effects. We choose not to infer all of these
effects for the following two reasons. First, the scientific interest typically lies in knowing
the effects that are mediated through each of the mediators, but rarely lies in all path-
specific effects ways. Second, strong untestable assumptions are required to be able to
infer all path-specific effects, such as assumptions about the direction of the causal effects
between the various mediators, and about the absence of unmeasured common causes of
all mediators. In this Appendix, we will therefore concentrate on the following pathways.
We define the average interventional direct effect of exposure on outcome that is not via
any of the mediators as:
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This expresses the effect of exposure on outcome when fixing the joint distribution of all
mediators. It corresponds to the effect A → Y in the causal diagram of Figure 1 below.
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For each mediator Ms, s = 1, ..., t, we further define the average interventional indirect
effect via Ms (but not its descendants) as

E

[∑
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∑
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×P (M1a = m1, ...,Ms−1,a = ms−1|c)P (Ms+1,a∗ = ms+1, ...,Mta∗ = mt|c)] . (1)

For s = 1, this corresponds to the effect A → M1 → Y in the causal diagram of Figure
1 below; for s = 2, this captures the combined effect along the pathways A → M2 → Y
and A → M1 → M2 → Y ; for s = 3, it captures the combined effect along the pathways
A → M3 → Y , A → M2 → M3 → Y , A → M1 → M3 → Y and A → M1 → M2 →
M3 → Y . Finally, it is easily seen that the difference between the total effect and the sum
of the average interventional direct effect and the average interventional indirect effect
via each of the mediators, captures an indirect effect of the exposure on the dependence
between the mediators. Further work is needed to understand if the latter effect can be
further decomposed into effects mediated via the dependence between specific subsets of
mediators.

eAppendix C: More details on the data analysis

Data

In this Section, we give more detailed information on the NYCRIS data. Our analyses are
based on all 29,580 women diagnosed with malignant, invasive breast cancer from 2000 to
2006 (inclusive) in NYCRIS who have information on cancer stage at diagnosis recorded;
a further 2,589 women are excluded since this information is missing. For simplicity,
we consider a binary SES exposure (A) which is whether or not the woman resides (at
diagnosis) in an area (Lower Super Output Area) classified as belonging to the two most
affluent quintiles of the national income distribution as defined by the income domain
of the Indices of Multiple Deprivation (IMD) 2001. Since we have no direct information
on screening, our first mediator (M1) is a vector comprising age at diagnosis and cancer
stage at diagnosis, classified as early (TNM stage 1 or 2) or advanced (TNM stage 3 or
4), considered jointly. Age and stage at diagnosis are strongly associated, likely due to
the influence of screening and (latent) age at onset. Information on surgical treatment,
obtained from a routinely collected national hospital dataset (Hospital Episode Statistics
or HES), allows us to classify women either as having ‘major surgery’ (axillary dissection
or other axillary nodal procedures, breast conserving surgery, mastectomy, and plastic
surgery) or ‘minor or no surgery’ (other surgical procedures and none). This is our
second mediator, M2. The considered outcome (Y ) is one-year survival from the date of
diagnosis.
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Calendar year at diagnosis and region (Yorkshire and The Humber, North East or
North West) are considered as baseline confounders (C). As regards the causal structure
of the mediators, we know that M1 precedes M2 and yet we can’t rule out that they share
unmeasured common causes, thus a combination of Figure 1 and Figure 3 of the main
paper might apply. A possible causal diagram for the NYCRIS data is shown in Figure 4
of the main paper.

Sequential mediation analysis

We begin by performing the sequential mediation analysis described at the beginning
of Section 3.1. First we note that with C = {Region, Year at diagnosis} in lieu of C,
assumptions (i’)-(iii’) hold if Figure 4 represents the underlying causal diagram (with M1

in lieu of M1). If we additionally assume (iv’), then we can identify the natural direct
effect not mediated through either M1 or M2 or both using (3) and the corresponding
natural indirect effect through either M1 or M2 using (4). To estimate (3) and (4) using
the Monte-Carlo approach of Section 3.3, we need to fit a series of associational models:

Model 1: We fit a logistic regression model to one-year survival (Y ) conditional on SES (A),
Stage and Age at diagnosis (M1), Treatment (M2), and Region and Year of diagnosis
(C) with all interactions between A, M1 and M2 included.

Model 2: We also fit a logistic regression model to Treatment (M2) conditional on SES (A),
Stage and Age at diagnosis (M1), and Region and Year of diagnosis (C) with all
interactions between A and M1 included.

Model 3: We also fit a logistic regression model to Stage at diagnosis (one component of M1)
conditional on SES (A), Age at diagnosis (the other component of M1), and Region
and Year of diagnosis (C) with the interaction between SES and Age at diagnosis
included.

Model 4: Finally, we fit a linear regression model to Age at diagnosis conditional on SES and
Region and Year of diagnosis.

Note that this particular mediation analysis (with M1 and M2 considered as joint me-
diators) does not require any assumptions about the causal structure of the mediators;
however, our associational models need to allow for correlation between them, and this is
why we include Age in the model for Stage and Age and Stage in the model for Treatment.
Also note that due to the very large sample size, there is little benefit in terms of precision
(and a potential danger in terms of bias) in trying to find more parsimonious associational
models than the above. Finally note that when using these results in the Monte-Carlo
simulations to estimate (3), we will use not only the fitted value of the conditional expec-
tation of age at diagnosis given SES and the confounders, but also the assumption that
the errors from this model follow a normal distribution.
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Tables 1–4 below give the full results of the individual regression models fitted to
M1, M2 and Y . We use these results as described in Section 3.3 to estimate (3) and
(4). Under assumptions (i)–(iv) with M1 in lieu of M , we can additionally perform a
mediation analysis with M1 as the only mediator. Note that this involves assuming that
U in Figure 4 does not exist. For this mediation analysis, models 3 and 4 above are used
again, together with:

Model 1’: A logistic regression model for one-year survival (Y ) conditional on SES (A), Stage
and Age at diagnosis (M1), and Region and Year of diagnosis (C) with all interac-
tions between A and M1 included.

Models 1 and 1’ are likely incompatible. We do not consider this to be of grave additional
concern in practice, over and above the already substantial concern over parametric model
misspecification in general.

We then use a Monte-Carlo approach to estimate the right-hand side of (1) in the main
text with L empty and M1 in lieu of M , which, under assumptions (i)–(iv) is the natural
direct effect not through M1. By subtracting from this the estimate of the natural direct
effect not through either or both of the mediators, we obtain our sequential mediation
analysis estimate of the natural indirect effect through M2 alone.

Multiple mediator analysis based on interventional effects

We now perform the multiple mediator analysis described in Section 3.2, again using
Monte-Carlo simulation as described at the end of Section 3.3. Details are given in the
eAppendix. We make assumptions (i’)–(iii’). In addition to models 1–4 above, we also
now use:

Model 2’: A logistic regression model for treatment (M2) conditional on SES (A) and Region
and Year of diagnosis (C).

The reason for specifying this model – which may be incompatible with model 2 – is
that (6)–(8) all involve the distribution of M2a given C, which can be substituted by the
distribution of M2 given A and C under assumption (iii). Displays (5), on the other hand,
involves model 2, and (8) involves both. The results are given in Table 2.

Limitations

Our analyses are included mainly for illustration, to show how the proposed method can
be applied in a realistic setting, and to show that even the most complicated effect, namely
the mediated dependence (8), can have a meaningful interpretation when considered in
an applied context. In order to focus on these interpretational issues, we made several
simplifications that could be relaxed in future analyses of these data to gain a deeper
and more reliable understanding of the reasons underlying socio-economic discrepancies in
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breast cancer survival. Dichotomising both mediators has likely led to diluting the indirect
effects and inflating the direct effect. In addition, dichotomising SES, the exposure, may
have led to missing some more subtle effects across the income distribution. Focussing
only on one-year survival may also mean that a different picture relating to longer term
survival has been missed. In future work, we plan to relax all these simplifications in
a more comprehensive substantive analysis, which will also involve sensitivity analyses
to assess the impact of dropping women with unobserved stage at diagnosis. Another
important limitation is the likely presence of unmeasured confounding, particularly of
M1 and Y by the latent age at disease onset, and of M2 and Y by comorbidities, not
available to us in the NYCRIS data. Sensitivity analyses to detect the plausible impact
of such unmeasured confounding, as well as the robustness to the choice of a normality
assumption for the errors from the model for age at diagnosis should also be explored.

eAppendix D: Stata code for the data analysis
gen xm1a=x*m1a

gen xm1b=x*m1b

gen xm2=x*m2

gen m1ab=m1a*m1b

gen m1am2=m1a*m2

gen m1bm2=m1b*m2

gen xm1ab=x*m1a*m1b

gen xm1am2=x*m1a*m2

gen xm1bm2=x*m1b*m2

gen m1abm2=m1a*m1b*m2

gen xm1abm2=x*m1a*m1b*m2

logit y x m1a m1b m2 xm1a xm1b xm2 m1ab m1am2 m1bm2 xm1ab xm1am2 xm1bm2 m1abm2 xm1abm2 i.c1 i.c2

logit m2 x m1a m1b xm1a xm1b m1ab xm1ab i.c1 i.c2

logit m1b x m1a xm1a i.c1 i.c2

reg m1a x i.c1 i.c2

cap program drop seqMC

cap program define seqMC, rclass

cap drop m1a_0-tce

qui set obs 6000000

qui replace c1=c1[_n-29580] if c1==.

qui replace c2=c2[_n-29580] if c2==.

qui reg m1a x i.c1 i.c2

qui gen m1a_0 = _b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)+_b[2002.c2]*(c2==2002)

+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004) +_b[2005.c2]*(c2==2005)+_b[2006.c2]*(c2==2006)

+e(rmse)*rnormal()

qui gen m1a_1 = _b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)+_b[2002.c2]*(c2==2002)

+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004) +_b[2005.c2]*(c2==2005)+_b[2006.c2]*(c2==2006)+_b[x]

+e(rmse)*rnormal()

qui logit m1b x m1a xm1a i.c1 i.c2

qui gen m1b_0 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)

+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0)))

qui gen m1b_1 = runiform()<1/(1+exp(-(_b[_cons] +_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)

+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1)))
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qui logit m2 x m1a m1b xm1a xm1b m1ab xm1ab i.c1 i.c2

qui gen m2_0 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003) +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0+_b[m1b]*m1b_0+_b[m1ab]*m1a_0*m1b_0)))

qui gen m2_1 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003) +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1

+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1)))

qui gen m2_01 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003) +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_1+_b[m1b]*m1b_1+_b[m1ab]*m1a_1*m1b_1)))

qui gen m2_10 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003) +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0+(_b[m1ab]

+_b[xm1ab])*m1a_0*m1b_0)))

qui logit y x m1a m1b m2 xm1a xm1b xm2 m1ab m1am2 m1bm2 xm1ab xm1am2 xm1bm2 m1abm2 xm1abm2 i.c1 i.c2

*M1 and M2 as joint mediators

qui gen y_00 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0+_b[m1b]*m1b_0+_b[m2]*m2_0+_b[m1ab]*m1a_0*m1b_0

+_b[m1am2]*m1a_0*m2_0+_b[m1bm2]*m1b_0*m2_0+_b[m1abm2]*m1a_0*m1b_0*m2_0)))

qui gen y_10 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0+(_b[m2]

+_b[xm2])*m2_0+(_b[m1ab]+_b[xm1ab])*m1a_0*m1b_0+(_b[m1am2]+_b[xm1am2])*m1a_0*m2_0+

(_b[m1bm2]+_b[xm1bm2])*m1b_0*m2_0+(_b[m1abm2]+_b[xm1abm2])*m1a_0*m1b_0*m2_0)))

qui gen y_01 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_1+_b[m1b]*m1b_1+_b[m2]*m2_1+_b[m1ab]*m1a_1*m1b_1

+_b[m1am2]*m1a_1*m2_1+_b[m1bm2]*m1b_1*m2_1+_b[m1abm2]*m1a_1*m1b_1*m2_1)))

qui gen y_11 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003) +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1+(_b[m2]

+_b[xm2])*m2_1+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1+(_b[m1am2]+_b[xm1am2])*m1a_1*m2_1+

(_b[m1bm2]+_b[xm1bm2])*m1b_1*m2_1+(_b[m1abm2]+_b[xm1abm2])*m1a_1*m1b_1*m2_1)))

*M1 as the only mediator

qui gen y_10_b = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0

+(_b[m2]+_b[xm2])*m2_10+(_b[m1ab]+_b[xm1ab])*m1a_0*m1b_0+(_b[m1am2]+_b[xm1am2])*m1a_0*m2_10

+(_b[m1bm2]+_b[xm1bm2])*m1b_0*m2_10+(_b[m1abm2]+_b[xm1abm2])*m1a_0*m1b_0*m2_10)))

qui gen NDE_M1M2=y_10-y_00

qui gen NIE_M1M2=y_11-y_10

qui gen NDE_M1=y_10_b-y_00

qui gen NIE_M1=y_11-y_10_b

qui gen NIE_M2alone=y_10_b-y_10

qui logit y x i.c1 i.c2

qui gen y1=1/(1+exp(-(_b[_cons]+_b[x]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006))))

qui gen y0=1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)

+_b[2005.c2]*(c2==2005)+_b[2006.c2]*(c2==2006))))

qui gen tce=y1-y0

qui summ tce

return scalar tce=r(mean)
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qui summ NDE_M1M2

return scalar NDE_M1M2=r(mean)

qui summ NIE_M1M2

return scalar NIE_M1M2=r(mean)

qui summ NDE_M1

return scalar NDE_M1=r(mean)

qui summ NIE_M1

return scalar NIE_M1=r(mean)

qui summ NIE_M2alone

return scalar NIE_M2alone=r(mean)

end

cap program drop MMintMC

cap program define MMintMC, rclass

cap drop m1a_0-tce

qui set obs 6000000

qui replace c1=c1[_n-29580] if c1==.

qui replace c2=c2[_n-29580] if c2==.

qui reg m1a x i.c1 i.c2

qui gen m1a_0 = _b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+e(rmse)*rnormal()

qui gen m1a_1 = _b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]

+e(rmse)*rnormal()

qui logit m1b x m1a xm1a i.c1 i.c2

qui gen m1b_0 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0)))

qui gen m1b_1 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1)))

qui logit m2 x m1a m1b xm1a xm1b m1ab xm1ab i.c1 i.c2

qui gen m2_0_cond = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0+_b[m1b]*m1b_0+_b[m1ab]*m1a_0*m1b_0)))

qui gen m2_1_cond = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1

+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1)))

qui logit m2 x i.c1 i.c2

qui gen m2_0_marg = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006))))

qui gen m2_1_marg = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x])))

qui logit y x m1a m1b m2 xm1a xm1b xm2 m1ab m1am2 m1bm2 xm1ab xm1am2 xm1bm2 m1abm2 xm1abm2 i.c1 i.c2

qui gen y_000_7 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0+_b[m1b]*m1b_0+_b[m2]*m2_0_cond

+_b[m1ab]*m1a_0*m1b_0+_b[m1am2]*m1a_0*m2_0_cond+_b[m1bm2]*m1b_0*m2_0_cond

+_b[m1abm2]*m1a_0*m1b_0*m2_0_cond)))

qui gen y_100_7 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)
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+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0

+(_b[m2]+_b[xm2])*m2_0_cond+(_b[m1ab]+_b[xm1ab])*m1a_0*m1b_0+(_b[m1am2]

+_b[xm1am2])*m1a_0*m2_0_cond+(_b[m1bm2]+_b[xm1bm2])*m1b_0*m2_0_cond+

(_b[m1abm2]+_b[xm1abm2])*m1a_0*m1b_0*m2_0_cond)))

qui gen y_110_8 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)/// +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1

+(_b[m2]+_b[xm2])*m2_0_marg+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1

+(_b[m1am2]+_b[xm1am2])*m1a_1*m2_0_marg+(_b[m1bm2]

+_b[xm1bm2])*m1b_1*m2_0_marg+(_b[m1abm2]+_b[xm1abm2])*m1a_1*m1b_1*m2_0_marg)))

qui gen y_100_8 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0

+(_b[m2]+_b[xm2])*m2_0_marg+(_b[m1ab]+_b[xm1ab])*m1a_0*m1b_0

+(_b[m1am2]+_b[xm1am2])*m1a_0*m2_0_marg+(_b[m1bm2]+_b[xm1bm2])*m1b_0*m2_0_marg

+(_b[m1abm2]+_b[xm1abm2])*m1a_0*m1b_0*m2_0_marg)))

qui gen y_101_9 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0

+(_b[m2]+_b[xm2])*m2_1_marg+(_b[m1ab]+_b[xm1ab])*m1a_0*m1b_0

+(_b[m1am2]+_b[xm1am2])*m1a_0*m2_1_marg+(_b[m1bm2]+_b[xm1bm2])*m1b_0*m2_1_marg

+(_b[m1abm2]+_b[xm1abm2])*m1a_0*m1b_0*m2_1_marg)))

qui gen y_111_10cond = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1

+(_b[m2]+_b[xm2])*m2_1_cond+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1

+(_b[m1am2]+_b[xm1am2])*m1a_1*m2_1_cond+(_b[m1bm2]+_b[xm1bm2])*m1b_1*m2_1_cond

+(_b[m1abm2]+_b[xm1abm2])*m1a_1*m1b_1*m2_1_cond)))

qui gen y_111_10marg = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1

+(_b[m2]+_b[xm2])*m2_1_marg+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1

+(_b[m1am2]+_b[xm1am2])*m1a_1*m2_1_marg+(_b[m1bm2]+_b[xm1bm2])*m1b_1*m2_1_marg

+(_b[m1abm2]+_b[xm1abm2])*m1a_1*m1b_1*m2_1_marg)))

*display 7

qui gen d7=y_100_7-y_000_7

*display 8

qui gen d8=y_110_8-y_100_8

*display 9

qui gen d9=y_101_9-y_100_8

*display 10

qui gen d10=y_111_10cond-y_111_10marg-y_100_7+y_100_8

qui logit y x i.c1 i.c2

qui gen y1=1/(1+exp(-(_b[_cons]+_b[x]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006))))

qui gen y0=1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006))))

qui gen tce=y1-y0

qui summ tce

return scalar tce=r(mean)
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qui summ d7

return scalar d7=r(mean)

qui summ d8

return scalar d8=r(mean)

qui summ d9

return scalar d9=r(mean)

qui summ d10

return scalar d10=r(mean)

end

bootstrap r(tce) r(d7) r(d8) r(d9) r(d10), reps(1000): MMintMC

bootstrap r(tce) r(NDE_M1M2) r(NIE_M1M2) r(NDE_M1) r(NIE_M1) r(NIE_M2alone), reps(1000): seqMC
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Estimate SE 95% CI
lower upper

Baseline odds∗ 23.74 3.51 17.77 31.72

Conditional odds ratios
SES
higher 1.871 0.411 1.216 2.877

Age at diagnosis (yrs)∗∗ 0.931 0.005 0.920 0.942
Stage
advanced 0.060 0.009 0.045 0.079

Treatment
major 2.975 0.443 2.222 3.984

SES×Agediag 0.988 0.010 0.968 1.009
SES×Stage 0.657 0.164 0.402 1.073
SES×Treat 0.954 0.257 0.563 1.617
Agediag×Stage 1.056 0.008 1.041 1.071
Agediag×Treat 1.008 0.009 0.992 1.025
Stage×Treat 2.140 0.409 1.472 3.111
SES×Agediag×Stage 1.003 0.013 0.978 1.028
SES×Agediag×Treat 1.002 0.016 0.971 1.033
SES×Stage×Treat 1.090 0.376 0.555 2.142
Agediag×Stage×Treat 0.978 0.011 0.956 1.001
SES×Agediag×Stage×Treat 1.012 0.022 0.970 1.056

Region
North-West 0.774 0.115 0.579 1.035
Yorks 0.991 0.059 0.881 1.114

Year of diagnosis
2001 0.830 0.088 0.674 1.022
2002 0.942 0.102 0.762 1.165
2003 1.019 0.109 0.827 1.256
2004 0.954 0.103 0.772 1.180
2005 1.006 0.108 0.815 1.243
2006 1.092 0.120 0.879 1.355

Table 1: Results of logistic regression of one-year survival (Y ) on SES (A), Stage and
Age at diagnosis (M1), Treatment (M2), and Region and Year of diagnosis (C) with all
interactions between A, M1 and M2. One-yr survival is coded 1 for survival and 0 for
death.
∗ estimated odds of survival for women diagnosed in the North East region in 2000, with
low SES, age at diagnosis 62 years, early stage and minor or no surgery
∗∗ centred at the mean age at diagnosis (61.8 years)
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Estimate SE 95% CI
lower upper

Baseline odds∗ 4.796 0.226 4.373 5.261

Conditional odds ratios
SES
higher 0.725 0.026 0.677 0.777

Age at diagnosis (yrs)∗∗ 0.937 0.002 0.934 0.941
Stage
advanced 0.186 0.009 0.169 0.205

SES×Agediag 1.033 0.003 1.027 1.038
SES×Stage 1.799 0.152 1.525 2.123
Agediag×Stage 1.014 0.004 1.007 1.021
SES×Agediag×Stage 0.974 0.006 0.962 0.985

Region
North-West 1.806 0.155 1.526 2.138
Yorks 0.795 0.025 0.747 0.846

Year of diagnosis
2001 1.089 0.061 0.976 1.214
2002 1.119 0.062 1.003 1.249
2003 1.248 0.069 1.120 1.390
2004 1.429 0.081 1.280 1.596
2005 1.411 0.079 1.265 1.575
2006 1.442 0.082 1.291 1.611

Table 2: Results of logistic regression of Treatment (M2) on SES (A), Stage and Age at
diagnosis (M1), and Region and Year of diagnosis (C) with all interactions between A
and M1. Treatment is coded 1 for major surgery and 0 for minor or no surgery.
∗ estimated odds of major surgery for women diagnosed in the North East region in 2000,
with low SES, age at diagnosis 62 years and early stage.
∗∗ centred at the mean age at diagnosis (61.8 years)
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Estimate SE 95% CI
lower upper

Baseline odds∗ 0.164 0.009 0.148 0.182

Conditional odds ratios
SES

higher 0.757 0.029 0.702 0.816
Age at diagnosis (yrs)∗∗ 1.020 0.002 1.017 1.023

SES×Agediag 1.002 0.003 0.996 1.007

Region
North-West 0.655 0.066 0.538 0.797
Yorks 1.059 0.040 0.985 1.140

Year of diagnosis
2001 0.917 0.062 0.804 1.047
2002 0.950 0.064 0.833 1.083
2003 0.951 0.062 0.837 1.082
2004 0.845 0.057 0.741 0.965
2005 0.872 0.058 0.765 0.994
2006 0.909 0.061 0.798 1.036

Table 3: Results of logistic regression of Stage at diagnosis (one component of M1) on SES
(A), Age at diagnosis (the other component of M1), and Region and Year of diagnosis (C)
including the interaction between SES and age at diagnosis. Stage at diagnosis is coded
1 for advanced and 0 for early.
∗ estimated odds of being diagnosed at an advanced stage for women diagnosed in the
North East region in 2000, with low SES and aged 62 years at diagnosis.
∗∗ centred at the mean age at diagnosis (61.8 years)
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Estimate SE 95% CI
lower upper

Baseline mean (intercept)∗ 61.36 0.247 60.88 61.85

Mean differences / slopes
SES

higher –1.53 0.168 –1.86 –1.20

Region
North-West –0.488 0.383 –1.24 0.262
Yorks 0.442 0.170 0.109 0.775

Year of diagnosis
2001 0.616 0.309 0.011 1.22
2002 0.620 0.309 0.014 1.22
2003 1.36 0.303 0.765 1.95
2004 0.737 0.303 0.142 1.33
2005 1.13 0.302 0.542 1.73
2006 0.958 0.305 0.360 1.56

Residual standard deviation
13.87

Table 4: Results of linear regression of Age at diagnosis (one component of M1, in years)
on SES (A) and Region and Year of diagnosis (C).
∗ estimated mean age at diagnosis for women diagnosed in the North East region in 2000,
with low SES.
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Figure 1: Causal diagram 5: multiple mediators.
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